Applications of Secure Coding in
Distributed Storage and
Wireless Networking

Reza Curtmola
New Jersey Institute of Technology

Parts of this presentation are based on joint work with Bo Chen, Randal Burns,
Giuseppe Ateniese, Andrew Newell, and Cristina Nita-Rotaru

1

Motivation

Remote storage is ubiquitous:
— Web-based email (Yahoo Mail, GMail)
— Online data backup/recovery/archival:

» Enterprise (iron mountain, evault)
« Consumer (mozy, carbonite, dropbox, google drive)

— Cloud Storage (Amazon, Microsoft, Google, IBM, etc.)

Cloud storage can release people from the burden of
hardware management

Reduce the cost (Storage AS Service, pay as you use)

More reliable (S3 99.999999999% durability, with
99.99% availability)

\

Reliability in Distributed Storage Systems

» Traditional approaches to store data redundantly
at multiple servers:
— Replication
— Erasure Coding

» Reduced storage overhead

» Large bandwidth overhead for repair (entire file is retrieved)

. repair :
repair

| |
| |
| |
G pl & |
i new replica i _
| |
: eI 1MB . new coded block
: : created
i we TN
| |

Replication (3,2) Erasure coding

3

Reliability based on Network Coding

Network Coding (Regenerating Code): a new coding
method that sacrifices some storage overhead for repair
bandwidth

— Compute coded blocks as linear combinations of original blocks
— Repair bandwidth is optimal (retrieve x bits to repair x bits)

coding coefficient

repair

0.66MB

0.66MB

new coded block
created

0.66MB

Network coding (n=3, k=2)

Applications that benefit from network coding

* Applications with read-rarely workloads benefit
most from the low bandwidth overhead of
network coding:

- Regulatory storage

- Data escrow

- Deep archival stores

- Preservation systems for old datasets

Online Backup/Archival Systems

» Users can check data authenticity upon retrieval
— Insufficient to verify data on read

* An important feature is missing:
the ability to prove data possession

(a way to periodically check that the server still
has the data)

* The risk of outsourcing storage cannot be

assessed
— Data owners lose control over the faith of their data
— Cloud storage providers must be trusted unconditionally
— Numerous reports of data loss incidents

— This makes cloud storage unsuitable for applications that require
strong security and long-term reliability guarantees

Archival Storage

« Storage servers:
— Retain tremendous amounts of data
— Only small parts of the data are retrieved
— Hold data for long periods of time (forever)

* Unique performance demands:

— Accessing the entire data is expensive in I/O costs for
the server

— Sending all the data across a network is expensive

Remote Data Integrity Checking

 Remote Data Checking (RDIC) is a mechanism
used by the data owner to check the integrity of
data stored at an untrusted server
— without having the server access all the data
— without retrieving the data from the server

Why Not Trust Service Providers?

* Financial motivations to cheat
— Charge for terabytes and store gigabytes
— Discard un-accessed data (based on statistical analysis)
— Keep fewer replicas than promised

« Reputation
— Hide data loss incidents

« Latent errors
— Of which service providers are unaware

Remote Data Integrity Checking (RDIC)

Client Server
Setup @ @7
- & -
\\
(¢
delete the f||
Challenge ™" challenge

w | 1|5
proof of possession S

Security requirement: Detect server misbehavior when the
file (or parts of it) cannot be retrieved

10

Single-server Remote Data Integrity Checking

« Tag-based:

— Provable Data Possession (PDP)

[Ateniese, Burns, Curtmola, Herring, Khan, Kissner, Peterson, Song,
“‘Remote Data Checking Using Provable Data Possession”]

— Compact Proofs of Retrievability (CPOR)

[Shacham, Waters, “Compact Proofs of Retrievability”]

e Sentinel-based

— Proofs of Retrievability (POR)
[Juels, Kaliski, “PORs: Proofs of Retrievability for Large Files”]

Tag-based RDIC
Setup

z —> t, t, t, t,

F—) m1m2m3 m

* C generates tags for each file block
— Tags have special properties, can be aggregated

e CsendsFand 2to S

* C keeps some cryptographic key material and
deletes F, 2~

Tag-based RDIC

Challenge 6] 6] 6] 6]] 5] e (6] 6

(Audit) m, |m, m, m, m m, m, mg m, m

« C challenges S on a random subset of file blocks
— query Q is different per challenge
— checked subset of blocks is different per challenge

* S responds with a proof of possession: V = (T, M)
— T is a function of tags t,, t;, t5, t; (aggregation)
— M is a function of the challenged blocks m,, m;, mg, m-,

* C checks if a certain relationship holds between T and M

Beyond Single-server RDIC

« Single-server RDIC is only one facet of maintaining the
health of data (prevention)

* We really want to ensure long-term data reliability
— Remote data checking for distributed storage systems

Verifier (client)

* Phases: Store, Audit, Repair

» Additional challenges: server collusion, keep costs sub-
linear in n, new attacks

14

Summary of Remote Data Integrity Checking

» Client must ensure storage servers don’'t misbehave

 Client periodically checks integrity of outsourced
data (challenge phase)

 Client takes action (repair) upon detecting corruption
at one of the storage servers (repair phase)

RDIC for Distributed Storage Systems

« Data is stored redundantly at multiple servers
— Replication
« Simplicity, requires more storage
« [Curtmola, Khan, Burns, Ateniese, “MR-PDP: Multiple-
Replica Provable Data Possession”]
— Erasure coding

» Optimal storage to achieve desired reliability level, expensive
repair phase

» [Bowers, Juels, Oprea, “HAIL: A High-Availability and
Integrity Layer for Cloud Storage”]

— Network Coding
« Minimal communication overhead to repair damaged data

« [Chen, Curtmola, Ateniese, Burns, “Remote data checking for
network coding-based distributed storage systems”’]

16

Performance Comparison

Replication | (n, k) Erasure Coding | (n, k) Network Coding
(MR-PDP) | (HAIL) ()
Total server storage @ m

Communication |F| |F| 2|F|/(k+1)
(repair phase)

Network overhead @ @ @

factor (repair phase)

Server computation 0O(1) O(1) O(1)
(repair phase)

RDC-NC is built on top of network coding-based distributed storage systems

*|F| = size of the file F, which is outsourced at n servers

* Any k out of n servers have enough information to recover F
(for erasure coding and network coding)

* Network overhead factor: the ratio between the amount of data that needs to be
retrieved to the amount of data that is created to be stored on a new server

Adversarial Model

» Mobile adversary that can behave arbitrarily
(Byzantine behavior).

* The adversary can corrupt at most n-k out of the n
servers within any given time interval (an epoch).

* An epoch consists of two phases

— Challenge phase
» Corruption sub-phase (adversary can corrupt up to b1 servers)

« Challenge sub-phase

— Repair phase
» Corruption sub-phase (adversary can corrupt up to b2 servers)
* Repair sub-phase

* b1+b2 < n-k

Our Focus

* Design a secure Remote Data Integrity Checking
scheme for Network Coding-based distributed
storage systems

— Optimize combined costs of challenge and repair phases

— Preserve in an adversarial setting the repair bandwidth
advantage of network coding over erasure coding

Challenges

* Localize faulty servers

e Lack of fixed file layout (makes it difficult to maintain
constant storage on client)
— Erasure coding has fixed file layout (a new, repaired block
is identical to the original block)
* Additional attacks. Replay attack, pollution attack, ...

— The newly generated blocks in repair are not necessarily
equal to the original blocks (replay attack)

— The untrusted servers are responsible for generating the
blocks in repair phase (pollution attack)

Maintain Low Storage Cost (client)

* Can single server solutions (PDP, PoR) be adapted?
No!

— collusion of servers (server can reuse each other’s data
and meta-data to answer the challenge)

* Use metadata for integrity checks (allows to easily
localize faulty servers)

 Meta-data is customized per server per block: assign
d Iogical ID to coded blocks (server_indexl |b|ock_index) and
embed IDs and coding coefficients into meta-data

— Provide integrity for every block in every server
— Tackle the problem of collusion of servers

Replay Attack

* By replaying intentionally, the adversary can corrupt the
whole system
— Replay attack is specific to random network coding-based distributed

storage systems (reduce the linear independency of blocks, eventually
corrupting the whole system)

— Difficult to detect and maintain constant client storage The original data is
(3, 2) network coding, original file contains 3 blocks (b1, b2, b3) unrecoverable
P - [Z3b,43b,] - [3b,3b
- L T3em,0 L 3ba3b,]
| | |
e e R |
Lbgtb, 0 L bytb, 1 L bytb,] |
i i e — - = ~ \Replay without being detecteo!
-1 batby#2by /T bythy+2by : I L bythy
x |] ye | (h—/ [| Bab, 1
| S 7 |
I I |
' ' |

epoch epoch?2 epoch3 / epoch4

22

Replay Attack (cont.)

* QOur solution
— We encrypt the coding coefficients

— We prove that by encrypting the coefficients, a
malicious server’s ability to execute a harmful
replay attack becomes negligible (the server
cannot do better than randomly select blocks for
replay attack)

Inconsistency between Challenge Phase
and Repair Phase

* Malicious servers can pretend to be good in
challenge phase, but behave maliciously in
repair phase.

— Corrupt data (pollution attack)

— Do not use the random coefficients to generate
the new block (entropy attack)

Inconsistency between Challenge Phase and

Repair Phase (cont.)

e Our solution

— Repair tag which supports aggregation

— Client picks the random coefficients and enforces servers to use
— Client checks if servers use correctly coded blocks

— Client checks if servers use coding coefficients provided by client

Repair
server side client side

repajr tag

0.66MB

3

0.66MB

new coded block
created

0.66MB
T=(4)'(t)

\

proof of correctly computing the new blocks

25

RDC-NC Overview

e Setup phase

— Encode the original m-block file into na blocks based
on random network coding
— Generate challenge tags and repair tag for every block

* Every block is a collection of segments, every segment has
one challenge tag (PDP or PoR tag), used in challenge phase

* One repair tag per block (to prevent attacks in repair phase)
— Encrypt the coefficients (replay attack)

— Outsource the encoded blocks (together with
encrypted coding coefficients) and metadata
(challenge and verification tags)

* o blocks at each of the n servers

Scheme Overview (cont.)

* Challenge phase

— Check every block in every server based on the
challenge tags
* Reduce the communication cost by aggregating the

responses of a blocks (PDP or PoR tags support
aggregation)

Scheme Overview (cont.)

e Repair phase
— Repair phase is activated after finding corrupted servers in
the Challenge phase

— Client works with a set of healthy servers
* Client sends random coefficients to servers
» Servers use the random coefficients to compute new coded blocks

* Servers also use the random coefficients to compute a proof that
the new coded blocks are correctly computed

» Severs send back the coded blocks and the proofs

— Client checks the proofs, then uses the correctly generated
blocks to repair the corrupted servers

Conclusion

 Network coding is a promising coding method for
distributed storage systems
(minimize repair bandwidth)

* Our RDC-NC scheme is designed to withstand a
strong adversarial model (mobile and Byzantine)

e RDC-NC ensures data integrity and long-term
reliability by mitigating various attacks (data
corruption, collusion of servers, replay attack,
pollution attack, ...)

Entropy Attacks and
Countermeasures in Wireless
Network Coding

Network Coding

. Store-and-forward Network codin
 Network coding . ®
fundamentally changes ™ ' P1 P1 :'—> 0. +p,
routing P2 P2 P2
e Different strategies for Intra-flow Inter-flow

coding within a flow or

among multiple flows ‘@b
Application
Transport

Network | ¢ Coding at various levels

MAC of networking stack
Physical

31

Wireless Network Coding Routing

* Random linear network coding

»Random coding offers completely decentralized
coding and shown to be sufficient [Ho et al., 03]

» Linear coding has been shown to be optimal [Li et
al., 03]
* Opportunistic routing
»Forwarders can leverage any packet reception
» Natural multipath routing with little coordination
» Throughput and reliability improvements

Security in Network Coding

* Malicious store-and-forward routers
» Routers should not modify packets
» Any modification can be labeled malicious

* Malicious network coding routers
» Routers are supposed to modify packets

> Much harder to tell whether a modification was
malicious

This Talk

* Overview of network coding
» Show benign operation
» Demonstrate attacks

* Entropy attacks
» Local and global versions
» Demonstrate impact on network coding system

* Present detection techniques
» Show how to defend against local entropy attacks

» Demonstrate limitations of defending against global
entropy attacks

» Describe techniques to mitigate global entropy attacks

Network Coding Background

Packets are vectors of
elements of a small finite L_OXA318B309... —>

<163, 24, 179,09, ...>

field (256)

-
Packets (32) grouped into | <163,24,179,9,..>
generations <3,124,19,3,..>

Source selects forwarders :
to send data <123,11,34,12,..>

Nodes periodically - -

broadcasts random linear - ~

combination their coding <163,24,173,9, ...>

buﬁer < 3, 124, 19, 3, e >
Lrl' by rszl :

Destination can decode
upon obtaining full coding <123,11,34,12,..>
buffer N~ -

\

35

Network Coding Example

- 5N -1
412
024 | [Oc,+

(2 1 3)|1c;410,42¢5) - [4c, +3c,+2¢,)

2c1+[302}1c3 (431

Network Coding Attacks

* Pollution: creating bogus packets
» Results in invalid decoding at destination
» Well-studied, many defenses

* Entropy: creating non-innovative packets

> Waste network resources and blocks data flow

» Less-studied
* Locally share coefficients in P2P [Gkantsidis et al., 06]
* Quickly perform independence check [Jiang et al., 09]

Pollution Attack Example

= [2c1+3c2+4c,]

3 N
t1cg

268

{ala

X,

4c,+ieyt2c,
Oc,+@c,t+4c,

38

Entropy Attack Example

2¢,
4cy

EX B

39

Pollution vs Entropy

* Pollution attacks
» Huge impact with little effort
» Blatant deviation from normal coding

* Entropy attacks
» Less impact
» Subtle deviation from normal coding

* Orthogonal defenses

» Pollution defense detects whether packet is not a
linear combination of source packets

» Entropy attackers create packets that are linear
combinations of source packets

Local vs Global Entropy Attacks

* Local
» Easy to perform
»Easy to detect

e Global

» Requires out-of-
band channel to
perform

> Difficult to detect

41

Experimental Setup

Topology from measurements of 38-node wireless
mesh network (Roofnet)

Simulate (GlomoSim) MORE network coding protocol

200 simulations
» Select a random source/destination pair
» Simulate data transfer for 400 seconds
» Measure throughput

Select random entropy attackers as forwarders
» 32 packets per generation
» Perform coding normally on first 16 packets received
» Apply zero coefficients to remaining 16 packets

Impact of Local Entropy Attacks

 MORE-(# attackers)

e Zero throughput
cases

* Routing logic
selects paths

assuming all paths
will deliver data

Cumulative fraction of flows

0.8

0.6

MORE-0 7
MORE-1
MORE-2 -------

200 400 600 800 1000 1200 1400 1600 18002000
Throughput (kbps)

43

Non-innovative Link Adjustment (NLA)

e Standard MORE: source chooses subset of nodes to
forward based on link quality

* Source assumes high link quality is a high delivery rate of
innovative packets

* Non-innovative Link Adjustment: each node adjusts its
links based on proportion of received innovative packets

44

NLA Performance

IDEAL, defense that
automatically
removes attacker

Performs close to
the ideal case

With adjusted links,
data routed around
attacker

Link adjustments
stabilize after few
rounds of updates
(~3)

Cumulative fraction of flows

0.8

0.6

0.4

0

ui L,

) MORE-1 N
i NLA-MORE-1
g IDEAL-MORE-1 - - - -

0

200 400 600 800 1000 1200 1400 1600 1800
Throughput (kbps)

45

NLA is Insufficient against Global
Entropy Attack

Attacker encodes with packets from
downstream link

With no defense, 233 kbps
With NLA defense, 214 kbps
IDEAL, 345 kbps

46

Detection for Global Entropy Attacks

* Upstream Buffer Propagation

»Share information so global entropy attacker
neighbors know a packet is globally non-
Innovative

»Low overhead, reactive detection

e Buffer Monitoring

> Watch coefficients of all traffic in and out of a
suspect nodes

»High overhead, proactive detection, creates
topology constraints

Upstream Buffer Propagation

* Key optimizations
» Reduce buffer
information size

» Find single path

Protocol description * Analysis

1. Downstream node receives a > Reactive detection

non-innovative packet . oited
2. Buffer information propagated can be exploite

upstream along path > Hybrid scheme can
3. Accusation if innovative
packets do not propagate be used to add an

downstream exoneration period

48

Buffer Monitoring

1.

Protocol description

Watchdog buffers coefficients
of packets entering suspect
node

Watchdog ensures all
coefficients of packets leaving
suspect node are correct

* Key optimizations

» Publicly known
randomness for
coefficients

» Efficient wireless
single-hop multicast

* Analysis

49

Conclusion

Random linear network coding is inherently
vulnerable to entropy attacks

An entropy attacker can do much more than
occupy some network resources, it can block
data flow that routing assumes is open

Detection becomes complicated when packets
are locally innovative but globally non-innovative

Sophisticated defenses necessary to combat this
problem

Questions

?

