A Model for Adversarial Wiretap Channel

Rei Safavi-Naini, U Calgary, CANADA

Joint work with Pengwei Wang_

Alice wants to send a private message to Bob

Shannon (1949)

First reliability

Then, secrecy

$$H(M \mid Z) = H(M)$$

Alice wants to send a private message to Bob

Wyner (1975)

Wiretap channel

Secrecy: $\frac{1}{k}H(M \mid Z) \ge 1 - \varepsilon$

Reliability: $Pr(M' \neq M) \leq \varepsilon$

→ Perfect secrecy

Adversary

This talk:

- A model for adversarial wiretap
 - Bound & construction
- Relations with other primitives
 - Networks
 - 2. Secret Sharing
- Limited View Adversary
 - Reliability
- Concluding remarks

Adversarial Wiretap Channel

Wiretap II (OW '84)

Adversarial wiretap (S-N,W '13)

Adversarial Wiretap Channel

Goals: Reliability & Privacy

AWTP Codes

$$AWTPenc: M \times R \rightarrow C \subset \sum^{N}$$

$$AWTPdec: \sum^{N} \rightarrow M$$

$$(\varepsilon, \delta)$$
 – AWTP code:

- $\Delta(View_A(m_1); View_A(m_2)) \leq \varepsilon$
- $\Pr(M' \neq M) \leq \delta$

$$R(C^{N}) = \frac{\log |M|}{N \log |\Sigma|} = \frac{1}{N} \log_{|\Sigma|} |M|$$

$$S_{\mathbf{w}}$$
 $S_{\mathbf{r}}$

$$|S_r| = \rho_r N$$

$$|S_w| = \rho_w N$$

$$\Delta(X;Y) = \frac{1}{2} \sum_{i} |\Pr(X=i) - \Pr(Y=i)|$$

AWTP Codes

$$\varepsilon$$
-Code Family \mathbf{C}^{ε} : $\{C^{N}\}_{N\in\mathbb{N}}$

 $R(\mathbf{C}^{\varepsilon})$: for any ξ , there exists N_0 , such that,

$$N > N_0, \qquad \frac{1}{N} \log_{|\Sigma|} |M| \ge R(\mathbf{C}^{\varepsilon}) - \xi$$

Capacity of a (ρ_r, ρ_w) - channel:

$$C^{\varepsilon} = \max_{\mathbf{C}^{\varepsilon}} R(\mathbf{C}^{\varepsilon})$$

 \Rightarrow Fraction of a bit that can be sent with perfect reliability, and ε -security.

Upperbound & Capacity

Theorem:

$$C^{\varepsilon} \le 1 - \rho_r - \rho_w + 2 \varepsilon \rho_r \left(1 + \log_{|\Sigma|} \frac{1}{\varepsilon} \right)$$

$$C^{0} = 1 - \rho_r - \rho_w$$

$$\rho_r = \rho_w = \rho \Rightarrow 0 \le C^0 = 1 - 2\rho$$
$$\Rightarrow \rho \le \frac{1}{2}$$

Construction

- An efficient capacity achieving code
- $\Sigma = F_q$
- Building blocks
 - 1. AMD codes [CDFPW '08]
 - 2. Subset evasive sets [DL '11]
 - 3. Folded Reed-Solomon codes [GD '8]

AWTPenc =
$$FRS(SESenc(AMD(m ||[0]_g))||[r]_{u\rho_rL})$$

AWTPdec = $AMDdec(SESdec(FRSdec(y)))$

Relation with other primitives

- Networks
- Secret Sharing

Relation with other primitives: Security in networks

- DDWY '93, FW '98
- Secure Message Transmission

• SMTdec(C') = m'

$$C_1$$
 C_2
 C_3

$$(\varepsilon,\delta)$$
 – SMT

$$\max\nolimits_{m_1,m_2} \Delta(View_{\scriptscriptstyle A}(m_1,r); View_{\scriptscriptstyle A}(m_2,r)) \leq \varepsilon$$

Correctness:

$$\forall m \in M, \quad \Pr_{R}(Dec(C') \neq m) \leq \delta$$

Efficiency and Bounds

Corruption

$$N \ge 2t + 1$$

$$1 - \text{round } (0,0) - \text{SMT}$$
:

$$N \ge 3t + 1$$

Transmission rate

$$\tau = \frac{\sum_{i} log |V_{i}|}{log |M|}$$

$$\tau \ge \Omega(\frac{N}{N - 2t})$$

AWTP \rightarrow SMT

A more general adversary model

- AWTPenc, AWTPdec → (SMTenc, SMTdec)
 - Optimal constructions

$$\rho_{w} = \rho_{r} = \rho$$

$$\tau(SMT) \ge \frac{1}{1 - 2\rho + \delta'} \qquad \delta' = \frac{2H(\delta)}{N \log |\Sigma|} + 2\delta$$

Relation with other primitives:

Robust Secret Sharing

Share(m,r)=
$$(s_1,s_2\cdots s_L)$$

$$Reconst(s_1, s_2 \cdots s_t) = m$$

Reconst(
$$s'_1, s'_2 \cdots s'_L$$
)=m'

$$SD(View_{A}(m_{1},r); View_{A}(m_{1},r)) = 0$$
$$Pr(m' \notin \{m, \bot\}) \le \delta$$

AWTP → Robust SS

■ N=2t+1

■ A more general model of adversary
 AWTPenc, AWTPdec → (RSSenc, RSSdec)

Limited View Adversary Reliability Only

Theorem

$$C \le 1 - \rho_w$$

Comparison: List decodable codes

Limited View Adversary Code

Building blocks

- Message Authentication Codes
- 2. AWTP Code
- 3. FRS code with subspace evasive set

Encoding:

$$c_{AWTP} = AWTPenc(r)$$
 $c_{FRS} = FRSenc(m, t = MAC(m, r))$

$$AWTPenc = \begin{bmatrix} c_{AWTP} \\ c_{FRS} \end{bmatrix}$$

Limited View Adversary Code

Decoding:

- $r = AWTPdec(c_{AWTP})$
- $(m_i, t_i) \in L = FRSdec(c_{FRS})$
- $t_i = ?MAC(m_i, r)$
- **Requirement:** $\rho_r < 1 \rho_w$

Concluding remarks

- LV codes with $\rho_r > 1 \rho_w$
- AWTP/LV codes for small alphabet

- Interactive coding
- Key agreement
- AWTP with public discussion