
Kulfi
Robust Traffic Engineering
Using Semi-Oblivious Routing

Praveen Kumar, Yang Yuan, Chris Yu,  
Bobby Kleinberg, Robert Soulé, & Nate Foster

Cornell, Carnegie Mellon, Microsoft Research, & Lugano

1

Kulfi
Robust Traffic Engineering
Using Semi-Oblivious Routing

Praveen Kumar, Yang Yuan, Chris Yu,  
Bobby Kleinberg, Robert Soulé, & Nate Foster

Cornell, Carnegie Mellon, Microsoft Research, & Lugano

1

Tastes great,
no churn!

NetKAT

2

Probabilistic NetKAT

Nate Foster1, Dexter Kozen1, Konstantinos Mamouras2
⇤
,

Mark Reitblatt3
⇤
, and Alexandra Silva4

1 Cornell University
2 University of Pennsylvania

3 Facebook
4 University College London

Abstract. This paper presents a new language for network program-
ming based on a probabilistic semantics. We extend the NetKAT lan-
guage with new primitives for expressing probabilistic behaviors and
enrich the semantics from one based on deterministic functions to one
based on measurable functions on sets of packet histories. We establish
fundamental properties of the semantics, prove that it is a conservative
extension of the deterministic semantics, show that it satisfies a number
of natural equations, and develop a notion of approximation. We present
case studies that show how the language can be used to model a diverse
collection of scenarios drawn from real-world networks.

1 Introduction

Formal specification and verification of networks has become a reality in re-
cent years with the emergence of network-specific programming languages and
property-checking tools. Programming languages like Frenetic [11], Pyretic [36],
Maple [52], FlowLog [38], and others are enabling programmers to specify the
intended behavior of a network in terms of high-level constructs such as Boolean
predicates and functions on packets. Verification tools like Header Space Analy-
sis [21], VeriFlow [22], and NetKAT [12] are making it possible to check properties
such as connectivity, loop freedom, and tra�c isolation automatically.

However, despite many notable advances, these frameworks all have a funda-
mental limitation: they model network behavior in terms of deterministic packet-
processing functions. This approach works well enough in settings where the
network functionality is simple, or where the properties of interest only concern
the forwarding paths used to carry tra�c. But it does not provide satisfactory
accounts of more complicated situations that often arise in practice:

– Congestion: the network operator wishes to calculate the expected degree
of congestion on each link given a model of the demands for tra�c.

– Failure: the network operator wishes to calculate the probability that pack-
ets will be delivered to their destination, given that devices and links fail
with a certain probability.

⇤
Work performed at Cornell University.

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
CEvent-Driven Network Programming

Jedidiah McClurg
CU Boulder, USA

jedidiah.mcclurg@colorado.edu

Hossein Hojjat
Cornell University, USA

hojjat@cornell.edu

Nate Foster
Cornell University, USA
jnfoster@cs.cornell.edu

Pavol Černý
CU Boulder, USA

pavol.cerny@colorado.edu

Abstract
Software-defined networking (SDN) programs must simul-
taneously describe static forwarding behavior and dynamic
updates in response to events. Event-driven updates are crit-
ical to get right, but difficult to implement correctly due to
the high degree of concurrency in networks. Existing SDN
platforms offer weak guarantees that can break application
invariants, leading to problems such as dropped packets,
degraded performance, security violations, etc. This paper
introduces event-driven consistent updates that are guaran-
teed to preserve well-defined behaviors when transitioning
between configurations in response to events. We propose
network event structures (NESs) to model constraints on
updates, such as which events can be enabled simultane-
ously and causal dependencies between events. We define
an extension of the NetKAT language with mutable state,
give semantics to stateful programs using NESs, and discuss
provably-correct strategies for implementing NESs in SDNs.
Finally, we evaluate our approach empirically, demonstrat-
ing that it gives well-defined consistency guarantees while
avoiding expensive synchronization and packet buffering.

Categories and Subject Descriptors C.2.3 [Computer-
communication Networks]: Network Operations—Network
Management; D.3.2 [Programming Languages]: Language
Classifications—Specialized application languages; D.3.4
[Programming Languages]: Processors—Compilers

Keywords network update, consistent update, event struc-
ture, software-defined networking, SDN, NetKAT

1. Introduction
Software-defined networking (SDN) allows network behav-
ior to be specified using logically-centralized programs that

execute on general-purpose machines. These programs re-
act to events such as topology changes, traffic statistics,
receipt of packets, etc. by modifying sets of forwarding
rules installed on switches. SDN programs can implement
a wide range of advanced network functionality including
fine-grained access control [8], network virtualization [22],
traffic engineering [15, 16], and many others.

Although the basic SDN model is simple, building so-
phisticated applications is challenging in practice. Pro-
grammers must keep track of numerous low-level details
such as encoding configurations into prioritized forwarding
rules, processing concurrent events, managing asynchronous
events, dealing with unexpected failures, etc. To address
these challenges, a number of domain-specific network pro-
gramming languages have been proposed [2, 10, 19, 21, 29,
31, 36, 37]. The details of these languages vary, but they all
offer higher-level abstractions for specifying behavior (e.g.,
using mathematical functions, boolean predicates, relational
operators, etc.), and rely on a compiler and run-time system
to generate and manage the underlying network state.

Unfortunately, the languages that have been proposed so
far lack critical features that are needed to implement dy-
namic, event-driven applications. Static languages such as
NetKAT [2] offer rich constructs for describing network con-
figurations, but lack features for responding to events and
maintaining internal state. Instead, programmers must write
a stateful program in a general-purpose language that gener-
ates a stream of NetKAT programs. Dynamic languages such
as FlowLog and Kinetic [21, 31] offer stateful programming
models, but they do not specify how the network behaves
while it is being reconfigured in response to state changes.
Abstractions such as consistent updates provide strong guar-
antees during periods of reconfiguration [26, 33], but cur-
rent realizations are limited to properties involving a single
packet (or set of related packets, such as a unidirectional
flow). To implement correct dynamic SDN applications to-
day, the most effective option is often to use low-level APIs,
forgoing the benefits of higher-level languages entirely.

Example: Stateful Firewall. To illustrate the challenges
that arise when implementing dynamic applications, con-
sider a topology where an internal host H1 is connected to
switch s1, an external host H4 is connected to a switch s4,
and switches s1 and s4 are connected to each other (see Fig-

Event-Driven Network Programming 1 2016/4/19

ar
X

iv
:1

50
7.

07
04

9v
3

 [c
s.P

L]
 1

6
A

pr
 2

01
6

[ESOP ’16] [PLDI ’16]

NetKAT

2

Probabilistic NetKAT

Nate Foster1, Dexter Kozen1, Konstantinos Mamouras2
⇤
,

Mark Reitblatt3
⇤
, and Alexandra Silva4

1 Cornell University
2 University of Pennsylvania

3 Facebook
4 University College London

Abstract. This paper presents a new language for network program-
ming based on a probabilistic semantics. We extend the NetKAT lan-
guage with new primitives for expressing probabilistic behaviors and
enrich the semantics from one based on deterministic functions to one
based on measurable functions on sets of packet histories. We establish
fundamental properties of the semantics, prove that it is a conservative
extension of the deterministic semantics, show that it satisfies a number
of natural equations, and develop a notion of approximation. We present
case studies that show how the language can be used to model a diverse
collection of scenarios drawn from real-world networks.

1 Introduction

Formal specification and verification of networks has become a reality in re-
cent years with the emergence of network-specific programming languages and
property-checking tools. Programming languages like Frenetic [11], Pyretic [36],
Maple [52], FlowLog [38], and others are enabling programmers to specify the
intended behavior of a network in terms of high-level constructs such as Boolean
predicates and functions on packets. Verification tools like Header Space Analy-
sis [21], VeriFlow [22], and NetKAT [12] are making it possible to check properties
such as connectivity, loop freedom, and tra�c isolation automatically.

However, despite many notable advances, these frameworks all have a funda-
mental limitation: they model network behavior in terms of deterministic packet-
processing functions. This approach works well enough in settings where the
network functionality is simple, or where the properties of interest only concern
the forwarding paths used to carry tra�c. But it does not provide satisfactory
accounts of more complicated situations that often arise in practice:

– Congestion: the network operator wishes to calculate the expected degree
of congestion on each link given a model of the demands for tra�c.

– Failure: the network operator wishes to calculate the probability that pack-
ets will be delivered to their destination, given that devices and links fail
with a certain probability.

⇤
Work performed at Cornell University.

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
CEvent-Driven Network Programming

Jedidiah McClurg
CU Boulder, USA

jedidiah.mcclurg@colorado.edu

Hossein Hojjat
Cornell University, USA

hojjat@cornell.edu

Nate Foster
Cornell University, USA
jnfoster@cs.cornell.edu

Pavol Černý
CU Boulder, USA

pavol.cerny@colorado.edu

Abstract
Software-defined networking (SDN) programs must simul-
taneously describe static forwarding behavior and dynamic
updates in response to events. Event-driven updates are crit-
ical to get right, but difficult to implement correctly due to
the high degree of concurrency in networks. Existing SDN
platforms offer weak guarantees that can break application
invariants, leading to problems such as dropped packets,
degraded performance, security violations, etc. This paper
introduces event-driven consistent updates that are guaran-
teed to preserve well-defined behaviors when transitioning
between configurations in response to events. We propose
network event structures (NESs) to model constraints on
updates, such as which events can be enabled simultane-
ously and causal dependencies between events. We define
an extension of the NetKAT language with mutable state,
give semantics to stateful programs using NESs, and discuss
provably-correct strategies for implementing NESs in SDNs.
Finally, we evaluate our approach empirically, demonstrat-
ing that it gives well-defined consistency guarantees while
avoiding expensive synchronization and packet buffering.

Categories and Subject Descriptors C.2.3 [Computer-
communication Networks]: Network Operations—Network
Management; D.3.2 [Programming Languages]: Language
Classifications—Specialized application languages; D.3.4
[Programming Languages]: Processors—Compilers

Keywords network update, consistent update, event struc-
ture, software-defined networking, SDN, NetKAT

1. Introduction
Software-defined networking (SDN) allows network behav-
ior to be specified using logically-centralized programs that

execute on general-purpose machines. These programs re-
act to events such as topology changes, traffic statistics,
receipt of packets, etc. by modifying sets of forwarding
rules installed on switches. SDN programs can implement
a wide range of advanced network functionality including
fine-grained access control [8], network virtualization [22],
traffic engineering [15, 16], and many others.

Although the basic SDN model is simple, building so-
phisticated applications is challenging in practice. Pro-
grammers must keep track of numerous low-level details
such as encoding configurations into prioritized forwarding
rules, processing concurrent events, managing asynchronous
events, dealing with unexpected failures, etc. To address
these challenges, a number of domain-specific network pro-
gramming languages have been proposed [2, 10, 19, 21, 29,
31, 36, 37]. The details of these languages vary, but they all
offer higher-level abstractions for specifying behavior (e.g.,
using mathematical functions, boolean predicates, relational
operators, etc.), and rely on a compiler and run-time system
to generate and manage the underlying network state.

Unfortunately, the languages that have been proposed so
far lack critical features that are needed to implement dy-
namic, event-driven applications. Static languages such as
NetKAT [2] offer rich constructs for describing network con-
figurations, but lack features for responding to events and
maintaining internal state. Instead, programmers must write
a stateful program in a general-purpose language that gener-
ates a stream of NetKAT programs. Dynamic languages such
as FlowLog and Kinetic [21, 31] offer stateful programming
models, but they do not specify how the network behaves
while it is being reconfigured in response to state changes.
Abstractions such as consistent updates provide strong guar-
antees during periods of reconfiguration [26, 33], but cur-
rent realizations are limited to properties involving a single
packet (or set of related packets, such as a unidirectional
flow). To implement correct dynamic SDN applications to-
day, the most effective option is often to use low-level APIs,
forgoing the benefits of higher-level languages entirely.

Example: Stateful Firewall. To illustrate the challenges
that arise when implementing dynamic applications, con-
sider a topology where an internal host H1 is connected to
switch s1, an external host H4 is connected to a switch s4,
and switches s1 and s4 are connected to each other (see Fig-

Event-Driven Network Programming 1 2016/4/19

ar
X

iv
:1

50
7.

07
04

9v
3

 [c
s.P

L]
 1

6
A

pr
 2

01
6

[ESOP ’16] [PLDI ’16]

A Bus Ride...

3

“Why aren’t more algorithms
researchers working on SDN?”

WAN Traffic Engineering
Network infrastructure is expensive!

Operators must balance latency-sensitive customer traffic with  
high-volume, operational traffic

Many competing objectives:

Balances load

Achieves low latency

Tolerates failures

Simple to implement

4

Challenges

5

West East

Challenges

5

West East

Device
Limitations

Challenges

5

West East

Sporadic 
shortcuts

Device
Limitations

Challenges

5

West East

Sporadic 
shortcuts

Sparse 
bisection

Device
Limitations

Challenges

5

West East

Sporadic 
shortcuts

Sparse 
bisection

Unexpected
Failures

Device
Limitations

Challenges

5

West East

Sporadic 
shortcuts

Sparse 
bisection

Unexpected
Failures

Misprediction
& Bursts

Device
Limitations

Routing Scheme

6

1. Which forwarding paths to use
send traffic from sources to
destinations?

2. How to map incoming traffic
flows onto multiple forwarding
paths?

Routing Scheme

6

1. Which forwarding paths to use
send traffic from sources to
destinations?

2. How to map incoming traffic
flows onto multiple forwarding
paths?

Routing Scheme

6

1. Which forwarding paths to use
send traffic from sources to
destinations?

2. How to map incoming traffic
flows onto multiple forwarding
paths?

Optimal Approach
(Strawman MCF)

7

1. Estimate traffic demands from
historical data

2. Encode routing problem as an
optimization problem

3. Extract forwarding paths and
sending rates from solution

4. Modify forwarding state

5. Repeat…

Optimal Approach
(Strawman MCF)

7

1. Estimate traffic demands from
historical data

2. Encode routing problem as an
optimization problem

3. Extract forwarding paths and
sending rates from solution

4. Modify forwarding state

5. Repeat…

Centralized
Traffic Engineering

8

SWAN & B4 [SIGCOMM ’13]

1. Pre-compute several
forwarding paths between
each source and destination
(e.g., K-shortest paths)

2. Compute optimal sending
rates in response to
(estimated or scheduled)
demands

Centralized
Traffic Engineering

8

SWAN & B4 [SIGCOMM ’13]

1. Pre-compute several
forwarding paths between
each source and destination
(e.g., K-shortest paths)

2. Compute optimal sending
rates in response to
(estimated or scheduled)
demands

Centralized
Traffic Engineering

8

SWAN & B4 [SIGCOMM ’13]

1. Pre-compute several
forwarding paths between
each source and destination
(e.g., K-shortest paths)

2. Compute optimal sending
rates in response to
(estimated or scheduled)
demands

Talk Outline

Motivation

Randomized Routing

Evaluation

Conclusions

9

Randomized Routing

10

ECMP

11

1. Pre-compute a set of  
least-cost paths

2. Identify flows by hashing
packet header fields

3. Randomly forward along  
least cost paths

ECMP

11

1. Pre-compute a set of  
least-cost paths

2. Identify flows by hashing
packet header fields

3. Randomly forward along  
least cost paths

Valiant Load Balancing

12

1. Choose a random
intermediate node

2. Route from source to
intermediate node

3. Route from intermediate node
to destination

Valiant Load Balancing

12

1. Choose a random
intermediate node

2. Route from source to
intermediate node

3. Route from intermediate node
to destination

Valiant Load Balancing

13

West East

Valiant Load Balancing

13

West East

Oblivious Routing

14

A routing tree is an overlay in
which nodes correspond to
physical nodes and edges to
physical paths

A randomized routing tree is
probability distribution over
routing trees

Intuition: there is a duality
between low-stretch routing
trees and low-congestion
routing schemes

Räcke’s Algorithm

Räcke’s algorithm iteratively constructs a randomized routing tree

At each iteration, it penalizes edges that have been heavily  
utilized in previous trees

Achieves a polylogarithmic competitive ratio with respect to the
optimal scheme regardless of the demand matrix—i.e. it is
oblivious!

15

Semi-Oblivious Routing

Semi-oblivious routing combines Räcke’s oblivious routing with
dynamic rate adaptation / local failure recovery

Forwarding paths: computed statically

Sending rates: adapt to changing demands

👎 Hajiaghayi et al. proved Ω(log(n)/log (log(n))) competitive ratio

👍 Realistic workloads are different from worst-case

16

SDN Implementation
& Evaluation

17

Kulfi Framework

18

Implemented over a
dozen different traffic
engineering schemes

Measure performance
in simulator and
hardware testbed with
a variety of demands
and failures

Used “local” failure
recovery

Kulfi Framework

18

Implemented over a
dozen different traffic
engineering schemes

Measure performance
in simulator and
hardware testbed with
a variety of demands
and failures

Used “local” failure
recovery

[]

Kulfi Framework

18

Implemented over a
dozen different traffic
engineering schemes

Measure performance
in simulator and
hardware testbed with
a variety of demands
and failures

Used “local” failure
recovery

[]

Kulfi Framework

18

Implemented over a
dozen different traffic
engineering schemes

Measure performance
in simulator and
hardware testbed with
a variety of demands
and failures

Used “local” failure
recovery

[]

Kulfi Framework

18

Implemented over a
dozen different traffic
engineering schemes

Measure performance
in simulator and
hardware testbed with
a variety of demands
and failures

Used “local” failure
recovery

[]

Visualizing
Routing Schemes

19

SDN Implementation

20

SDN
Controller

SDN
Switch

Netfilter 
Module

User-

Space 
Agent

Linux 
Kernel

Linux  
End Host

data
traffic

forwarding
rules

Traffic
statistics

Traffic matrix +
Path map

Traffic
statistics

Historical
Data

Hardware Testbed

21

Facebook Backbone:
Simulation

22

Facebook Backbone:
Simulation

22

Constant
factor

Abilene Topology

23

S11

S10 S4

S8

S5

S2

S7

S3

S6

S9

S12

S1

Emulated Abilene topology in
hardware test bed

Used real-world and worst
case traffic scenarios

Compared shortest-path,
ECMP, MCF, oblivious, and
semi-oblivious

Abilene Topology

23

S11

S10 S4

S8

S5

S2

S7

S3

S6

S9

S12

S1

Emulated Abilene topology in
hardware test bed

Used real-world and worst
case traffic scenarios

Compared shortest-path,
ECMP, MCF, oblivious, and
semi-oblivious

Artificial traffic

Abilene Topology:  
Simulated Workload

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

L
in

k
co

n
g
e
st

io
n

Time (minutes)

Artificial Traffic

SPF max
ECMP max

Obliv max
Semi Obliv max

MCF max

SPF median
ECMP median

Obliv median
Semi Obliv median

MCF median

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

L
in

k
co

n
g

e
st

io
n

Time (minutes)

Abilene Gravity + Artificial Traffic

Topology Zoo:
Failures

25

%
 L

os
s

du
e

to
 F

ai
lu

re

Time

Selected Topology Zoo:
Latency

26
Fr

ac
tio

n
D

el
iv

er
ed

Latency

JANET Geant

Conclusions

Randomization can dramatically simplify traffic engineering while
balancing competing objectives

Oblivious routing performs much better in practice than expected,  
avoids problems associated with churn, and load-balances better

Semi-oblivious routing provides near-optimal  
performance in real-world scenarios, even in the presence of
demand misprediction, traffic bursts, and failures

Ongoing work: working with large ISP and content provider to
further refine and evaluate Kulfi

27

Team Kulfi

28

Chris Yu ‘15Praveen Kumar Yang Yuan Bobby Kleinberg Robert Soulé

https://github.com/merlin-lang/kulfi

Topology Zoo,
Traffic Burst

29

Th
ro

ug
hp

ut

Burst Amount

