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Traditional data planes 
are stateless
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Software Defined Networks (SDN)
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Program your network from 
a logically central point!



OpenFlow Rule Tables
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1 dstip = 10.0.0.1 outport ← 1

2 dstip = 10.0.0.2 drop

Prio match action

… ……



Two-Tiered Programming Model

• Stateless data-plane rules

– Process each packet independently

– State updates are limited to traffic counters

• Stateful control-plane program

– Store and update state in the controller application

– Adapt by installing new rules in the switches
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Forces packets to go to the controller… 
or greatly limits the set of applications



Emerging switches have 
stateful data planes
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Key Value
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value = 100 drop

match action

… …



Local State on Data Plane

• Programmatic control over local state

– P4, POF, OpenState, Open vSwitch

• Plus other important features

– Programmable packet parsing

– Simple arithmetic and boolean operations

– Traffic statistics (delays, queue lengths, etc.)

• Simple stateful network functions can be 
offloaded to the data plane!
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Hop-by-Hop Utilization-aware 
Load-balancing Architecture

Naga Katta, Mukesh Hira, Changhoon Kim, 
Anirudh Sivaraman, and Jennifer Rexford

http://conferences.sigcomm.org/sosr/2016/papers/sosr_paper67.pdf
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HULA



HULA Multipath Load Balancing

• Load balancing entirely in the data plane

– Collect real-time, path-level performance statistics 

– Group packets into “flowlets” based on time & headers

– Direct each new flowlet over the current best path
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Path Performance Statistics

• Using the best-hop table

– Update the best next-hop upon new probes

– Assign a new flowlet to the best next-hop
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Flowlet Routing
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Flowlet table

S1
S3

S4

• Using the flowlet table
– Update the next hop if enough time has elapsed

– Update the timestamp to the current time

• Forward the packet to the chosen next hop

Dest ToR Timestamp Next-Hop
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ToR 0 17 S4
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Putting it all Together
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current best 
next-hop S3

chosen 
next-hop

Update next-hop 
(if enough time 

elapsed) and time
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ToR 10 1 S2

ToR 0 17 S4

… … …

Best Next-Hop Path Utilization

S3 50%

S4 10%

… …

0

1

…

Dest
ToR

0

1

…
h(flowid)



Plenty of Other Applications

• Stateful firewall

• DNS tunnel detection

• SYN flood detection

• Elephant flow detection

• DNS amplification attack detection

• Sidejack detection

• Heavy-hitter detection 

• …
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But, how to best write
these stateful apps?
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SNAP: Stateful Network-Wide 
Abstractions for Packet Processing

Mina Tahmasbi Arashloo, Yaron Koral, Michael 
Greenberg, Jennifer Rexford, and David Walker

http://www.cs.princeton.edu/~jrex/papers/snap16.pdf
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Writing Stateful Network Apps is Hard

• Low-level switch interface

– Multiple stages of match-action processing

– Registers/arrays for maintaining state

• Multiple switches

– Placing the state

– Routing traffic through the state

• Multiple applications

– Combining forwarding, monitoring, etc.
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Snap Language
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• Hardware 
independent

• One Big Stateful 
Switch (OBSS)

• Composition

+ ;

OBSS



Stateless Packet Processing

• A function that specifies

– How to process each packet on a one-big-switch

– Based on its fields

• E.g., NetKat
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Stateful Packet Processing

• A function that specifies

– How to process each packet on a one-big-switch

– Based on its fields and the program state

– Where state is an array indexed by header fields
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Example Snap App: DNS Reflection
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• Seen: Keep track of DNS requests by client and DNS identifier
• Unmatched: Count DNS responses that don’t match prior requests
• Susp: Suspected victims receive many unmatched responses



Example Snap App: Stateless Forwarding

23

ISP1

ISP2

CS

EE



Composition 
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;



Snap Applications
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Snap Compiler
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Composition of 
multiple apps

State placement 
and routing

Snap Compiler



Snap Compiler
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Identify State Dependencies

Translate to Intermediate 

Representation (xFDD)

Identify mapping from 

packets to state variables

Optimally distribute the 

xFDD

Generate rules per switch



Intermediate Representation: xFDDs

• Canonical representation of a program

• Composable

• Easily partitioned

• Simplify program analysis



Extended Forwarding Decision 
Diagrams (xFDDs)

• Intermediate node:      
test on header fields 
and state

• Leaf: set of action 
sequences

• Three kinds of tests
– field = value
– field1 = field2

– state_var[e1] = e2
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dstip = 10.0.0.1

srcip = dstip

s[srcip] = 2

{s[dstip] ← 2} {drop}



xFDD for DNS Reflection Detection
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Optimally Distribute the xFDD
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See SIGCOMM’16 paper for 
prototype, experiments, etc.

http://www.cs.princeton.edu/~jrex/p
apers/snap16.pdf
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More Fun With State

• Extending Snap

– More operations, e.g., field ← state[index]

– Sharding and replication of state

– Faster compilation

• Richer computational model

– Limits on computation per packet

– Different memory (array, hash table, key-value store) 

– Hash collisions, delays in adding new keys, etc.

• More stateful applications!
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Conclusion

• Emerging switches have stateful data planes
– Can run simple network functions

– … within and across switches!

• Standard interfaces
– E.g., P4 (p4.org)

• Raises many new algorithmic challenges
– New computational model

– Compact data structures (e.g., sketches)

– Working within hardware limitations
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