
States on a (Data) Plane

Jennifer Rexford

Traditional data planes
are stateless

1

Software Defined Networks (SDN)

2

Program your network from
a logically central point!

OpenFlow Rule Tables

3

1 dstip = 10.0.0.1 outport ← 1

2 dstip = 10.0.0.2 drop

Prio match action

… ……

Two-Tiered Programming Model

• Stateless data-plane rules

– Process each packet independently

– State updates are limited to traffic counters

• Stateful control-plane program

– Store and update state in the controller application

– Adapt by installing new rules in the switches

4

Forces packets to go to the controller…
or greatly limits the set of applications

Emerging switches have
stateful data planes

5

Key Value

5

99

……
H2

H1

Local State on Data Plane

6

Key Value

5

100

……
H2

H1

Local State on Data Plane

7

Key Value

5

100
……

H2

H1

Local State on Data Plane

8

value = 100 drop

match action

… …

Local State on Data Plane

• Programmatic control over local state

– P4, POF, OpenState, Open vSwitch

• Plus other important features

– Programmable packet parsing

– Simple arithmetic and boolean operations

– Traffic statistics (delays, queue lengths, etc.)

• Simple stateful network functions can be
offloaded to the data plane!

9

Hop-by-Hop Utilization-aware
Load-balancing Architecture

Naga Katta, Mukesh Hira, Changhoon Kim,
Anirudh Sivaraman, and Jennifer Rexford

http://conferences.sigcomm.org/sosr/2016/papers/sosr_paper67.pdf

10

HULA

HULA Multipath Load Balancing

• Load balancing entirely in the data plane

– Collect real-time, path-level performance statistics

– Group packets into “flowlets” based on time & headers

– Direct each new flowlet over the current best path
11

S1

S2

S3

S4

ToR 10

ToR 1
Data

Path Performance Statistics

• Using the best-hop table

– Update the best next-hop upon new probes

– Assign a new flowlet to the best next-hop
12

S1
S3

S4

Best-hop table

Best Next-Hop Path Utilization

S3 50%

S4 10%

… …

0

1

…

Dest
ToR

Data
Data

Probe

Probe

Flowlet Routing

13

Flowlet table

S1
S3

S4

• Using the flowlet table
– Update the next hop if enough time has elapsed

– Update the timestamp to the current time

• Forward the packet to the chosen next hop

Dest ToR Timestamp Next-Hop

ToR 10 1 S2

ToR 0 17 S4

… … …

0

1

…

h(flowid)

Data
Data

Putting it all Together

14

data
packet

current best
next-hop S3

chosen
next-hop

Update next-hop
(if enough time

elapsed) and time

Dest ToR Timestamp Next-Hop

ToR 10 1 S2

ToR 0 17 S4

… … …

Best Next-Hop Path Utilization

S3 50%

S4 10%

… …

0

1

…

Dest
ToR

0

1

…
h(flowid)

Plenty of Other Applications

• Stateful firewall

• DNS tunnel detection

• SYN flood detection

• Elephant flow detection

• DNS amplification attack detection

• Sidejack detection

• Heavy-hitter detection

• …
15

But, how to best write
these stateful apps?

16

SNAP: Stateful Network-Wide
Abstractions for Packet Processing

Mina Tahmasbi Arashloo, Yaron Koral, Michael
Greenberg, Jennifer Rexford, and David Walker

http://www.cs.princeton.edu/~jrex/papers/snap16.pdf

17

Writing Stateful Network Apps is Hard

• Low-level switch interface

– Multiple stages of match-action processing

– Registers/arrays for maintaining state

• Multiple switches

– Placing the state

– Routing traffic through the state

• Multiple applications

– Combining forwarding, monitoring, etc.

18

Snap Language

19

• Hardware
independent

• One Big Stateful
Switch (OBSS)

• Composition

+ ;

OBSS

Stateless Packet Processing

• A function that specifies

– How to process each packet on a one-big-switch

– Based on its fields

• E.g., NetKat

20

set of

packets
input packet

Function

Stateful Packet Processing

• A function that specifies

– How to process each packet on a one-big-switch

– Based on its fields and the program state

– Where state is an array indexed by header fields

21

set of

packets

updated state

input packet

current state

SNAP

Program

Example Snap App: DNS Reflection

22

• Seen: Keep track of DNS requests by client and DNS identifier
• Unmatched: Count DNS responses that don’t match prior requests
• Susp: Suspected victims receive many unmatched responses

Example Snap App: Stateless Forwarding

23

ISP1

ISP2

CS

EE

Composition

24

;

Snap Applications

25

Snap Compiler

26

Composition of
multiple apps

State placement
and routing

Snap Compiler

Snap Compiler

27

Identify State Dependencies

Translate to Intermediate

Representation (xFDD)

Identify mapping from

packets to state variables

Optimally distribute the

xFDD

Generate rules per switch

Intermediate Representation: xFDDs

• Canonical representation of a program

• Composable

• Easily partitioned

• Simplify program analysis

Extended Forwarding Decision
Diagrams (xFDDs)

• Intermediate node:
test on header fields
and state

• Leaf: set of action
sequences

• Three kinds of tests
– field = value
– field1 = field2

– state_var[e1] = e2

29

dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}

xFDD for DNS Reflection Detection

30

Optimally Distribute the xFDD

31

CS

MILPDependency

Graph

Packet-State

Mapping

Traffic

Matrix

Output
• State placement
• Routing

See SIGCOMM’16 paper for
prototype, experiments, etc.

http://www.cs.princeton.edu/~jrex/p
apers/snap16.pdf

32

More Fun With State

• Extending Snap

– More operations, e.g., field ← state[index]

– Sharding and replication of state

– Faster compilation

• Richer computational model

– Limits on computation per packet

– Different memory (array, hash table, key-value store)

– Hash collisions, delays in adding new keys, etc.

• More stateful applications!

33

Conclusion

• Emerging switches have stateful data planes
– Can run simple network functions

– … within and across switches!

• Standard interfaces
– E.g., P4 (p4.org)

• Raises many new algorithmic challenges
– New computational model

– Compact data structures (e.g., sketches)

– Working within hardware limitations

34

