A%oncise Forwarding Information Base
for Scalable and Fast Name Switching

Chen Qjan
University of Kentucky

University of California Santa Cruz
with Ye Yu, Djamal Belazzougui, Qin Zhang

UK

KENTUCKY"

Forwarding Information Base (FIB)

A data structure (typically a
table) in a network device to
determine forwarding actions

Input: Output:
destination | FWD action ,

Names vs. |IP addresses

(most) Names are flat, permanent, and
location-independent

Flexible network services for mobile devices
and VMs: routing, firewall, VPN, etc.

#® Flow IDs (Packet headers) can also be
considered as names.

Biggest problem: FIB explosion

Examples of network names

Enterprise and data center networks:
m SEATTLE [siccoMmm’08], VIRO [Infocom’11], ROME [ICNP’12]

Future Internet Architecture (FIA)

m Layered Naming Architecture [SiIGcoMmMm’04], AIP
[SIGCOMM’08]

m NSF FIA projects: NDN, XIA, MobilityFirst
#®LTE access network [SIGCOMM’15]

New FIB design: Concise

1. Use the least memory ever
m Fast memory is expensive and power-hungry.

m Only 10% - 30% of Cuckoo [CoNEXT’13,
SIGCOMM’15]

2. Fast query speed ever
m 2x to 5x advantage

3. Update speed slower than some FIBs
m Still support millions of updates per second.

s Uk

ldea of Concise
SDN Controller

Update via existing SDN API

Construct
Update

Optimize memory and query cost

6 Uk

Concise functions

Classify n names into d different sets.
Each set is a forwarding action

Relying on a data structure Othello

A new data structure Othello

Classifies names to two sets X and Y
m Based on MWHC perfect hashing, which is static

Query result
nT(k) =0 keX
nT(k) =12 keyY

Othello Query Structure

Two bitmaps a, b with size m (m in (1.42n, 2.86n))

ha(.) 1

Query is easy. Then how to
construct it?

1 1 1

1
A

hb (.) | m'bl':s

B isinsetY
; Uk

Othello Control Structure: Construct

(: acyclic bipartite graph

: T ‘ k hy(k) hy(k)
LWOHLLWWEE = ° °
DD DD DIAD,

b

hy ——— 1

10

Othello Construct

h It finding a cycle, use another pair
a <h_ h,>until an acyclic graph is built ;k)

SREEFEPTL 1 o]
For n names, the time to find G is ;
O(n).)

b
hy —-1_1

g Uk

Compute Bitmap

q) k h,(k) hy(k) set

OOOOOBHD 5 5

HOLDDODE)

b 0

0
2
3
2

12

Compute Bitmap

a 1 0 1 k hy(k) hy(k) set

HQOOHLOEPL ————

N W NJO
X X <|IX

OO

b

If G is acyclic, easy to find a coloring plan

: 1119

Name Addition — color flip

hg 1 k h,(k) hy(k) set

a 1 0) o 6 5 Y

@ 1 0 X

m 1 2 Y

- m 1 3 X
D)@ 4 2 X
b1 o[1]| |ao |l m 6 3 v

If G is acyclic, flipping is trivial

14

Concise functionality

Classifies names into 2! sets:

Zo,Z1, ", Zol_yq

| Othellos can classify names to 2! sets

A 3 T (4 (4 ’
N - 4 ”’v U4 \\
\\ ;” \ 4 \
__7_‘"Af‘ ------ [| - [

Y” ~ a

| < 8 for network devices

T A Y

a |o 1 0 a-l 111 | lol |1
) Same G, h_, h,.
Different coloring plan and bitmaps

@[‘D Do we need 2| memory reads to P
- query | Othellos?

by

Othello 1 Same X UY Othello 2

’ Uk

0 “1liq al 1 o |1

& H=01610=011), 2©
kis in set Z,
F)l@@@'@ DL DD BD

[1]o] T2 b[1]T Tolal Tol [1]

CPUs can read | bits at one time

Utnelio 1 UTNEIIO Z

7 Uk

Implementation of three prototypes

#1. Memory mode

s Query and control structures running on
different threads.

2. CLICK modular router
3. Intel Data Plane Development Kit (DPDK)

. Uk

Comparison: best solutions in the literature

Buffalo

in CONEXT’09

Cuckoo hashing

in CoNEXT’13 and SIGCOMM’15

19

Comparison: Memory size

FIB Example Memory Size
Name Type # Names # Actions|Concise Cuckoo Buffalo
MAC (48 bits) 7*10° 16 1M 5.62M 2.64M

MAC (48 bits) 5*106 256 16M | 40.15M 27.70M
MAC (48 bits) 3*107 256 128M| 321.23M 166.23M
IPv4 (32 bits) 1*106 16 2M 4.27M 3.77M
IPv6 (128 bits) 2*106 256 8M 34.13M 11.08M
OpenFlow (356 bits)] 3*10° 256 1M 14.46M 1.67M
OpenFlow (356 bits)] 1.4*10® 65536 8M 67.46M 18.21M
File name (varied) | 359194 16 512K|] 19.32M 1.35M

- Uk

Query speed

1000f O Concise
500}

¥ Cuckoo
A OBFs

200r + BUFFALO

100~

S50F

Query throughput (Mgps)

20F

10BEK 6;1K12.8K25:8K51.2K 1I\/I 2|.VI 4EVI M 1b:IVI 32.M
tt of names
2X to 4x speed advantage

Uk

21

Update

SME

Memory Size

amE | — 512KB — 2MB =— 8MB -— 32MB

Update speed (updates/sec)

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
t of names before update

Each update is a network-wide update UK

22

More possible applications of Concise

Essentially a key-value mapping
#1. Memory cache

2. Support query to distributed content
storage

3. Sparse vector data processing

23

Thank You

Questions?

