Flowtune

Jonathan Perry

Joint work with Hari Balakrishnan and Devavrat Shah.

Flowtune is..

Allocate network resources

- Quickly
- Explicitly (maximize utility)
- Flexibly (in software)

Traditional approach is packet-centric

Flowtune's approach

1. Flowlet control

Allocation changes *only* when:

- Flowlets arrive
- Flowlets terminate
- 2. Logically centralized
 - Reduce RTT dependence

Example

$A \rightarrow Allocator$	"Hadoop on A has data for B"			
Allocator	Assign rates			
Allocator \rightarrow A	"Send at 10Gbps"			

Example

Why is this hard?

Need to choose rates given active flowlets

- 1. Updates cascade!
- 2. What is the goal? To act like TCP?

NUM Iterative Optimizer

Kelly et al., Journal of the Operational Research Society, 1998

How to reduce latency?

Flowtune normalizes rates between iterations

- For each flow:
 - Find link ℓ on path with largest $r_{\ell} = \frac{\sum flow rates}{link capacity}$
 - Normalize: $x_s \leftarrow \frac{x_s}{r_\ell}$

Architecture

Flowtune converges quickly to fair allocation

- 1. Every 10 milliseconds add sender, up to 5 senders
- 2. Every 10 milliseconds remove sender

Flowtune scales to 49K flows on 64 cores

Cores	Nodes	Flows	Cycles	Time	
4	384	3072	19896.6	8.29 µs	
16	768	6144	21267.8	8.86 µs	
64	1536	12288	30317.6	12.63 µs	
64	1536	24576	33576.2	13.99 µs	
64	1536	49152	40628.5	16.93 µs	
64	3072	49152	57035.9	23.76 µs	
64	4608	49152	73703.2	30.71 µs	>
	Cores 4 16 64 64 64 64 64	CoresNodes438416768641536641536643072644608	CoresNodesFlows438430721676861446415361228864153624576641536491526430724915264460849152	CoresNodesFlowsCycles4384307219896.616768614421267.86415361228830317.66415362457633576.26415364915240628.56430724915257035.96446084915273703.2	CoresNodesFlowsCyclesTime4384307219896.68.29 μs16768614421267.88.86 μs6415361228830317.612.63 μs6415362457633576.213.99 μs6415364915240628.516.93 μs6430724915257035.923.76 μs6446084915273703.230.71 μs

Flowtune

Allocate network resources

- Quickly (centralized)
- Explicitly (maximize utility)
- Flexibly (in software)

