
Fast Control Plane Analysis

Using an Abstract Representation

Aditya Akella

Aaron Gember-Jacobson, Raajay Viswanathan and
Ratul Mahajan

UW-Madison and Microsoft

1

Control
plane

Control plane is…

• Essential

• Complex

2

Routing
process
Routing
process

Data
plane

Forwarding
tableTo: A

Routing
process

→ configuration errors may cause
security/availability problems

→ errors may not be
immediately apparent

Routing
table

Routing
table

Routing
table

Always traverse middlebox

Important functional invariants

3

Always blocked Always isolated

Always equivalent paths

Challenge: Invariants violated under some
(combinations of) failures

Analyze current data plane [HSA,

Veriflow]

4

Forwarding
Table’

Forwarding
Table’

Forwarding
Table’

Forwarding
Table’’

Forwarding
Table’’

Forwarding
Table’’

Forwarding
Table’’’

Forwarding
Table’’’

Forwarding
Table’’’

Generate data planes [Batfish]

→ time consuming→ cannot verify invariants
always hold

Blocked, isolated, waypoints, equivalence …

• Properties of paths, not paths themselves

• Data centers, enterprises use a limited
set of control plane constructs

Higher-level abstraction
Fast analysis

Proactive
Verification

Abstract Representation for
Control planes (ARC)

5

• Encodes the network’s forwarding behavior
under all possible infrastructure faults

Control plane configuration Abstract representation

B I C O

B O

D I

D O
3C I

0

3

0 0

Dst:TSrc:U

0 0

Dst:U Src:T

0 0

1

1

1 1

C O D I

D OC I

0 0

3

3

…

• Encodes the network’s forwarding behavior
under all possible infrastructure faults

• Proactive verification boils down to checking
simple graph-level properties fast

• Ignore which protocols used and how

B C

OSPFT
D

U

1

31

T

T

T

Key requirements of ARC
1) Sound & Complete: each digraph contains

every feasible path and no infeasible paths
 verification of invariants

2) Precise: assign edge weights such that the min-cost
path matches the real path
 counter-examples, equivalence testing

6

B I C O

B O

D I

D OC I

Dst:TSrc:U

Dst:U Src:T

0 0

3

0

3

0 0

1

1

1 1

C O D I

D OC I

0 0

0 0

3

3

• Why weighted digraphs?

• How to ensure soundness, completeness,
precision?

7

Routing protocols used today

• Commonality: cost-based path selection algorithm

• Differences:

• Also must account for:

– Traffic class specificity

– Route redistribution

– Route selection based on administrative distance

8

BGP AS1 AS2OSPF Router1 Router2

4 IV
Dijsktra’s algorithm Path length

& preference
AD=110 AD=20

Challenge: determining the structure and
edge weights of the graphs

granularity & currency

Extended topology graphs (ETGs)
• One per traffic class

• Vertices: routing processes

• Edges: flow of data enabled by
exchange of routing information

9

Z

B

X

BGP1

OSPF3

T

S

Y

1

2

A

3

SRC:S

DST:T

A.1I

A.1O B.1I

B.1O Z.1I

Z.1O

Z.3I

Z.3O

Y.3O

Y.3I

X.3I

X.3O

Edge-weights based on
configured costs and

administrative distances
1

1

1

1

0 0 0

000

0.4

0.4

0.6

0.6

Sound and complete
(for OSPF, BGP, redistr…)

ETG edge weights
• Inter-device: OSPF weights;

unit cost per hop for BGP (each router is an AS)

• Intra-device: redistribution only: no cost within
process; fixed-cost between processes

10

Z

B

X

BGP1

OSPF2

T

S

Y

1

2

A

3

A.1I

A.1O B.1I

B.1O Z.1I

Z.1O

Z.3I

Z.3O

Y.3O

Y.3I

X.3I

X.3O

2

2 3

3

1

1

1

1

0 0 0

000

+ scaling

1

0.2

0.2

0.3

0.3

Shortest
path = 5

Gap = 1

2

Shortest
path = 1

Longest
path = 0.5

SRC:S

DST:T

≤

Precise
(for DAG

redistribution,
AD graphs)

ARC properties

Construct Sound &
Complete

Precise

OSPF Single area

RIP

eBGP Select by AS path length, local pref.

Static Routes

ACLs

Route filters

Route selection (based on
Administrative Distance)

 No redistribution OR redistribution
costs congruent with ADs

Route redistribution Acyclic & costs congruent with ADs

11

Sound and complete for 100% Precise for 96%

Verification

• Always traverse middlebox:
1) remove all edges with middleboxes
2) Src and Dst in same connected component?

12

DO

DI

EO

EI

FO

FI

GO

GI

CO

CI

BO

BIDST:S

SRC:U

E

F G

CB

D US

OSPF

Verification

• Always reachable with < k link failures:
max-flow on unit-weight ETG ≥ k?

13

Max-flow = 3

DO

DI

EO

EI

FO

FI

GO

GI

CO

CI

BO

BIDST:S

SRC:U

E

F G

CB

D US

OSPF

3 edge-disjoint paths

∞1

Verification
Invariant Graph property Required ARC

Properties

Always blocked
Separate connected
components

Sound & Complete

Always reachable
with < k failures

Max flow ≥ k Sound & Complete

Always traverse
waypoint (chain)

Separate connected
components

Sound & Complete

Always isolated No common edges Sound & Complete

Equivalence Same structure & weights
Sound, Complete,
& Precise

14

Precision required to produce counter-examples

Implementation and evaluation

• Implemented in Java using Batfish (parsing)
and JGraphT (graph algorithms)
https://bitbucket.org/uw-madison-networking-research/arc

• Configurations from 314 data
center networks operated by a
large online service provider

• 4-core 2.8GHz CPU
24GB RAM

15

Evaluation: time to generate ARC

16

Fast (< 10 sec)
even for large

networks

Most time is spent parsing

Evaluation: verification time

17

Always blocked Always reachable
with < k failures

Always isolated

< 500 ms
(Batfish: 694 days!)

Up to 16 min< 1 sec

Verification time is proportional to the
number of traffic classes; easily parallelized

Next steps

• Precision under fewer assumptions

• Generality of ARCs

• Other uses…

18

Next steps: automated repair

19

Configurations ARC

Repairs

Challenge: finding a minimal repair
(e.g., many ACLs vs. remove BGP neighbor)

without side-effects

1) Transform ETGs to have
desired attributes (e.g.,
src and dst→ always
blocked)

2) Translate to config
changes (e.g., remove
edge → add ACL)

Controller

Next steps: Transition to SDN

20

Configurations ARC

Controller uses ETGs to
drive forwarding plane
configurations

Minimize controller
involvement, churn?

Different underlying
network topology?

Next steps: synthesis

• Operators require fine-grained control over
routing: waypoints, isolation, traffic
engineering
– Intents configurations

• Distributed routing based on shortest path –
very difficult to program!

• One approach: input data planes resilient
ARCs configs

21

Synthesis

22

S1

S2

S3

S4

S5 S6

1

1

1

1

1
1

3

3

• Edge weights
• Input path to dst must be

the shortest path
• Uniqueness of shortest path

• Route filtering
• Disable edges for a destination

to ensure path is shortest

• Backup paths
• Weights such that backup path

is chosen during link failures

Summary

• Presented an abstract representation for
control planes

– Fast and simple verification under arbitrary failures

– Verification is based on graph-level properties

– Up to 5 orders of magnitude speed-up

• Useful for repair, transition, synthesis, …

23

Try it!
https://bitbucket.org/uw-madison-

networking-research/arc

Backup

24

Evaluation: verification time

25

Always blocked
using ARC

Always blocked
using Batfish

< 500 ms > 694 days!

Verification with ARC is 3 to 5
orders of magnitude faster!

Verification

• Always blocked: Src and Dst in same
connected component?

26

B C

T
D

U

1

31

T

T

T
OSPF

S

CI

CO

DO

DI

DST:S SRC:T

CI

CO

DO

DI

DST:U SRC:T

T S

T U

?

?

Fast Control Plane Analysis

Using an Abstract Representation

Aditya Akella

Aaron Gember-Jacobson, Raajay Viswanathan and
Ratul Mahajan

UW-Madison and Microsoft

28

Fast Control Plane Analysis

Using an Abstract Representation

Aditya Akella

29

