UnivMon: Software-defined Monitoring
with Universal Sketch

Zaoxing (Alan) Liu

JOHNS HOPKINS

UNIVERSITY

Joint work with Antonis Manousis (CMU), Greg Vorsanger(JHU),
Vyas Sekar (CMU), and Vladimir Braverman(JHU)

Network Management:
Many Monitoring Requirements

“Entropy”,

“Flow size distribution” “Traffic Changes”
Anomaly Detection
“SuperSpreaders” “Heavy-hitters”

SDN Controller
(OpenDayLight etc.)

R
&

Network Management:
Many Monitoring Requirements

“Entropy”,
“Flow size distribution” “Traffic Changes”
Anomaly Detection
“SuperSpreaders” “Heavy-hitters”

Typical Measurement Questions:

 Who's sending a lot more traffic than 10min ago? (Change)
 Who's sending a lot from 10.0.1.0/16? (Heavy Hitter)

» Are you being DD0S-ed?

Example: A Victim being DDoSed

Traditional: Packet Sampling

Sample packets at random,

aggregate into flows

Flow = Packets with same pattern
Source and Destination Address and
Ports

==
-—

[1]aT6la[3[1]1]
Estimate: FSD, Entropy, Heavyhitters ...

Flowld

Counter

(v

Flow reports

[1]1]6]1]3[1]1]

Not good for fine-grained analysis
Extensive literature on limitations for many tasks!

Bloom-filter,

Count-min
Sketch,
reversible
sketch, etc.

Application-Specific Sketches

Heavy Hitter Entropy Superspreader
Application-Level Application-Level Application-Level Computation
Metric Metric Metric (off router)
I Counter I I Counter I I Counter I
I Data I I Data I I Data I L
Structures Structures Structures Monltormg
| [| | | | (on router)
Packet I Packet I Packet I
Processing Processing Processing

u

Traffic

Complexity: Need per-metric implementation
Recent Example: OpenSketch [NSDI'13]
Trend: Many more applications appear!

A Generic Method

Control Plane

App 1 l App n l

\ /
Application-specific
Computation

U Data Plane

Packet Data
Processing :> Structure 1. Generic

3. Accurate for fine-

2. Not too expensive
.@'
4

grained analysis

Traffic

Outline

* UnivMon System Design
* UnivMon Algorithm

e Evaluation

Our Design: UniviMon

Q, ’ Control plane
« Metric estimation
UnivMon . o .
Control+ 3.#Wetr/c¢Est/mat/on Ic\l/'lon'lt)on'ng manifest
Routi IStribution
Plan/ Manifest computation outing

/D
R A4 e
1.#Distribute
ﬁ?ﬁ?ﬁiiﬁ ~ Manifests Data Pl_ane .
] Memory [N - Traffic data collection
A, UnivMon « Sketch counter
S Data
updates
ﬁu Plane p

2. #follect#fketch#ounters

« Late-binding for applications: data plane is general-purpose.
« One Sketch: no need of memory allocation for multiple tasks

Outline

* UnivMon Algorithm

e Evaluation

Theory of Universal Streaming [soo, 8o13]

Estimated
G-sum
As long as g(fi) does
not grow monotonically
faster than f ;2
‘Universal’
Sketch
G-sum = 3, g(fi)
H frequency vector is < f,f, ... f,>
[1]1]5[1]3[3[1]2[4]6]5] ----- (A stream of length m with n unique items)

« When g(x) = x°, G-sum is # of distinct items. [SuperSpreader]
When g(x) = xlog(x), G-sum is the entropy norm. [Entropy]

Basics: Streaming Algorithms

[1[1[511[3[3[1[2[4]6][5] ----- (A stream S of length m with n unique
items)

« K-th Frequency Moments:

F (S) = Xizq fik

F, is n: the number of distinct items in S.

F; is m: the length of S.

F, is Gini's index of homogeneity.

When k>2, the space lower bound is Q(n!~?/%) [CKS’03]

(For current applications, the case of k>2 is not that interesting)

« Heavy Hitters (Frequent Items):
g-heavy itemi: g(f,) > a G-sum for some «a
Count-min sketch [CM’04] is a popular L1-heavy hitter algorithm

Universal Sketch Data Structure

Count Sketch Alg
Levels In Parallel EH Heavy Hitters
O [1]1]5]1]3[3[1]2]4]6]|5 Heavv Hitter Alg |:> (1,4), (3,2),(5,2)
H1(1)=1, H1(5)=1, H1(2)=1
1 [2fa[s[a] [af2] UGN)| (1,4), (5,2),(2,1)
)1, Haf2) EEIEIE %
@ @ @ Heavy Hitter Alg |:> (5,2), (2,1)
H3(2)=1
log(n) 2] :> (2,1)
+1
Generate log(n) substreams Cotnt=S ete-ﬁ—efi
by zero-one hash funcs Similar to counting

HI1...Hog(n) bloom filter

Levels
0

log(n)

Estimating G-sum

Counters from
Universal Sketch

(1,4), (3,2),(5, 2)

(1,8(4)), (3,8(2)), (5 8(2)) Y

B ST

A, .ply

0=2g(1)+2g(2)+g(4)

I

(1,8(4)), (5,8(2)), (2,8(1))

(5,2),(2,1)

74

(5,8(2)),(2,g(1))

(2,1)

4

(2,8(1))

Sum of the g()s

arbit ary g()

F>Y1=g(1)+g(2)+g(4)

Y2 g(1)+g(
t

Y3=g(1)

Recursive Steps:
Yi-1=2Yi+

new counters —
repeated counters

Intuitions of Universal Sketch

=

Group items into log(n) groups

N

Find (>=) one from each group
3. Recursively sum them all!

Frequency Hisgram

Idea: Detect items that contribute most to G-sum

Putting It together: UnivMon

m O(log(n)) Paralleled 1 App. Metrics
incoming Substreams instances Heavy Counters A
okts [00088 ...[(:ountSketch]_> a0 App-specific)
X
O O @D - [COUI’ItSkEtCh]_, 0O - >[App.-specific j
8@ - [CountSketch] ® - _\\RecursiveT steps
Data Plane : : \b[App. -specific]
Control Plane

Hash functions and
sketch counters

Offline
Computation

| will calculate aJ Controller
large class of funcs!

Outline

e Evaluation

Key Evaluation Questions

* Feasibility of hardware deployment?
v Removed expensive data structures
v Implemented in P4

« UnivMon’s accuracy
v' Compare to the up-to-date sketch algorithms

« UnivMon’s stability
v' Stabilities over different traces

Evaluation

« Comparison with custom sketches via OpenSketch

SingRMRIBPHIEY @%H@Bﬁfé@@%@ces)

Error Rate Gap(%)
Ecror Rate (%)

O
)V

Evaluation

Comparison with custom sketches via OpenSketch

Netwohip o dv SersitvitieA0BBSier sketch)

Ingress

Greedy-D.&0OD#
Q.&Barmami
UnivMon siiiime

Error Rate Gap(%)

Conclusions

* Traditional packet sampling based approaches
have limitations for fine-grained analysis.

* Custom Sketches (e.g. OpenSketch)
* Need to know applications beforehand
* High Implementation cost
* More expensive on multi-tasks

* UnivMon: an efficient and general sketching
based approach with late-binding on applications.

Future Directions

» Multi-dimensional data
» Performance optimization for hardware
« Dynamically change monitoring scope

* New Theories on Universal Sketch:
» Sliding Window Model [SODA'16]
» Functions of One Variable [PODS’16]
= Symmetric Norms [arXiv 1511.01111]

hank you!

