UnivMon: Software-defined Monitoring with Universal Sketch

Zaoxing (Alan) Liu

Joint work with Antonis Manousis (CMU), Greg Vorsanger(JHU), Vyas Sekar (CMU), and Vladimir Braverman(JHU)

Typical Measurement Questions:

- Who's sending a lot more traffic than 10min ago? (Change)
- Who's sending a lot from 10.0.1.0/16? (Heavy Hitter)
- Are you being DDoS-ed?

Example: A Victim being DDoSed

Traditional: Packet Sampling

Sample packets at random, aggregate into flows

Estimate: FSD, Entropy, Heavyhitters ...

Not good for fine-grained analysis Extensive literature on limitations for many tasks!

Application-Specific Sketches

Complexity: Need per-metric implementation *Recent Example*: OpenSketch [NSDI'13] *Trend:* Many more applications appear!

A Generic Method

Outline

- Motivation
- UnivMon System Design
- UnivMon Algorithm
- Evaluation

Our Design: UnivMon

• **Late-binding** for applications: data plane is general-purpose.

• **One Sketch**: no need of memory allocation for multiple tasks

Outline

- Motivation
- UnivMon Design
- UnivMon Algorithm
- Evaluation

- When g(x) = x⁰, G-sum is # of distinct items. [SuperSpreader]
- When g(x) = xlog(x), G-sum is the entropy norm. [Entropy]

Basics: Streaming Algorithms

- 11513312465(A stream S of length m with n unique items)
 - K-th Frequency Moments:

 $F_k(S) = \sum_{i=1}^n f_i^k$

 F_0 is n: the number of distinct items in S.

 F_1 is m: the length of S.

 F_2 is Gini's index of homogeneity.

When k>2, the space lower bound is $\Omega(n^{1-2/k})$ [CKS'03] (For current applications, the case of k>2 is not that interesting)

• Heavy Hitters (Frequent Items):

g-heavy item i : $g(f_i) > \alpha$ G-sum for some α Count-min sketch [CM'04] is a popular L1-heavy hitter algorithm

Universal Sketch Data Structure

Estimating G-sum

Intuitions of Universal Sketch

Idea: Detect items that contribute most to G-sum

Putting it together: UnivMon

Apple Apple

Outline

- Motivation
- UnivMon Design
- UnivMon Algorithm
- Evaluation

Key Evaluation Questions

- Feasibility of hardware deployment?
 ✓ Removed expensive data structures
 ✓ Implemented in P4
- UnivMon's accuracy
 - ✓ Compare to the up-to-date sketch algorithms
- UnivMon's stability
 ✓ Stabilities over different traces

Evaluation

Comparison with custom sketches via OpenSketch

Single Route Peter Exalution (600 KB) ces)

Evaluation

Comparison with custom sketches via OpenSketch

Netwon Month And Network Network (600 K Backer sketch)

Conclusions

- Traditional packet sampling based approaches have limitations for fine-grained analysis.
- Custom Sketches (e.g. OpenSketch)
 - Need to know applications beforehand
 - High Implementation cost
 - More expensive on multi-tasks
- UnivMon: an efficient and general sketching based approach with late-binding on applications.

Future Directions

- Multi-dimensional data
- Performance optimization for hardware
- Dynamically change monitoring scope
- New Theories on Universal Sketch:
 - Sliding Window Model [SODA'16]
 - Functions of One Variable [PODS'16]
 - Symmetric Norms [arXiv 1511.01111]

Thank you!