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af
tWeakly Secure Coding

Set of files to be stored: S = {S1, S2, . . . , SBs}
Set of coded files observed by Eve: E
– Perfectly secure scheme: I (S;E) = 0

– Weakly secure scheme: I (Si;E) = 0

– g-weakly secure scheme

I(SG;E) = 0 ∀G : |G| ≤ g
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tWeakly Secure Coding

Weakly secure against g guesses

I(SG;E) = 0 ∀G : |G| ≤ g

– Equivalent to maximizing the minimum Hamming weight of any
vector in the span of the codewords

– Requires that no meaningful information is exposed to Eve
– Example

S1 + S2 + S3 + S4

S1 + 5S2 + 12S3 + 8S4
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tCooperative Data Exchange Problem

Clients need to share their local packets with other clients
Clients use a lossless broadcast channel
One packet or function of packet is broadcasted at each time slot.
Related to the key distribution and omniscience problems
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1

x3, x4, x5

x3 + x4 + x5

x2, x3, x4x1, x2, x3

2 x2 + 2x3 + x4x1 + x2 + x3
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tEavesdropper

Wants to obtain information about packets held by the clients
Has access to any data transmitted over the broadcast channel
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1

x3, x4, x5

x3 + x4 + x5

x2, x3, x4x1, x2, x3

2 x2 + 2x3 + x4x1 + x2 + x3

x1?, x2?, x3?
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tg-weak Security

For each subset SG of X of size g or less it holds that
I(SG;P ) = 0
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1

x3, x4, x5

x2, x3, x4x1, x2, x3

2x1 + x2

x4 + x5

x2 + x4

x1?, x2?, x3?
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Eavesdropper can only get value of x1 + x2, x2 + x4, and x4 + x5,
– cannot get value of the original packets x1, · · · , x4

– this solution is 1-weakly secure
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1

x3, x4, x5

x2, x3, x4x1, x2, x3

2x1 + x2

x4 + x5

x2 + x4

x1?, x2?, x3?
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Eavesdropper cannot obtain a combination of any two original packets
This solution is 2-weakly secure
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1

x3, x4, x5

x3 + x4 + x5

x2, x3, x4x1, x2, x3

2 x2 + 2x3 + x4x1 + x2 + x3

x1?, x2?, x3?
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3

2

1
p1, p2,
p5, p6 p5, p6

x x 0 0 x x
0 0 x x x x
x x x x 0 0

p3, p4,

p3, p4

p1, p2,

1

3

p1 p2 p3 p4 p5 p6

2
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When is it possible to complete the matrix so it will satisfy the MDS
condition?
– When it does not contain an all zero submatrix of size a × b, such

that a+ b ≥ OPT + 1

n

OPT

x x 0 0 x x
0 0 x x x x
x x x x 0 0

Fragouli, Soljanin, ’06
Halbawi, Ho, Yao, Duursma ’14
Dau, Song, Yuen ’14
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Our case: constraints on the code construction
– Due to the side information available at the clients
Random code works with high probability
– Hard to check since finding a minimum distance is an NP-hard

problem

n

OPT

x x 0 0 x x
0 0 x x x x
x x x x 0 0
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Can achieve the distance

n−OPT + 1

– with high probability at least 1−
( n
OPT

)
OPT
q

– requires field size
( q>n
OPT

)
OPT

n

OPT

x x 0 0 x x
0 0 x x x x
x x x x 0 0
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Use matrix completion
– Fill ith entry of the matrix with a value if GF (2i) ⊂ GF (2i−1)

– Determinant of any OPT × OPT matrix is guaranteed to be full
rank

n

OPT

x x 0 0 x x
0 0 x x x x
x x x x 0 0
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Can we use standard codes, e.g., Reed-Solomon
Then, perform a linear transformation to complete the matrix?
Generalized Reed-Solomon code

G =


1 1 . . . 1

α1 α2 . . . αn
... ... ... ...

αµ−1
1 αµ−1

2 . . . αµ−1
n

 .
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Can we use standard codes, e.g., Reed-Solomon
Then, perform a linear transformation to complete the matrix?

X X X X 0 0

X X 0 0 X X

0 0 X X X X

 =

t11 t12 t13

t21 t22 t23

t31 t32 t33

 1 1 1 1 1 1

α1 α2 α3 α4 α5 α6

α2
1 α2

2 α2
3 α2

4 α2
5 α2

6



Unfortunately, the transformation matrix is not guaranteed to be full-rank
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A negative example:

2
4

X X X X 0 0
X X 0 0 X X
0 0 X X X X

3
5 =

2
4

t11 t12 t13
t21 t22 t23
t31 t32 t33

3
5
2
4

1 1 1 1 1 1
↵1 ↵2 ↵3 ↵4 ↵5 ↵6

↵2
1 ↵2

2 ↵2
3 ↵2

4 ↵2
5 ↵2

6

3
5

α: primitive element of GF (8) with primitive polynomial x3 +x+ 1
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If the configuration matrix can be completed to MDS,
– i.e., it does not contain a zero submatrix of dimension a × b such

that a+ b ≥ OPT + 1

Then the determinant of T is not identically equal to zero

2
4

X X X X 0 0
X X 0 0 X X
0 0 X X X X

3
5 =

2
4

t11 t12 t13
t21 t22 t23
t31 t32 t33

3
5
2
4

1 1 1 1 1 1
↵1 ↵2 ↵3 ↵4 ↵5 ↵6

↵2
1 ↵2

2 ↵2
3 ↵2

4 ↵2
5 ↵2

6

3
5
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Let N1, . . . Nµ be subsets of [n] such that |Ni| = µ− 1

Define the collection of µ polynomials P1, . . . , Pµ in
F[α1, . . . α2][x]:

Pi =
∏

j∈Ni
(x− αj).

Question: Under what condition on the collection of sets {Ni}µi=1 the
polynomials {Pi}µi=1 are linearly dependent over the ring F[α1, . . . , αn]?
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tSecurity for Storage: Motivation

There are numerous service providers
Some of these cloud networks can be compromised
Any of the storage nodes in a compromised network can be eavesdropped

f1

f2

f3

f3

f4

f1

f2

f4

f1 + f2

f3 + f4

f1 + f2 + f4

f2 + f3 + f4

f1 + f2 + f3

f1 + f3 + f4
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tSecurity for Storage: Challenges

Storage system is a dynamic system with nodes continually failing and
being replaced
At a particular node location, eavesdropper can keep on observing the
data downloaded during multiple repairs
– Random coding is not helpful
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A special class of erasure codes that optimally trade-off storage space
for repair bandwidth
– (n, k)-MDS property: any k nodes are sufficient for data recon-

struction
– Minimize the repair bandwidth dβ

(n, k, d, ↵, �) -Regenerating Code

↵ ↵ ↵ ↵

�
�

�

d
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We focus on a special class of regenerating codes,
– Product-Matrix framework based Minimum Bandwidth Regenerating

(PM-MBR) Codes
Explicit codes, unlike random coding
Designed for exact regeneration
– Repaired node is an exact replica of the failed node
Construction for all values of (n, k, d)

– Efficient in terms of field size – Very practical!
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tProduct-Matrix (PM) Codes

PM code is obtained by taking a product of encoding matrixΨ and
message matrix M
– Both Ψ and M have have specific structures
– Choosing Ψ as a Vandermonde or a Cauchy matrix works

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 x2 x3 x4

x2 x5 x6 x7

x3

x4

x6

x7

x8 x9

x9

 (i,j)

 (1,2)  (1,3)  (1,4)

=
0

 (1,1)

M 
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x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 x2 x3 x4

x2 x5 x6 x7

x3

x4

x6

x7

x8 x9

x9

 (i,j)

 (1,2)  (1,3)  (1,4)

=
0

 (1,1)

H

 
x1

x2

x3

x4

x5

x6

x7

x8

x9

=

G X
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Can we utilize the elegant structure of Product Matrix codes to explicitly
design H that satisfies the condition above?

x1

x2

x3

x4

x5

x6

x7

x8

x9

=

G
XH
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How to design H that satisfies this condition?

rank

[
HG′
GE

]
= rank(HG′) + rank(GE),

where HG′ is any (g + 1)× B sub-matrix of H

x1

x2

x3

x4

x5

x6

x7

x8

x9

=

G
XH
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tOuter Code Design

How to design H that satisfies this condition?

rank

[
HG′
GE

]
= rank(HG′) + rank(GE),

where HG′ is any (g + 1)× B sub-matrix of H

26



Dr
af
tExplicit Outer Code Construction

Observation: generator matrix for any node e has the same structure

Ge =


Ψ(e, 1) Ψ(e, 2) Ψ(e, 3) Ψ(e, 4) 0 0 0 0 0

0 Ψ(e, 1) 0 0 Ψ(e, 2) Ψ(e, 3) Ψ(e, 4) 0 0

0 0 Ψ(e, 1) 0 0 Ψ(e, 2) 0 Ψ(e, 3) Ψ(e, 4)

0 0 0 Ψ(e, 1) 0 0 Ψ(e, 2) 0 Ψ(e, 3)



Notion of type
– A length-B encoding vector h(i) is of type i if it has form as the
i-th row of Ge

– Essentially, the type specifies the locations of the non-zero coefficients
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Design H such that each row belongs to one of the d types
It is sufficient to specify the number of rows of each type and the values
of the non-zero coefficients
Let θi denote the number of rows of type i that are present in H
– We call θi as the type cardinality of type i

θi =


0 if i = 1,

d− k + j if 2 ≤ i ≤ k − 1,

d− 1 if i = k,

1 if k + 1 ≤ i ≤ d.

28



Dr
af
tExplicit Outer Code Construction

Example : (n = 5, k = 3, d = 4) PM-MBR Code, B = 9, Bs = 7

H =



0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) Ψ̂(1, 3) Ψ̂(1, 4) 0 0

0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) Ψ̂(2, 3) Ψ̂(2, 4) 0 0

0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) Ψ̂(3, 3) Ψ̂(3, 4) 0 0

−− −− −− −− −− −− −− −− −−
0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3) Ψ̂(1, 4)

0 0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) 0 Ψ̂(2, 3) Ψ̂(2, 4)

0 0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) 0 Ψ̂(3, 3) Ψ̂(3, 4)

−− −− −− −− −− −− −− −− −−
0 0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3)


First three rows are of type 2
Next three rows are of type 3
Last row is of type 4
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Proposed outer code that results in a g-weakly secure code for
g = d+ k − 3

The secure storage capacity of the proposed construction isBs = B−2

– Improvement over uncoded security level of k − 1 guesses
– Roughly twofold enhancement in the security level
∗ Still far from maximum possible level of security
∗ gmax = B − d− 1 = O

(
k2
)

∗ Does not require an increase in the field size

30



Dr
af
tConclusions

– A promising way to provide reliability and security
– Light-weight alternatives to cryptographic primitives
– In many cases, reliability and security can be provided at no or little

additional cost
– Many exciting research problems
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