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State of network verification

+» Network management: ad-hoc process in practice

» Contrast to software/hardware: design/verification tools a

10B$ industry [Mckeown, Sigcomm Keynote 2012]

» Slgnificant progress in recent years

» Correctness of data-plane (Anteater, HSA, Veriflow, ....)

+» Programming language and SMT-based approaches
(Frenetic, Batfish, NoD ,...)

+ Much of the focus on verifying properties such as:

» No routing blackholes, honoring reachability policies etc.



Our work

» GO0 beyond verification of data-plane correctness

+ An early step at formally reasoning about gquantitative

network properties

+ Focus on a class of problems that seek to:

» Guarantee a network can adequately cope with a
range of traffic demands and failure scenarios

» Guarantee acceptable link utilizations across traffic
demands and failures



Key contributions

» Optimization framewaork for provable bounds on link utilizations
across traffic demands and failures for a given network design

« Key challenge:

= Routing flexibility leads to intractable non-convex, (possibly
non-linear) problems

«  Approach:
- Draw on relaxations of non-linear problems (LP hierarchies)

» Stronger bounds than can be obtained with oblivious
strategies

Rest of the talk.. Two concrete case studies



Can a network cope with fallures?

+» Given upto f links may simultaneously fail, what is the
worst case utilization of any link across all failure
scenarios”?

+» Routing may be chosen in flexible fashion to adapt to
any given failure.



Formulating utilization verification
as an optimization problem

+ Glven a network design t, find the worst case utilization
across all links e, across all faillure scenarios z of
Interest, assuming optimal routing y for each scenario
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Formulating utilization verification
as an optimization problem
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Formulating utilization verification
as an optimization problem
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Intractability of problem
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Appears non-linear. But we can prove bounds on the dual
variables if graph connected after f failures. Can be linearized.
Resulting problem still an MILP



ODbtaining tractable relaxations

» RLT relaxations: general approach to relax non-convex

problems into tractable LP

» Family of relaxations

» Higher levels of hierarchy

» Converge to optimal value of the non-convex problem

= Incur higher complexity



RLT relaxation: example

Min Xy - X +y
2<=x<=3

3<=y<=4

Relaxation steps:
1. Multiply constraints with each other
Example: (X-2)(y-3)>=0=>xy-2y-3x+6>=0
2. Replace products of variables xy, x*2, y*2 by new variables

3. Higher levels of RLT relaxation => multiply multiple constraints with each other



Our LP for utilization verification
under failures

+ FIrst level RLT relaxation

= Minor change to original primal formulation to add slack,
which constraints dual more and achieves tighter
relaxations



Comparison with R3
(Sigcomm 2010)

R3: Determines whether utilization < 1 or not under f failures

» Approach:

Convert failures into virtual demands

Use oblivious routing like strategies to get a tractable LP
Main advantages of our approach:
« Tighter relaxations

Can provide actual utilizations (not just whether above 1).

Useful to detect which failure scenarios are bad, which link’s
capacity gets exceeded and by how much

»  Approach generalizes to other problems



Results: Abilene

« Each cell: utilization of most congested link
 Each edge: 2 parallel edges
* Real traffic matrix

Our RLT-based LP relaxation matches optimal, with tighter
bounds than oblivious relaxation (R3)
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Each edge: 5 parallel
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Traffic matrix: gravity model
Runtime

+» Our LP relaxation: tens
to hundreds of seconds

+» MIP: hours to tens of
hours



Case Study II: MPLS tunnel selection

» Tunnels between ingress and egress to ensure a BGP

free core

» WIith demand shifts: switch traffic across k pre-selected

tunnels

+» Desirable to change tunnels less frequently

» Require changes to flow tables of internal switches

» For a given choice of tunnels, are utilizations of all links

across all traffic demands of interest within acceptable
limits?



Formulating utilization verification
with tunneling

max min max U.(t.d
s i e elt,d,y)

t:Given choice of tunnels
D:Set of traffic demands
y:Split across tunnels for a given demand



Formulating utilization verification
with tunneling
ﬂ}fﬁ Zzﬂjpdp“j

jeJ pelP

s.t. Z{nguj — Z Acbie <0 11

JES ec k



Formulating utilization verification
with tunneling
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Relaxations considered

1. RLT relaxations
2. Oblivious relaxations

I;EEIS{ 111;11 Iglea‘%{ Uﬂ(t? d? y) IS upper-bounded by

min max max U,(t,d,y).
teTweY del) ecE



Theoretical results

= Theorem: The RLT relaxation is tighter than the
oblivious relaxation

+ Proposition: For predicted demands expressed as a
convex combination of historical traffic matrices, it Is
sufficient to consider the corner points. The verification
problem is an LP

» Slde result: General set of conditions that explain why
oblivious formulation is tractable, and the verification
problem is not



Evaluation of tunnel selection
strategies

» Tunnel selection strategies

+» K-Shortest (e.g., SWAN, Sigcomm 13)
» Shortest-Disjoint (e.g., SOL, NSDI 16)
+» Robust tunnel selection

» ODblivious routing + tunnel decomposition



Bounds on utilization (Abilene)
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Bounds on utilization (Abilene)
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Bounds on utilization (ANS)

S 4.4¢ v — Adaptive |]
= 40 X Oblivious |.

£ 1.6/ +~ L1 1

12t

k=2 3 4 6 2 3 4 6 2 3 4 06
K-shortest Shortest-Disjoint Robust




Bounds on utilization (GEANT)

Memory requirements high for RLT relaxation (not done)
Standard decomposition techniques could be employed to reduce requirements
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Conclusions

» (Generic optimization framework to verify bounds on
network link utilizations across failures/traffic demands

» RLT relaxations provide tighter bounds than oblivious

« ODblivious relaxations still valuable

» Open guestions for theoretical researchers:

» Limits and opportunities with RLT hierarchies

» Robust optimization: relating degree of adaptivity to
level In RLT hierarchy



