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Network Management:
Many Monitoring Requirements

“Entropy”,

“Flow size distribution” “Traffic Changes”
Anomaly Detection
“SuperSpreaders” “Heavy-hitters”

SDN Controller
(OpenDayLight etc.)
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Network Management:
Many Monitoring Requirements

“Entropy”,
“Flow size distribution” “Traffic Changes”
Anomaly Detection
“SuperSpreaders” “Heavy-hitters”

Typical Measurement Questions:

 Who's sending a lot more traffic than 10min ago? (Change)
 Who's sending a lot from 10.0.1.0/16? (Heavy Hitter)

» Are you being DD0S-ed?



Example: A Victim being DDoSed




Traditional: Packet Sampling

Sample packets at random,

aggregate into flows

Flow = Packets with same pattern
Source and Destination Address and
Ports
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Not good for fine-grained analysis
Extensive literature on limitations for many tasks!




Bloom-filter,

Count-min
Sketch,
reversible
sketch, etc.

Application-Specific Sketches

Heavy Hitter Entropy Superspreader
Application-Level Application-Level Application-Level Computation
Metric Metric Metric (off router)
I Counter I I Counter I I Counter I
I Data I I Data I I Data I L
Structures Structures Structures Monltormg
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Packet I Packet I Packet I
Processing Processing Processing
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Traffic

Complexity: Need per-metric implementation
Recent Example: OpenSketch [NSDI'13]
Trend: Many more applications appear!




A Generic Method
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* UnivMon System Design
* UnivMon Algorithm

e Evaluation



Our Design: UniviMon

Q, ’ Control plane
« Metric estimation
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« Late-binding for applications: data plane is general-purpose.
« One Sketch: no need of memory allocation for multiple tasks
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Theory of Universal Streaming [soo, 8o13]

Estimated
G-sum
As long as g(fi) does
not grow monotonically
faster than f ;2
‘Universal’
Sketch
G-sum = 3, g(fi)
H frequency vector is < f,f, ... f,>
[1]1]5[1]3[3[1]2[4]6]5] ----- (A stream of length m with n unique items)

«  When g(x) = x°, G-sum is # of distinct items. [SuperSpreader]
When g(x) = xlog(x), G-sum is the entropy norm. [Entropy]




Basics: Streaming Algorithms

[1[1[511[3[3[1[2[4]6][5] ----- (A stream S of length m with n unique
items)

« K-th Frequency Moments:

F (S) = Xizq fik

F, is n: the number of distinct items in S.

F; is m: the length of S.

F, is Gini's index of homogeneity.

When k>2, the space lower bound is Q(n!~?/%) [CKS’03]

(For current applications, the case of k>2 is not that interesting)

« Heavy Hitters (Frequent Items):
g-heavy itemi: g(f,) > a G-sum for some «a
Count-min sketch [CM’04] is a popular L1-heavy hitter algorithm



Universal Sketch Data Structure

Count Sketch Alg
Levels In Parallel EH Heavy Hitters
O [1]1]5]1]3[3[1]2]4]6]|5 Heavv Hitter Alg |:> (1,4), (3,2),(5,2)
H1(1)=1, H1(5)=1, H1(2)=1
1 [2fa[s[a]  [af2] UGN )| (1,4), (5,2),(2,1)
)1, Haf2) EEIEIE %
@ @ @ Heavy Hitter Alg |:> (5,2), (2,1)
H3(2)=1
log(n) 2] :> (2,1)
+1
Generate log(n) substreams Cotnt=S ete-ﬁ—efi
by zero-one hash funcs Similar to counting

HI1...Hog(n) bloom filter



Levels
0

log(n)

Estimating G-sum

Counters from
Universal Sketch

(1,4), (3,2),(5, 2)

(1,8(4)), (3,8(2)), (5 8(2)) Y

B ST

A, .ply

0=2g(1)+2g(2)+g(4)
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(1,8(4)), (5,8(2)), (2,8(1))

(5,2),(2,1)

74

(5,8(2)),(2,g(1))
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Sum of the g()s

arbit ary g()

F>Y1=g(1)+g(2)+g(4)

Y2 g(1)+g(
t

Y3=g(1)

Recursive Steps:
Yi-1=2Yi+

new counters —
repeated counters




Intuitions of Universal Sketch

=

Group items into log(n) groups

N

Find (>=) one from each group
3. Recursively sum them all!

Frequency Hisgram

Idea: Detect items that contribute most to G-sum




Putting It together: UnivMon

m O(log(n)) Paralleled 1 App. Metrics
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Offline
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| will calculate aJ Controller
large class of funcs!
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Key Evaluation Questions

* Feasibility of hardware deployment?
v Removed expensive data structures
v Implemented in P4

« UnivMon’s accuracy
v' Compare to the up-to-date sketch algorithms

« UnivMon’s stability
v' Stabilities over different traces



Evaluation

« Comparison with custom sketches via OpenSketch
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Evaluation

Comparison with custom sketches via OpenSketch
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Conclusions

* Traditional packet sampling based approaches
have limitations for fine-grained analysis.

* Custom Sketches (e.g. OpenSketch)
* Need to know applications beforehand
* High Implementation cost
* More expensive on multi-tasks

* UnivMon: an efficient and general sketching
based approach with late-binding on applications.



Future Directions

» Multi-dimensional data
» Performance optimization for hardware
« Dynamically change monitoring scope

* New Theories on Universal Sketch:
» Sliding Window Model [SODA'16]
» Functions of One Variable [PODS’16]
= Symmetric Norms [arXiv 1511.01111]




hank you!



