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Forwarding Information Base (FIB)

A data structure (typically a
table) in a network device to
determine forwarding actions

Input: Output:
destination | FWD action ,




Names vs. |IP addresses

# (most) Names are flat, permanent, and
location-independent

# Flexible network services for mobile devices
and VMs: routing, firewall, VPN, etc.

#® Flow IDs (Packet headers) can also be
considered as names.

# Biggest problem: FIB explosion




Examples of network names

# Enterprise and data center networks:
m SEATTLE [siccoMmm’08], VIRO [Infocom’11], ROME [ICNP’12]

# Future Internet Architecture (FIA)

m Layered Naming Architecture [SiIGcoMmMm’04], AIP
[SIGCOMM’08]

m NSF FIA projects: NDN, XIA, MobilityFirst
#®LTE access network [SIGCOMM’15]




New FIB design: Concise

# 1. Use the least memory ever
m Fast memory is expensive and power-hungry.

m Only 10% - 30% of Cuckoo [CoNEXT’13,
SIGCOMM’15]

# 2. Fast query speed ever
m 2x to 5x advantage

# 3. Update speed slower than some FIBs
m Still support millions of updates per second.
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ldea of Concise
SDN Controller

Update via existing SDN API

Construct
Update

Optimize memory and query cost
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Concise functions

# Classify n names into d different sets.
# Each set is a forwarding action

# Relying on a data structure Othello




A new data structure Othello

# Classifies names to two sets X and Y
m Based on MWHC perfect hashing, which is static

# Query result
nT(k) =0 keX
nT(k) =12 keyY




Othello Query Structure

# Two bitmaps a, b with size m (m in (1.42n, 2.86n))

ha(.) 1

Query is easy. Then how to
construct it?

1 1 1

1
A

hb (.) | m'bl':s

B isinsetY
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Othello Control Structure: Construct

# (: acyclic bipartite graph

: T ‘ k  hy(k) hy(k)
LWOHLLWWEE = °  °
DD DD DIAD,

b

hy ——— 1
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Othello Construct

h It finding a cycle, use another pair
a <h_ h,>until an acyclic graph is built ;k)

SREEFEPTL 1 o]
For n names, the time to find G is ;
O(n). )

b
hy —-1_1
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Compute Bitmap

q ) k  h,(k) hy(k) set

OOOOOBHD 5 5

HOLDDODE)

b 0

0
2
3
2
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Compute Bitmap

a 1 0 1 k hy(k) hy(k) set

HQOOHLOEPL ————

N W NJO
X X <|IX

OO

b

If G is acyclic, easy to find a coloring plan
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Name Addition — color flip

hg 1 k  h,(k) hy(k) set

a 1 0 ) o 6 5 Y

@ 1 0 X

m 1 2 Y

- m 1 3 X
D)@ 4 2 X
b1 o[1]| |ao |l m 6 3 v

If G is acyclic, flipping is trivial
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Concise functionality

# Classifies names into 2! sets:

Zo,Z1, ", Zol_yq

------

| Othellos can classify names to 2! sets

A 3 T (4 (4 ’
N - 4 ”’v U4 \\
\\ ;” \ 4 \
__7_‘"Af‘ ------ [ | - [

Y” ~ a

| < 8 for network devices

T A Y




a |o 1 0 a-l 111 | lol |1
) Same G, h_, h,.
Different coloring plan and bitmaps

@[‘D Do we need 2| memory reads to P
- query | Othellos?

by

Othello 1 Same X UY Othello 2
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0 “1liq al 1 o |1

& H=01610=011), 2©
kis in set Z,
F)l@@@'@ DL DD BD

[1]o] T2 b[1]T Tolal Tol [1]

CPUs can read | bits at one time

Utnelio 1 UTNEIIO Z
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Implementation of three prototypes

#1. Memory mode

s Query and control structures running on
different threads.

# 2. CLICK modular router
# 3. Intel Data Plane Development Kit (DPDK)
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Comparison: best solutions in the literature

# Buffalo

in CONEXT’09

# Cuckoo hashing

in CoNEXT’13 and SIGCOMM’15
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Comparison: Memory size

FIB Example Memory Size
Name Type # Names # Actions|Concise Cuckoo  Buffalo
MAC (48 bits) 7*10° 16 1M 5.62M 2.64M

MAC (48 bits) 5*106 256 16M | 40.15M 27.70M
MAC (48 bits) 3*107 256 128M| 321.23M 166.23M
IPv4 (32 bits) 1*106 16 2M 4.27M 3.77M
IPv6 (128 bits) 2*106 256 8M 34.13M 11.08M
OpenFlow (356 bits)] 3*10° 256 1M 14.46M  1.67M
OpenFlow (356 bits)] 1.4*10® 65536 8M 67.46M 18.21M
File name (varied) | 359194 16 512K|] 19.32M 1.35M
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Query speed

1000f O Concise
500}

¥ Cuckoo
A OBFs

200r + BUFFALO

100~

S50F

Query throughput (Mgps)

20F

10BEK 6;1K12.8K25:8K51.2K 1I\/I 2|.VI 4EVI M 1b:IVI 32.M
tt of names
2X to 4x speed advantage

Uk
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Update

SME

Memory Size

amE | — 512KB — 2MB =— 8MB -— 32MB

Update speed (updates/sec)

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
t of names before update

Each update is a network-wide update UK
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More possible applications of Concise

# Essentially a key-value mapping
#1. Memory cache

# 2. Support query to distributed content
storage

# 3. Sparse vector data processing
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Thank You

Questions?




