Approximation Algorithms for Coflow Scheduling

Erez Kantor Hamid Jahanjou Rajmohan Rajaraman

Northeastern University, Boston

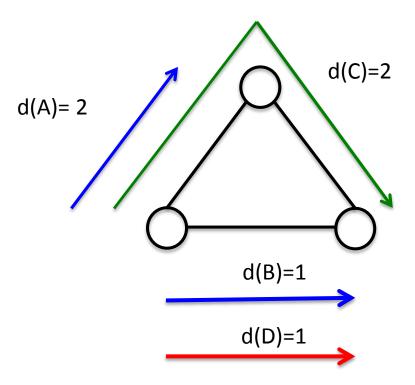
Coflows

- Large-scale data processing computations (e.g. MapReduce, Spark, Dryad)
 - Composed of multiple data flows
 - Flows over a shared set of distributed resources
 - Computation completes when all of its flows complete
- Coflow:

- Collection of flows sharing same performance goal

Coflows: An Example

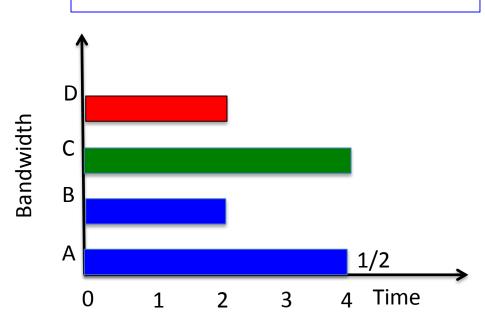
- Blue coflow has two flows
- Red and green coflows have one flow each
- All edge capacities are unit

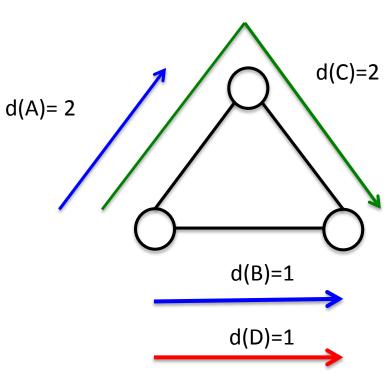


Coflows: Schedules

- Schedule 1
 - Constant bandwidth
 of ½ for all flows

$$-4+4+2=10$$

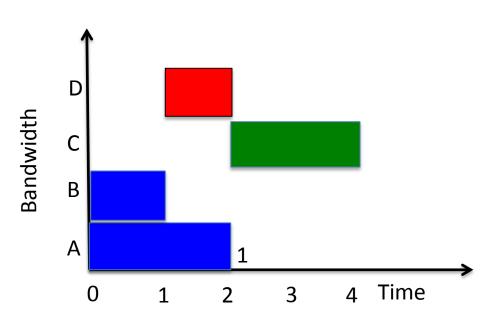


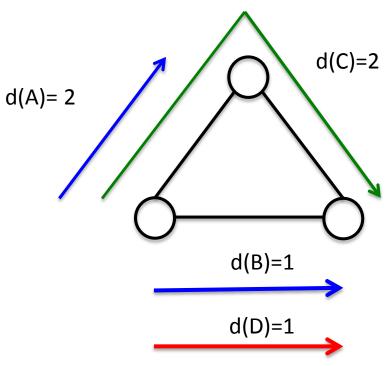


Coflows: Schedules

Schedule 2

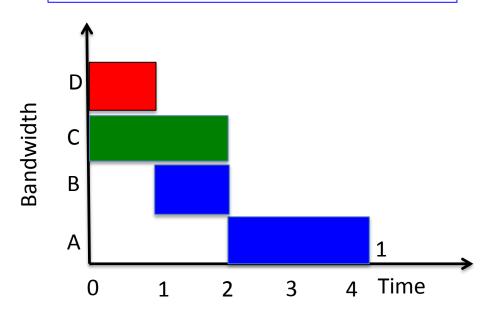
 Blue > Red > Green
 2 + 4 + 2 = 8

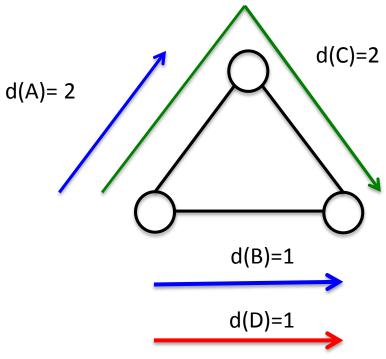




Coflows: Schedules

- Schedule 3
 - Red > Green > Blue
 - -1+2+4=7





Flow Models

Circuits	Bandwidth	Assign paths and bandwidth to source- destination connection requests
Packets	Latency	Route and schedule packets between specified sources and destinations
Tasks	Computation	Schedule tasks on unrelated machines

- In each model, the individual flows share a common objective
 - Completion time: time at which last flow completes

Previous Work

- [Chowdhury-Stoica 2012] introduce coflows as an abstraction for cluster applications
- [Zhao et al 2015] present RAPIER
 - Heuristics for joint scheduling and routing
 - Explicit routing using SDN and bandwidth enforcement using Linux Traffic Control
- [Qui-Stein-Zhong 2015] present constant-factor approximations for coflow scheduling on a nonblocking switch
- More work on scheduling/routing in datacenter networks

New Approximation Algorithms

Circuit-based coflows

- 4-approximation when paths are given
- O(log(n)/loglog(n)) approx. when paths not given
- Packet-based coflows
 - Constant-approximation in both cases

Task-based coflows

Constant-approximation

 Asymptotically optimal modulo standard complexity assumptions [Garg-Kumar-Pandit 2007,Chuzhoy-Guruswami-Khanna-Talwar 20]

Circuit-Based Coflow Scheduling

- Network with edge capacities
- Connection requests with individual demand, source-destination pair, and release time
- Requests are grouped into coflows; each coflow has a weight
- Determine paths and bandwidth assignment over time for each request to minimize weighted average completion time

Circuit-Based Coflows

- Flow *i*:
 - Source s(i), destination t(i)
 - Demand d(i), release r(i)
- Coflow j: Set of flows
- Network G = (V, E)
- Capacity c(e) for edge e
- Output:
 - For each flow *i* and time
 - : $t \ b(i,e,t)$

• Constraints:

-
$$b()$$
 forms a flow for each t
$$\int_{t} \left(\sum_{e \text{ out of } s(i)} b(i, e, t) dt \right) \ge d(i)$$

- For each t,

$$\overset{\circ}{\underset{e \text{ out of } s(i)}{s}} b(i, e, t) \pounds c(e)$$

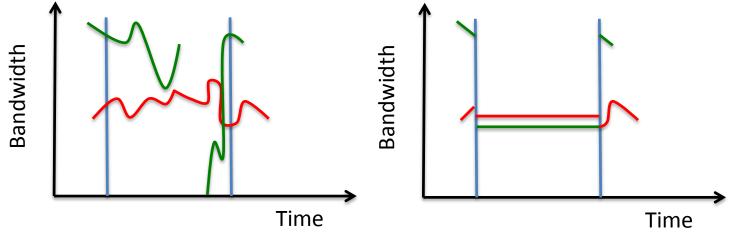
• Objective:

C(i) = completion time of i $C(j) = \max C(i) \text{ over flow } i \text{ in } j$

$$\min \mathop{\text{a}}_{j} w(j)C(j)$$

Piecewise Constant Bandwidth

 Lemma: There exists an optimal solution in which between any two events, the bandwidth for any given flow is constant across time.



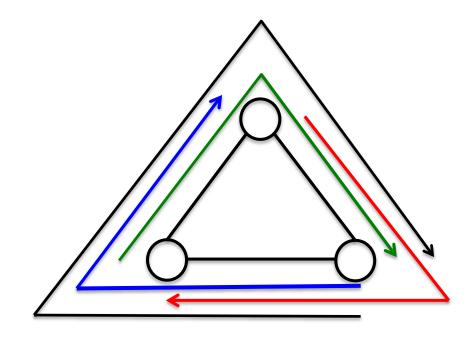
- Assign average bandwidth over the interval
- Since capacity constraint satisfied at every instant, the new assignment also satisfied

Is There an Optimum Priority Order?

- Optimal schedule:
 - Assign ½ to blue, red, and green for 2 units
 - Assign 1 to black at time 3

- 2 + 2 + 2 + 3 = 9

- No two flows can be fully scheduled in parallel
 - Every priority order yields 1+2+3+4=10



Interval-indexed Linear Program

- Piecewise constant bandwidth allows us to develop a linear program relaxation that achieves a 2-approximation
- Divide time into [0,1), [1,2), ..., [2^{k-1},2^k), ...
- LP(k) for interval k:
 - Constant bandwidth $b_k(i)$ for flow i
 - Edge capacity constraints
- Cross-interval constraint:

$$\boxed{\overset{k}{\underset{k}{\bigcirc}} 2^{k-1}b_k(i) \, {}^{\exists} d(i)}$$

• Objective:

$$\min \mathop{a}_{j} \left(w(j) \max_{\text{flow } i \text{ in } j} \left(2^{2k-1} b_{k}(i) \right) \right)$$

Interval-Indexed Linear Program

$\text{Minimize } \sum_i \sum_j \omega_{ij}' c_j^i$	subject to	
$\sum_{\ell} x^i_{j\ell} = 1$	orall i,j	(31)
$\sum_{\ell \leq L} au_\ell x^i_{j\ell} \leq c^i_j \leq \sum_{\ell \leq L} au_{\ell+1} x^i_{j\ell}$	orall i,j	(32)
$c^i_j \leq \ c^i_0$	orall i, j	(33)
$b^i_{j\ell}=\sigma^i_j x^i_{j\ell}/ au_\ell$	$\forall i,j,\ell$	(34)
$\sum_{f^i_j\in P(e)} b^i_{j\ell} \leq c(e)$	$\forall \ell, e$	(35)
$r^i_j > au_{\ell+1} \Rightarrow x^i_{j\ell} = 0$	$\forall i, \ell$	(36)
$x^i_{j\ell} \geq 0$	$\forall i,j,\ell,e$	(37)

Constant-Factor Approximation

- Solve the interval-indexed LP
- Assign each flow to the interval following the first one by which ½ of flow completes
- In each interval:
 - Allocate constant bandwidth to each flow assigned so that its demand completes
 - LP constraints and the interval structure guarantee capacity constraints
- High-level takeaway:
 - Can group coflows into priority groups (intervals)
 - Within each group, coflows bandwidth shares are well-specified

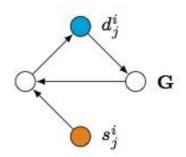
When Paths are not Given

- Solve the interval-indexed linear program
- Assign flows to intervals as before
- For each flow:
 - Use the LP bandwidth assignment to decompose into path bandwidth assignments
 - Apply randomized rounding [Raghavan-Thompson 1987] to select a single path for each flow
 - Stretch time by O(log(n)/loglog(n))-factor to achieve desired approximation while satisfying constraints

Packet-Based Coflows

- Network with edge capacities
- Packet requests with individual demand, sourcedestination pair, and release time
- Requests grouped into coflows with weights
- Determine routing schedule for each packet so as to minimize weighted average completion time
- Key differences from circuit-based model:
 - Models latency and store-and-forward routing
 - Notion of packets as indivisible entities

Packet-Based Coflows



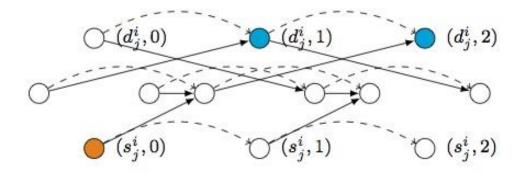


Figure 1: An example graph G (above) and its timeexpanded version G^T for T = 2 (below). Packet f_j^i needs to be routed from node s_j^i to node d_j^i in G. Corresponding to f_j^i , flows of combined size 1 are sent from $(s_j^i, 0)$ to (d_j^i, k) for k = 1, 2. Dashed lines correspond to queue edges.

Algorithm for Packet-Based Coflows

- Ingredients:
 - Interval-index linear program
 - [Leighton-Maggs-Rao 1994] existence of schedule
 - [Leighton-Maggs-Richa-Rao] and more recent work on Lovasz Local Lemma for constructing schedules
 - [Srinivasan-Teo 2001] for finding paths
- Constant-factor approximation

Future Directions

- Evaluation of algorithms in practice
 - Can we avoid solving the interval-indexed LPs?
 - In certain cases involving special topologies like paths and trees:
 - Can get simpler and better algorithms using total unimodularity
 - Improve the hidden constants in approx ratio
 - Improve bounds for restricted classes of coflows
 - E.g., flows in a coflow share a common source

Future Directions

- Other objective functions
 - Minimize average weighted response time
 - Cost-based objectives
- Other models
 - Wavelength allocation in optical networks
 - Strong hardness of approximation
 - For paths, interesting connections to the well-studied Unsplittable Flow Problem
- Online scheduling of coflows