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X ∼ PX is a password with finite support X
Alice describes X by δ s-bit hints M = (M1, . . . ,Mδ) ∈ Fδ2s
M1, . . . ,Mδ are stored in different locations

Robustness: Bob observes ν ≤ δ hints MB, B ⊆ {1, . . . , δ}
Security: Eve observes η < ν hints ME , E ⊆ {1, . . . , δ}
Bob and Eve want to access the account secured by X
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Ambiguity

Hopefully, Bob succeeds and Eve does not. Therefore:

Goal

Bob’s ambiguity about X shall be small and Eve’s large.

We measure ambiguity by ...

1 ... the number of guesses that are necessary to find X

2 ... the size of the smallest list that contains X

Two versions: guessing and list

Bob Eve

Guessing version 1 1

List version 2 1
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Guesses and List-Size

(X,Y ) ∼ PX,Y takes value in a finite set X × Y, and ρ > 0 is fixed

Guessing Massey 1994, Arikan 1996

G(·|y) : X → [1 : |X |] is for all y ∈ Y one-to-one

G(·|Y ) is a guessing function:

G(x|y) = l ⇔ ”Is X = x?” is the `-th guess given Y = y

The ambiguity about X is E[G(X|Y )ρ]

List-Decoding Bunte & Lapidoth 2014

For all y ∈ Y, define Ly , {x ∈ X : PX|Y (x|y) > 0}
Ly is the smallest list L such that PX|Y (L|y) = 1

The ambiguity about X is E[|LY |ρ]
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Ambiguity: the Definition

Bob’s ambiguity

A
(g)
B (PX) = minGB E

[
maxBGB(X|MB)ρ

]
(Guessing Version)

A
(l)
B (PX) = E

[
maxB |LMB |ρ

]
(List Version)

Eve’s ambiguity

AE(PX) = minGE E
[
minE GE(X |ME )ρ

]
B ⊆ {1, . . . , δ} has size ν ≤ δ
E ⊆ {1, . . . , δ} has size η < ν

Worst-case: given X Bob observes the worst ν hints MB and
Eve the best η hints ME

5 / 1



Finite-Blocklength Results: Guessing Version

1 We can achieve A
(g)
B (PX) ≤ UB for

UB ≥ 1 + 2ρ(Hρ̃(X)−νs+1),

AE(PX) ≥
cρ,δ,η

(1 + ln|X |)ρ
[(

2ρ(ν−η)s(UB − 1)
)
∧ 2ρHρ̃(X)

]
.

2 Conversely, if A
(g)
B (PX) ≤ UB holds, then

UB ≥
2ρ(Hρ̃(X)−νs)

(1 + ln|X |)ρ
∨ 1,

AE(PX) ≤ 2ρ(ν−η)sA
(g)
B (PX) ∧ 2ρHρ̃(X).

Hρ̃(X) = 1
ρ log

(∑
x∈X

PX(x)ρ̃
) 1
ρ̃ is the Rényi entropy of order ρ̃ = 1

1+ρ
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Finite-Blocklength Results: List Version

1 We can achieve A
(l)
B (PX) ≤ UB for

UB ≥ 1 + 2ρ(Hρ̃(X)−log(2νs−log|X |−2)+2),

AE(PX) ≥
cρ,δ,η

(1 + ln|X |)ρ
[(

2ρ(ν−η)s(UB − 1)
)
∧ 2ρHρ̃(X)

]
.

2 Conversely, if A
(l)
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Guessing and List-Decoding

A link between guessing and list-decoding

Let (X,Y ) ∼ PX,Y take value in a finite set X × Y.

1 E[G∗(X|Y )ρ] ≤ E[|LY |ρ]

2 E[|LY,Z |ρ] ≤ E[G∗(X|Y )ρ] holds for Z = blogG∗(X|Y )c

Proof:

1 x ∈ Ly ⇒ G∗(x|y) ≤ |Ly|
x /∈ Ly ⇒ PX|Y (x|y) = 0

2 x ∈ Ly,z ⇒ |Ly,z| ≤ 2blogG
∗(x|y)c ≤ G∗(x|y)

Remarks:

|Z| ≤ 1 + log |X |
|Z|−ρ2ρHρ̃(X|Y )

(1+ln |X |)−ρ ≤ E[G∗(X|Y, Z)ρ] ≤ 2ρHρ̃(X|Y )
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Asymptotic Results

X = Xn is an n-tuple produced by the source {Xi}
The Rényi entropy-rate Hρ̃(X) = limn→∞Hρ̃(X

n)/n exists

s = nRs, where Rs > 0 is the per-hint storage-rate

Achievable ambiguity exponent: EE ≥ 0 such that

lim
n→∞

AB(PXn) = 1, lim inf
n→∞

log(AE(PXn))

n
≥ EE

hold for some sequence of stochastic encoders

Privacy-exponent: EE , supEE (possibly −∞)

EE =

{
ρ
(
Rs(ν − η) ∧Hρ̃(X)

)
, νRs > Hρ̃(X)

−∞, νRs < Hρ̃(X).
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Optimal Guessing

(X,Y ) ∼ PX,Y takes value in a finite set X × Y, and ρ > 0 is fixed

What is minG E[G(X|Y )ρ] = E[G∗(X|Y )ρ]?

P
(·|
y)

G
∗ (
·|y

)

6

5

4

3

2

1

d
ec

re
as

in
g

Optimal guessing Arikan 1996

2ρHρ̃(X|Y )

(1 + ln |X |)−ρ
∨ 1 ≤ E[G∗(X|Y )ρ] ≤ 2ρHρ̃(X|Y ).

Hρ̃(X|Y ) = 1
ρ log

∑
y∈Y

( ∑
x∈X

PX,Y (x, y)ρ̃
) 1
ρ̃ is Arimoto’s

conditional Rényi entropy of order ρ̃ = 1
1+ρ
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Benefit of Additional SI

(X,Y ) ∼ PX,Y takes value in a finite set X × Y
Given the support Z of Z, we choose PZ|X,Y

P
(·|
y)

G
∗ (
·|y

)

z(
·, y

)
G
∗ (
·|y
, z

)

6

5

4

3

2

1

�
•
?

�
•
?

2

2

2

1

1

1

Z = { ?, •, � }

d
ec

re
as

in
g

Q: What is minG,PZ|X,Y E[G(X|Y,Z)ρ]?

For an optimal PZ|X,Y ...

... Z = z(X,Y )

... G(x|y, z(x, y)) = dG∗(x|y)/|Z|e

A: E[dG∗(X|Y )/|Z|eρ]
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Proof of the Results

The Result in a Nutshell

An ambiguity pair
(
AB(PX),AE(PX)

)
is achievable iff

AB(PX) & 2ρ(Hρ̃(X)−νs) ∨ 1
AE(PX) . 2ρ(ν−η)sAB(PX) ∧ 2ρHρ̃(X).

The converse holds by the results on optimal guessing

Achievability can be proved using nested MDS codes

12 / 1
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Proof of the Results: Achievability

Insecure Encoding:

Describe X by V ∈ Fν2s s.t. E[G(X|V )ρ] ≈ 2ρ(Hρ̃(X)−νs)

Alice encodes V using a (δ, ν) MDS code

She stores each codeword-symbol on a different hint

AB(PX) = E[G(X|V )ρ] ≈ 2ρ(Hρ̃(X)−νs)

AE(PX) & 2ρ(Hρ̃(X)−ηs) ≈ 2ρ(ν−η)sAB(PX)

Secure Encoding:

Describe X by W ∈ Fν−η2s s.t. E[G(X|W )ρ] ≈ 2ρ(Hρ̃(X)−(ν−η)s)

Generate U ∼ Unif(Fη2s) independently of X

Alice encodes (U,W ) using a nested (δ, ν) MDS code

She stores each codeword-symbol on a different hint

AB(PX) = E[G(X|U,W )ρ] ≈ 2ρ(Hρ̃(X)−(ν−η)s)

AE(PX) ≈ 2ρHρ̃(X) ≈ 2ρ(ν−η)sAB(PX)

To achieve any ambiguity-pair: (V,W ) ∈ Fν2p × Fν2r s.t. p+ r = s
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Thank you


