
The Art of Consistent SDN Updates

Stefan Schmid

Aalborg University

The Art of Consistent SDN Updates

Stefan Schmid

Aalborg University

Smart students in Berlin & Wroclaw:
Arne Ludwig, Jan Marcinkowski,
Szymon Dudycz, Matthias Rost,

Damien Foucard, Saeed Amiri

SDN: Algorithms with a fundamental twist!

Ctrl

Control

Programs

Control

Programs

SDN: Algorithms with a fundamental twist!

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

SDN: Flexiblities and Constraints

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
inter-connect!

Data Plane

SDN/OpenFlow is about generality and flexibility: in terms
of how packets are matched (L2-L4 header fields and
beyond), how flows are defined (fine vs coarse granular,
proactive vs reactive), events can be handled centrally vs in
a distributed manner, etc.

But there are also constraints and challenges: SDN is an
inherently asynchronous distributed system (controller
decoupled), switches are simple devices (not a Turing or even
state machine!), IP-routing is prefix based, careful use of
dynamic flexibilities: don’t shoot in your foot!

Applications: Algorithms with a twist!

Ctrl

❏ Let’s consider: Traffic Engineering

❏ Circuit routing, call admission

❏ Raghavan, Wolsey, Awerbuch, etc.

❏ SDN twist: more general/flexible!

❏ Non-shortest paths and more

❏ Enables complex network services:
steer traffic through middleboxes i.e.
waypoints (firewall, proxy etc.): paths
may contain loops!

❏ More than independent routing per
segment: none-or-all segment
admission control, joint optimization

❏ E.g., LP relaxation (Raghavan et al.):
how to randomly round and
decompose complex requests?

Control

Programs

Control

Programs

Applications: Algorithms with a twist!

Ctrl

❏ Let’s consider: Traffic Engineering

❏ Classic routing, call admission

❏ Wolsey, Awerbuch, Plotkin, etc.

❏ SDN twist: more general/flexible!

❏ Non-shortest paths

❏ Enables complex network services:
steer traffic through middleboxes i.e.
waypoints (firewall, proxy etc.): paths
may contain loops!

❏ More than independent routing per
segment: none-or-all segment
admission control, joint optimization

❏ E.g., LP relaxation (Raghavan et al.):
how to randomly round and
decompose complex requests?

Control

Programs

Control

Programs

Optionally NFV twist: where to
place NFV (or hybrid SDN)?
Facility location / capacitated
dominating set, but: not
distance to but distance via
function(s) matters!

Applications: Algorithms with a twist!

Ctrl

❏ Let’s consider: Traffic Engineering

❏ Classic routing, call admission

❏ Wolsey, Awerbuch, Plotkin, etc.

❏ SDN twist: more general/flexible!

❏ Non-shortest paths

❏ Enables complex network services:
steer traffic through middleboxes i.e.
waypoints (firewall, proxy etc.): paths
may contain loops!

❏ More than independent routing per
segment: none-or-all segment
admission control, joint optimization

❏ E.g., LP relaxation (Raghavan et al.):
how to randomly round and
decompose complex requests?

Control

Programs

Control

Programs

SIROCCO 2015, arxiv 2016

Optionally NFV twist: where to
place NFV (or hybrid SDN)?
Facility location / capacitated
dominating set, but: not
distance to but distance via
function(s) matters!

Service Chain and Virtual Network Embeddings: Approximations

using Randomized Rounding

Matthias Rost and Stefan Schmid.

ArXiv Technical Report, April 2016.

Online Admission Control and Embedding of Service Chains

Tamás Lukovszki and Stefan Schmid.

22nd International Colloquium on Structural Information and

Communication Complexity (SIROCCO), Montserrat, Spain, July

2015.

An Approximation Algorithm for Path Computation and Function

Placement in SDNs

Guy Even, Matthias Rost, and Stefan Schmid.

ArXiv Technical Report, March 2016.

https://net.t-labs.tu-berlin.de/~stefan/arxiv-service-chains.pdf
https://net.t-labs.tu-berlin.de/~stefan/sirocco15.pdf
https://net.t-labs.tu-berlin.de/~stefan/1603.09158v1.pdf

Applications: Algorithms with a twist!

Ctrl

❏ Let’s consider: Traffic Engineering

❏ Classic routing, call admission

❏ Wolsey, Awerbuch, Plotkin, etc.

❏ SDN twist: more general/flexible!

❏ Non-shortest paths

❏ Enables complex network services:
steer traffic through middleboxes i.e.
waypoints (firewall, proxy etc.): paths
may contain loops!

❏ More than independent routing per
segment: none-or-all segment
admission control

❏ E.g., LP relaxation (Raghavan et al.):
how to randomly round and
decompose complex requests?

Control

Programs

Control

Programs

Optionally NFV twist: where to
place NFV (or hybrid SDN)?
Facility location / capacitated
dominating set, but: not
distance to but distance via
function(s) matters!

Migration upon each new request
undesirable: want incremental
deployment! Related to submodular
capacitated set cover and scheduling
(Fleischer, Khuller), but end-to-end.

Applications: Algorithms with a twist!

Ctrl

❏ Let’s consider: Traffic Engineering

❏ Classic routing, call admission

❏ Wolsey, Awerbuch, Plotkin, etc.

❏ SDN twist: more general/flexible!

❏ Non-shortest paths

❏ Enables complex network services:
steer traffic through middleboxes i.e.
waypoints (firewall, proxy etc.): paths
may contain loops!

❏ More than independent routing per
segment: none-or-all segment
admission control

❏ E.g., LP relaxation (Raghavan et al.):
how to randomly round and
decompose complex requests?

Control

Programs

Control

Programs

SIROCCO 2015, arxiv 2016

Optionally NFV twist: where to
place NFV (or hybrid SDN)?
Facility location / capacitated
dominating set, but: not
distance to but distance via
function(s) matters!

Migration upon each new request
undesirable: want incremental
deployment! Related to submodular
capacitated set cover and scheduling
(Fleischer, Khuller), but end-to-end.

It's a Match! Near-Optimal and Incremental Middlebox Deployment

Tamás Lukovszki, Matthias Rost, and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), January

2016.

https://net.t-labs.tu-berlin.de/~stefan/ccr16match.pdf

Control Plane: Algorithms with a twist!

Ctrl

Ctrl

❏ Reduce latency and overhead:
What can be computed locally?
❏ Routing vs heavy-hitter detection?

❏ LOCAL model! Insights apply:
verification vs optimization

❏ SDN twist: pre-processing!
❏ Hard in LOCAL: symmetry breaking! But

unlike ad-hoc networks: no need to
discover network from scratch

❏ Topology events less frequent than flow
related events

❏ If links fail: subgraph! Find recomputed
structures that are still useful in
subgraph (e.g., proof labelings)

❏ Precomputation known to help for
relevant problems: load-balancing /
matching

Ctrl Ctrl

Control Plane: Algorithms with a twist!

Ctrl

Ctrl

❏ Reduce latency and overhead:
What can be computed locally?
❏ Routing vs heavy-hitter detection?

❏ LOCAL model! Insights apply:
verification vs optimization

❏ SDN twist: pre-processing!
❏ Hard in LOCAL: symmetry breaking! But

unlike ad-hoc networks: no need to
discover network from scratch

❏ Topology events less frequent than flow
related events

❏ If links fail: subgraph! Find recomputed
structures that are still useful in
subgraph (e.g., proof labelings)

❏ Precomputation known to help for
relevant problems: load-balancing /
matching

Ctrl Ctrl

How to make control plane robust? Software
transactional memory problem:
network configuration = shared memory,
updates = transactions, but with a twist:
flows are uncontrolled, real-time transactions:
do not abort! (And not only read!)

Control Plane: Algorithms with a twist!

Ctrl

Ctrl

❏ Reduce latency and overhead:
What can be computed locally?
❏ Routing vs heavy-hitter detection?

❏ LOCAL model! Insights apply:
verification vs optimization

❏ SDN twist: pre-processing!
❏ Hard in LOCAL: symmetry breaking! But

unlike ad-hoc networks: no need to
discover network from scratch

❏ Topology events less frequent than flow
related events

❏ If links fail: subgraph! Find recomputed
structures that are still useful in
subgraph (e.g., proof labelings)

❏ Precomputation known to help for
relevant problems: load-balancing /
matching

Ctrl Ctrl

HotSDN 2013

How to make control plane robust? Software
transactional memory problem:
network configuration = shared memory,
updates = transactions, but with a twist:
flows are uncontrolled, real-time transactions:
do not abort! (And not only read!)

A Distributed and Robust SDN Control Plane for Transactional

Network Updates

Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.

34th IEEE Conference on Computer Communications (INFOCOM),

Hong Kong, April 2015.

https://net.t-labs.tu-berlin.de/~stefan/infocom15.pdf

Control Plane: Algorithms with a twist!

Ctrl

Ctrl

❏ Reduce latency and overhead:
What can be computed locally?
❏ Routing vs heavy-hitter detection?

❏ LOCAL model! Insights apply:
verification vs optimization

❏ SDN twist: pre-processing!
❏ Hard in LOCAL: symmetry breaking! But

unlike ad-hoc networks: no need to
discover network from scratch

❏ Topology events less frequent than flow
related events

❏ If links fail: subgraph! Find recomputed
structures that are still useful in
subgraph (e.g., proof labelings)

❏ Precomputation known to help for
relevant problems: load-balancing /
matching

Ctrl Ctrl

HotSDN 2013

Careful: independent flow spaces does
not imply that controllers can
concurrently update without conflict:
e.g., due to shared embedding!
Atomic read-modify-write?

How to make control plane robust? Software
transactional memory problem:
network configuration = shared memory,
updates = transactions, but with a twist:
flows are uncontrolled, real-time transactions:
do not abort! (And not only read!)

Control Plane: Algorithms with a twist!

Ctrl

Ctrl

❏ Reduce latency and overhead:
What can be computed locally?
❏ Routing vs heavy-hitter detection?

❏ LOCAL model! Insights apply:
verification vs optimization

❏ SDN twist: pre-processing!
❏ Hard in LOCAL: symmetry breaking! But

unlike ad-hoc networks: no need to
discover network from scratch

❏ Topology events less frequent than flow
related events

❏ If links fail: subgraph! Find recomputed
structures that are still useful in
subgraph (e.g., proof labelings)

❏ Precomputation known to help for
relevant problems: load-balancing /
matching

Ctrl Ctrl

HotSDN 2013

Careful: independent flow spaces does
not imply that controllers can
concurrently update without conflict:
e.g., due to shared embedding!
Atomic read-modify-write?

How to make control plane robust? Software
transactional memory problem:
network configuration = shared memory,
updates = transactions, but with a twist:
flows are uncontrolled, real-time transactions:
do not abort! (And not only read!)

In-Band Synchronization for Distributed SDN Control Planes

Liron Schiff, Petr Kuznetsov, and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), January

2016.

https://net.t-labs.tu-berlin.de/~stefan/ccr16sync.pdf

Data Plane: Algorithms with a twist!

Ctrl

HotSDN 2014

❏ Even in SDN: Keep some
functionality in the data plane!

❏ E.g., for performance: OpenFlow local
fast failover: 1st line of defense

❏ SDN twist: data plane algorithms
operate under simple conditions

❏ Failover tables are statically
(proactively) preconfigured, w/o
multiple faiures knowledge

❏ At runtime: local view only and header
space is scarce resource

❏ W/ tagging: graph exploration

❏ W/o tagging: combinatorial problem

❏ Later: consolidate this with controller!

Data Plane: Algorithms with a twist!

Ctrl

HotSDN 2014

❏ Even in SDN: Keep some
functionality in the data plane!

❏ E.g., for performance: OpenFlow local
fast failover: 1st line of defense

❏ SDN twist: data plane algorithms
operate under simple conditions

❏ Failover tables are statically
(proactively) preconfigured, w/o
multiple faiures knowledge

❏ At runtime: local view only and header
space is scarce resource

❏ W/ tagging: graph exploration

❏ W/o tagging: combinatorial problem

❏ Later: consolidate this with controller!

With infinite header space ideal
robustness possible. But what
about bounded header space? And
resulting route lengths?
Without good algorithms, routing
may disconnect way before
physical network does!

Data Plane: Algorithms with a twist!

Ctrl

HotSDN 2014

❏ Even in SDN: Keep some
functionality in the data plane!

❏ E.g., for performance: OpenFlow local
fast failover: 1st line of defense

❏ SDN twist: data plane algorithms
operate under simple conditions

❏ Failover tables are statically
(proactively) preconfigured, w/o
multiple faiures knowledge

❏ At runtime: local view only and header
space is scarce resource

❏ W/ tagging: graph exploration

❏ W/o tagging: combinatorial problem

❏ Later: consolidate this with controller!

With infinite header space ideal
robustness possible. But what
about bounded header space? And
resulting route lengths?
Without good algorithms, routing
may disconnect way before
physical network does!

Provable Data Plane Connectivity with Local Fast Failover:

Introducing OpenFlow Graph Algorithms

Michael Borokhovich, Liron Schiff, and Stefan Schmid.

ACM SIGCOMM Workshop on Hot Topics in Software Defined

Networking (HotSDN), Chicago, Illinois, USA, August 2014.

How (Not) to Shoot in Your Foot with SDN Local Fast Failover: A

Load-Connectivity Tradeoff

Michael Borokhovich and Stefan Schmid.

17th International Conference on Principles of Distributed Systems

(OPODIS), Nice, France, Springer LNCS, December 2013.

https://net.t-labs.tu-berlin.de/~stefan/hotsdn14fail.pdf
https://net.t-labs.tu-berlin.de/~stefan/opodis13shoot.pdf

Decoupling: Algorithms with a twist!

Ctrl

❏ Decoupling already challenging
for a single switch!

❏ Network Hello World
application: MAC learning

❏ MAC learning has SDN twist:
MAC learning SDN controller is
decoupled: may miss response
and keep flooding!

❏ Need to configure rules s.t.
controller stays informed when
necessary!

? ? ?

Decoupling: Algorithms with a twist!

Ctrl

❏ In-band control: cheap but
algorithmically challenging!

❏ Distributed coordination algorithms
to manage switches?

❏ Powerful fault-tolerance concept:
self-stabilization

❏ SDN twist: switches are simple!

❏ Cannot actively participate in
arbitrary self-stab spanning tree
protocols

❏ Controller needs to install tree rules

Ctrl

unmanaged!

Decoupling: Algorithms with a twist!

Ctrl

❏ In-band control: cheap but
algorithmically challenging!

❏ Distributed coordination algorithms
to manage switches?

❏ Powerful fault-tolerance concept:
self-stabilization

❏ SDN twist: switches are simple!

❏ Cannot actively participate in
arbitrary self-stab spanning tree
protocols

❏ Controller needs to install tree rules

Ctrl

unmanaged!

DISN 2016

Ground Control to Major Faults: Towards a Fault Tolerant and

Adaptive SDN Control Network

Liron Schiff, Stefan Schmid, and Marco Canini.

IEEE/IFIP DSN Workshop on Dependability Issues on SDN and NFV

(DISN), Toulouse, France, June 2016.

https://net.t-labs.tu-berlin.de/~stefan/disn16medieval.pdf

Decoupling: Algorithms with a twist!

Ctrl

❏ Researchers proposed to
exploit SDN rule definition
flexiblities to solve growing FIB
size problem

❏ OpenFlow-based IP router:
caching and aggregation

❏ Zipf law: many infrequent prefixes
at controller

❏ Extremely distributed control

❏ Online paging with SDN twist

❏ Forwarding semantic: largest
common prefix forwarding, i.e.,
dependencies: only offload root-
contiguous set in trie

❏ Can do bypassing

Ctrl

Ctrl

Ctrl

Ctrl

to ctrl

ICDCS 2014

Decoupling: Algorithms with a twist!

Ctrl

❏ Researchers proposed to
exploit SDN rule definition
flexiblities to solve growing FIB
size problem

❏ OpenFlow-based IP router:
caching and aggregation

❏ Zipf law: many infrequent prefixes
at controller

❏ Extremely distributed control

❏ Online paging with SDN twist

❏ Forwarding semantic: largest
common prefix forwarding, i.e.,
dependencies: only offload root-
contiguous set in trie

❏ Can do bypassing

Ctrl

Ctrl

Ctrl

Ctrl

to ctrl

ICDCS 2014

Online Tree Caching

Marcin Bienkowski, Jan Marcinkowski, Maciej Pacut, Stefan Schmid,

and Aleksandra Spyra.

ArXiv Technical Report, February 2016.

Competitive FIB Aggregation without Update Churn

Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and Steve Uhlig.

34th International Conference on Distributed Computing Systems

(ICDCS), Madrid, Spain, June 2014.

https://net.t-labs.tu-berlin.de/~stefan/treecache16arxiv.pdf
https://net.t-labs.tu-berlin.de/~stefan/icdcs14.pdf

Interconnect: Algorithms with a twist!

Ctrl❏ Another challenge: asynchronous
communication channel

asynchronous

He et al., ACM SOSR 2015:

without network latency

Interconnect: Algorithms with a twist!

Ctrl❏ Another challenge: asynchronous
communication channel

asynchronous

He et al., ACM SOSR 2015:

without network latency

Not only because of network
latency, but also data structures!

untrusted

hosts
trusted

hosts

Controller Platform

What can possibly go wrong?

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted

hosts
trusted

hosts

Controller Platform

What can possibly go wrong?

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

asynchronous

Example 1: Bypassed Waypoint

insecure

Internet
secure

zone

Controller Platform

Example 2: Transient Loop

insecure

Internet
secure

zone

Controller Platform

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Cost of extra rules?

Where to tag?
Header space?
Overhead?

Time till new link
becomes available?

Alternative: Weaker Transient Consistency

Idea: Packet may take a mix of old and new path, as long
as weaker consistencies are fulfilled transiently, e.g.
Loop-Freedom (LF) and Waypoint Enforcement (WPE).

Schedule safe subsets in multiple rounds

Controller Platform

Controller Platform

Round 1

Round 2

…

The Spectrum of Consistency

Strong

weak, transient
consistency

(loop-freedom,

waypoint enforced)
Mahajan and Wattenhofer, HotNets 2014

Ludwig et al., HotNets 2014

correct network

virtualization
Ghorbani and Godfrey, HotSDN 2014

per-packet consistency
Reitblatt et al., SIGCOMM 2012

Weak

Going Back to Our Examples: LF Update?

insecure

Internet

secure

zone

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

LF ok! But: WPE violated in Round 1!

Going Back to Our Examples: WPE Update?

insecure

Internet

secure

zone

Going Back to Our Examples: WPE Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Going Back to Our Examples: WPE Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2: … ok but may violate LF in Round 1!

Going Back to Our Examples: Both WPE+LF?

insecure

Internet

secure

zone

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3: Is there always a WPE+LF schedule?

What about this one?

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!
Good Network Updates for Bad Packets: Waypoint Enforcement

Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los

Angeles, California, USA, October 2014.

https://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf

What about this one?

What about this one?

1

❏ Forward edge after the waypoint: safe!

❏ No loop, no WPE violation

What about this one?

2

❏ Now this backward is safe too!

❏ No loop because exit through 1

1

What about this one?

1

2

3

❏ Now this is safe: ready back to WP!

❏ No waypoint violation

2

What about this one?

1

2

3

4

4

❏ Ok: loop-free and also not on the path (exit via)1

What about this one?

1

2

3

❏ Ok: loop-free and also not on the path (exit via)

4

4

1

What about this one?

1

2

3

4

4

5

Back to the start: What if….

1

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

❏ Update any of the 2 other forward edges? WPE

❏ What about a combination? Nope…

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

To update or not to update in the first round?

That is the question…

… which leads to NP-hardness!

Back to the start: What if…. also this one?!

1

1

To update or not to update in the first round?

That is the question…

… which leads to NP-hardness!

Transiently Secure Network Updates

Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.

42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June

2016.

https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf

Let us focus on loop-freedom only:
always possible in n rounds! (How?)

But how to minimize rounds?

Example: Optimal 2-Round Update Schedules

Clear: in Round 1 (R1), I can only
update „forward“ links!

What about last round? Observe: Update schedule read
backward (i.e., updating from new to old policy), must
also be legal! I.e., in last round (R2), I can do all „forward“
edges of old edges wrt to new ones! Symmetry!

Example: Optimal 2-Round Update Schedules

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path? F F F B B B

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path? F F F B B B

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

Old policy from left to right!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

New policy from left to right!

F F F B B B

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

Old policy from left to right!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backward wrt
(dashed) new path?

New policy from left to right!

F F F B B B

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

Old policy from left to right!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backward wrt
(dashed) new path?

New policy from left to right!

F F F B B B

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

Old policy from left to right!

 F B B F B F

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backward wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

F F F B B B

 F B B F B F

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backward wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

F F F B B B

 F B B F B F

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

F F F B B B

 F B B F B F

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

2-Round Schedule: If and only if
there are no BB edges! Then I can

update F edges in first round
and F edges in second round!

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

2-Round Schedule: If and only if
there are no BB edges! Then I can

update F edges in first round
and F edges in second round!

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

That is, FB must be in
first round, BF must be
in second round, and FF
are flexible!

Intuition Why 3 Rounds Are Hard

❏ Structure of a 3-round schedule:

Round 1 Round 2 Round 3

F edges:

FF,FB

F edges:

FF,BF

all edges:

FF,FB,BF,BB

Round 1 Round 2 Round 3

FB BFBB

WLOG

Boils
down to: FF

??

W.l.o.g., can do FB
in R1 and BF in R3.

Intuition Why 3 Rounds Are Hard

❏ Structure of a 3-round schedule:

Round 1 Round 2 Round 3

F edges:

FF,FB

F edges:

FF,BF

all edges:

FF,FB,BF,BB

Round 1 Round 2 Round 3

FB BFBB

WLOG

Boils
down to: FF

??

W.l.o.g., can do FB
in R1 and BF in R3.

Moving forward edges
does not introduce loops,
nor does making the
graph sparser.

A hard decision problem: when to update FF?

BB

Intuition Why 3 Rounds Are Hard

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to make enable update BB in R2?

A hard decision problem: when to update FF?
Exit from loop

BB

Intuition Why 3 Rounds Are Hard

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to make enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

A hard decision problem: when to update FF?
No exit from loop!

BB

Intuition Why 3 Rounds Are Hard

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to make enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

A hard decision problem: when to update FF?
No exit from loop!

BB

Intuition Why 3 Rounds Are Hard

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to make enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

A hard decision problem: when to update FF?

BB

Intuition Why 3 Rounds Are Hard

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to make enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

❏ Smells like a gadget: which FF nodes to update when is hard!

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to make enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

❏ Smells like a gadget: which FF nodes to update when is hard!

A hard decision problem: when to update FF?

BB

Intuition Why 3 Rounds Are Hard

Being greedy is bad!
Don‘t update all FF!

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to make enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

❏ Smells like a gadget: which FF nodes to update when is hard!

A hard decision problem: when to update FF?

BB

Intuition Why 3 Rounds Are Hard

Being greedy is bad!
Don‘t update all FF!

Devil lies in details: original
paths must also be valid!
I.e., to prove that such a
configuration can be reached.

It‘s Good to Relax: How to update LF?

…

s dv2 v3 vn-1
vn-2v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2

Invariant: need to update v2 before v3!

v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2

Invariant: need to update v3 before v4!

v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2v4

Induction: need to update vi-1 before vi (before vi+1 etc.)!

(n) rounds?! In principle, yes…:
Need a path back out before
updating backward edge!

1 1

2 3 n-3 n-2

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1 1

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1 1

2 2 2

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1

2 2 2

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

3

1

Finally put back on
path!

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1

2 2 2

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

3

1

Finally put back on
path!

3 rounds only!

But: If s has been
updated, nodes not on
(s,d)-path!

A log(n)-time Algorithm: Peacock in Action

93

Shortcut Prune PruneShortcut

A log(n)-time Algorithm: Peacock in Action

94

Shortcut Prune PruneShortcut

Greedily choose
far-reaching
(independent)
forward edges.

update

A log(n)-time Algorithm: Peacock in Action

95

Shortcut Prune PruneShortcut
R1 generated
many nodes in
branches which
can be updated
simultaneously!

update

A log(n)-time Algorithm: Peacock in Action

96

Shortcut Prune PruneShortcut

Line re-established!
(all merged with a
node on the s-d-path)

A log(n)-time Algorithm: Peacock in Action

97

Shortcut Prune PruneShortcutPeacock orders nodes wrt to distance: edge
of length x can block at most 2 edges of

length x, so distance 2x.

A log(n)-time Algorithm: Peacock in Action

98

Shortcut Prune PruneShortcut

At least 1/3 of nodes merged in each round
pair (shorter s-d path): logarithmic runtime!

A log(n)-time Algorithm: Peacock in Action

99

Shortcut Prune PruneShortcut

A log(n)-time Algorithm: Peacock in Action

Shortcut Prune PruneShortcut

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC),

Donostia-San Sebastian, Spain, July 2015.

https://net.t-labs.tu-berlin.de/~stefan/podc15.pdf

Remark on the Model

Easy to update new
nodes which do not
appear in old policy.
And just keep nodes
which are not on new
path!

Loop-Freedom: Summary of Results

❏ Minimizing the number of rounds

❏ For 2-round instances: polynomial time

❏ For 3-round instances: NP-hard, no approximation known

❏ Relaxed notion of loop-freedom: O(log n) rounds

❏ No approximation known

❏ Maximizing the number of updated edges per round: NP-hard
(dual feedback arc set) and bad (large number of rounds)

❏ dFASP on simple graphs (out-degree 2 and originates from paths!)

❏ Even hard on bounded treewidth?

❏ Resulting number of rounds up to (n) although O(1) possible

❏ Multiple policies: aggregate updates to given switch!

❏ Related to Shortest Common Supersequence Problem

Loop-Freedom: Summary of Results

❏ Minimizing the number of rounds

❏ For 2-round instances: polynomial time

❏ For 3-round instances: NP-hard, no approximation known

❏ Relaxed notion of loop-freedom: O(log n) rounds

❏ No approximation known

❏ Maximizing the number of updated edges per round: NP-hard
(dual feedback arc set) and bad (large number of rounds)

❏ dFASP on simple graphs (out-degree 2 and originates from paths!)

❏ Even hard on bounded treewidth?

❏ Resulting number of rounds up to (n) although O(1) possible

❏ Multiple policies: aggregate updates to given switch!

❏ Related to Shortest Common Supersequence Problem

Being greedy is bad!
And hard

Extension: Multiple Policies

At least one node needs
to be touched twice:
otherwise at least one
flow will have a
temporary loop:

Worst case: k policies
require k touches!

Extension: Multiple Policies

At least one node needs
to be touched twice:
otherwise at least one
flow will have a
temporary loop:

Worst case: k policies
require k touches!

On the positive side: given
individual transiently consistent
schedules, can optimally
combine them using dynamic
programming! Independently of
the consistency property.

Extension: Multiple Policies

At least one node needs
to be touched twice:
otherwise at least one
flow will have a
temporary loop:

Worst case: k policies
require k touches!

On the positive side: given
individual transiently consistent
schedules, can optimally
combine them using dynamic
programming! Independently of
the consistency property.

Can't Touch This: Consistent Network Updates for Multiple Policies

Szymon Dudycz, Arne Ludwig, and Stefan Schmid.

46th IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), Toulouse, France, June 2016.

https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf

Conclusion

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
inter-connect!

Data Plane
E.g., robust failover.

E.g., admission control and
routing with waypoints.

E.g., distributed control but
also MAC learning
(Jen@Dagstuhl)!

E.g., network updates or
self-stabilizing in-band
control network.

Own References
Can't Touch This: Consistent Network Updates for Multiple Policies

Szymon Dudycz, Arne Ludwig, and Stefan Schmid.

46th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, June

2016.

Transiently Secure Network Updates

Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.

42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June 2016.

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC), Donostia-San Sebastian, Spain, July 2015.

Medieval: Towards A Self-Stabilizing, Plug & Play, In-Band SDN Control Network (Demo Paper)

Liron Schiff, Stefan Schmid, and Marco Canini.

ACM Sigcomm Symposium on SDN Research (SOSR), Santa Clara, California, USA, June 2015.

A Distributed and Robust SDN Control Plane for Transactional Network Updates

Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.

34th IEEE Conference on Computer Communications (INFOCOM), Hong Kong, April 2015.

Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014.

Provable Data Plane Connectivity with Local Fast Failover: Introducing OpenFlow Graph Algorithms

Michael Borokhovich, Liron Schiff, and Stefan Schmid.

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN), Chicago, Illinois, USA,

August 2014.

https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf
https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf
http://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
http://net.t-labs.tu-berlin.de/~stefan/sosr15medieval.pdf
http://net.t-labs.tu-berlin.de/~stefan/infocom15.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotsdn14fail.pdf

