Internet search and metasearch

Ravi Kumar
IBM Almaden Research Center
ravi@almaden.ibm.com
http://www.almaden.ibm.com/cs/people/ravi
Overview

I: Internet search
II: More search
III: Metasearch and rank aggregation
I: Internet search
Roadmap

• Classic information retrieval
• IR and the web
• Search engines
• Ranking
• PageRank
• HITS/Clever
• Finding related pages
Goal

- How to search/query/mine the web?

The web

Billions of pages
Tens of billions of links
Constantly changing
Wealth of information
Classic information retrieval (IR)

Input: Set of documents

Goal: Given a query, retrieve documents that are 'relevant' to the query

Method
 – Preprocess the documents
 – Search at query-time
IR models

• Logical model
 – String matches, AND/OR/NOT

• Vector space model
 – Documents/query are vector of terms
 – i-th entry = function of i-th term occurrence in the document
 – Similarity measure between document and query
 – Order documents based on similarity to query

• Probabilistic models, …
What is different about the web?

- **Volume**
 - Few billion pages, few tens of billion links
- **Change**
 - 23%/day, dynamic pages
- **Decay**
 - Short half-life
- **Heterogeneity**
 - HTML pages, pdf/ps/word documents, images, language
What is different… (contd.)

• Duplication
 – Exact, near-duplication, semantic duplication

• Variable quality
 – NASA vs. XYZ’s description of space exploration

• Spam
 – Good source vs. malicious source (‘miserable failure’)

• Links
 – Malicious links, dead links, redirections, dead-ends
What is different... (contd.)

- **User behavior**
 - Poor queries, short, imprecise, badly formed, low effort
 - Focus on top few results

- **Expectation**
 - Instant response

- **Performance evaluation**
 - Is there an absolute truth?
The bright side

• **Structure**
 – Links/HTML
 – Redundancy
 – Enthusiastic and free-spirited content-creators and link-creators

• **Search experience**
 – Personalization
 – Interaction
Internet search engines

- General-purpose search engines
 - Google, MSN, Teoma, Alltheweb, …
- Directories/taxonomies (hand-built)
 - Yahoo!, OpenDirectory
- Special-purpose search engines
 - Travelocity, Orbitz, Addall
- Search by example
 - Related pages in Google, …
- Metasearch
 - Metacrawler
Components of a search engine

- **Crawler**
 - Gathers pages from the web
- **Indexer**
 - Stores the pages in a structured manner (index)
- **Query interface**
 - Serves queries by consulting the index
Algorithmic issues: Crawler

- Load balancing
- Prioritization
- Coverage
- Spam/porn filtering
- Avoid spider traps
- ...
Algorithmic issues: Indexer

- Storage representation
- Duplication elimination
- Template detection
- Query-independent ranking
- Classification/clustering
- …
Algorithmic issues: Query interface

- Query-dependent ranking
- Duplicate elimination
- Query refinement options
- Categorization/clustering
- Related links
- Ads! 😊 (‘Work at Google’)
Ranking

• Input: Web pages
• Goal: Given query, output answers in order of `relevance’ to the query
• Paradigms
 – Query-independent
 • Eg, last modified date, number of citations
 – Query-dependent
 • Eg, cosine similarity
 – Combined
Approaches to ranking

- **Text-based ranking**
 - Classical IR-style
 - Query-dependent

- **Link-based ranking**
 - Query-independent
 - PageRank [Brin Page 1998]
 - Query-dependent
 - HITS [Kleinberg 1998]
Link-analysis in hyperlinked corpus

Citation analysis of scholarly publications
(Bibliometrics)

- Impact factor
- Influence weights
Impact factor

- [Garfield 1972]
- Rank by indegree (per article over past two years)

- Limitations: Not all citations are equally born
- Important journals are ones cited by other important journals
Influence weights

- [Pinksi Narin 1976]
- Citation strength A_{ij} from journal i to journal $j = \text{fraction of citations in } i \text{ that go to } j$

- Influence weight of journal $j = \text{sum of influences of all journals citing } j \text{ scaled by citation strengths}$

$$w_j = \sum_i A_{ij} w_i$$

$$w = A^T w, \text{ the eigenvector of } A \text{ associated with eigenvalue } 1$$
Eigenvectors and link structures

- **Random walks**
 - Begin at a random node
 - At each step, move to a neighbor with indicated probability \((M_{ij}) \)
- **Theorem**: If the graph is strongly connected and not periodic, then there is a unique stationary distribution \(p \)
- \(M^T p = p \), \(p \) is eigenvector associated with eigenvalue 1
Hypertext IR principles

• Relevant linkage principle
 – p links to q ⇒ q is relevant to p

• Topical unity principle [Kessler 1963, Small 1973]
 – q₁ and q₂ are co-cited in p
 ⇒ q₁ and q₂ are related to each other

• Lexical affinity principle [Maarek et al. 1991]
 – Closer the links to q₁ and q₂ are, stronger the relation between them
Web as a directed graph

- Nodes = (static) web pages
- Directed edges = edge from p to q if page p has a hyperlink to page q
Query-independent ranking

- Page \(P \) pointing to page \(Q \) = endorsement of page \(Q \) by page \(P \)
- Quality of \(P \) = number of endorsements it receives = indegree of \(P \) in the web graph
- Quality of \(P \) depends on
 - Indegree of \(P \)
 - Quality of pages pointing to \(P \)
- A recursive definition!
PageRank [Brin Page 1998]

Random walk interpretation

- Walk starts at a uniformly chosen web page
- At each step, if currently at page P
 - $W/p \alpha$, go to a uniformly chosen web page
 - $W/p \ 1 - \alpha$, go to a uniformly chosen outneighbor of P
- $\text{PageRank}(P) = \text{fraction of steps random walk spends at } P \text{ in the limit}$
Mathematically speaking...

- $A =$ adjacency matrix of web graph
- $PR(u) = \alpha/n + (1 - \alpha) \sum_{v \mid (u, v) \in A} \frac{PR(v)}{\text{outdegree}(u)}$
- $M = \alpha U + (1 - \alpha) A$
- PageRank = stationary probability for this Markov chain

$\alpha = 0.15$
Google and PageRank

- Google is based on PageRank
- Query-independent phase
 - Ranks all pages according to PageRank
- Query-dependent phase
 - Return pages containing the query in order of PageRank
 - Further heuristics (title, anchortext, last update, …)
Variants: Topic-sensitive PageRank

[Haveliwala 2003]

- Captures notion of importance wrt given topic
- Instead of jump to a random page, jump to a page w/p proportional to its relevance to the topic
- $W/p \propto p_v$, jump to v, where $p_v =$ relevance of v to the topic
- Can precompute small set of relevant pages and set p_v to be uniform among these pages
Query-dependent ranking

- Page P pointing to page Q = P endorses Q
- But, two popular pages may not cite each other

Two-layer model: Hubs and authorities
- **Hubs**: Pages with pointers to lots of resources for a topic
- **Authorities**: Representative sources for a topic
- Identify the best hubs and authorities for a given topic
HITS [Kleinberg 1998]

- A page is
 - An authority if lots of pages point to it
 - A good authority if lots of pages that are good hubs point to it

- A page is
 - A hub if it points to lots of pages
 - A good hub if it points to lots of pages that are good authorities

A mutually reinforcing and recursive definition!
Mathematically speaking...

- Each page P has $h[P] = a[P] = 1$ initially
- Compute hub scores using authority scores
 \[h[P] = \sum_{Q
ightarrow P} a[Q] \]
- Compute authority scores using hub scores
 \[a[P] = \sum_{Q
ightarrow P} h[Q] \]
- Renormalize scores and repeat
- Output top few hubs and authorities
Mathematically… (contd.)

- \(a_{i+1}(Q) = \sum_{P \rightarrow Q} h_i(P) \), \(h_{i+1}(Q) = \sum_{Q \rightarrow P} a_i(P) \)
- \(a_{i+1} = A^T h_i \), \(h_{i+1} = A a_i \)
- \(a_{i+1} = (A^T A) a_i \), \(h_{i+1} = (A A^T) h_i \)

- Iteration converges to \(a^* \), \(h^* \)

- \(a^* \), \(h^* \) are eigenvectors of \(A A^T \), \(A^T A \)
- \(a^* \), \(h^* \) are left and right singular vectors of \(A \)
Clever [Chakrabarti Dom Gibson Kumar Raghavan Rajagopalan Tomkins 1999]

- Edges in the graph have weights
- Weight is a function of
 - Anchor text vs. query
 - +/- prefixes in the query
 - Source/destination of hyperlink
 - Stop sites
 - Useful sites
HITS/Clever: Implementation

- Apply keyword search to generate initial set of 200 pages
- Expand initial set into root set by following links
- Compute weights for edges
- Perform iterations
- Output top hubs and authorities

- Teoma is based on HITS

Root set

Initial set
User study

- Compare Clever to Altavista/Yahoo (1999)
- 26 query topics
- 10 pages from each source
- Blind test: 37 users, 1369 judgements
Some heuristics

- Two pages from same site contribute less to score
- **Hub functions:** Compute authority scores using per-link hub scores and recompute hub scores using per-page authority scores, but spread weight among neighboring links
- **Covering functions:** Output best set of hubs with less overlap among them
- **Limiting influence:** Weight edges to limit influence
- **Averaging:** Hub score = average of authority scores
 authority score = sum of hub scores that are > average
- **Pagelets**
Variants of HITS: SALSA

[Lempel Moran 2000]

Given a set of pages
- Out-step (O): Go to a uniform out-link
- In-step (I): Go to a uniform in-link

- **Authority scores = fixed point of O-I chain**
- **Hub scores = fixed point of I-O chain**
- **If \(v \) is in component \(V_v \) with \(E_v \) links**

\[
\alpha(v) = \frac{|V_v|}{|V|} \cdot \text{indegree}(v)/E_v
\]
PageRank vs. HITS/Clever

PageRank
- Query-independent
- Offline computation
- Large graph
- Additional query-time step
- Harder to spam

HITS/Clever
- Query-dependent
- Per-query computation
- Small graph
- Outputs both hubs and authorities
- Easier to spam
- Quality depends on seed
Computational issues

- Web graph is
 - Huge
 - Sparse (average outdegree is under 20)
 - Changing

- Power iterations
 - Few iterations usually enough
 - Convergence of order good enough
Other issues

• Exploit structure [Arasu Novak Tomkins Tomlin 2001]
 – Degree distribution
 – Connectivity properties

• Stability questions
 – Stability/locality [Borodín Robers Rosenthal Tsaparas 2001]
 – [Ng Zheng Jordan 2001]

• Ranking the frontier
 – Ranking partially crawled pages [Eiron McCurley Tomlin 2004]
Monotonicity of PageRank

How does adding a new edge affect PageRank?

Theorem [Chien Dwork Kumar Simon Sivakumar 2002]:
Adding a new link to page P can only
- Improve the PageRank value of P
- Improve the PageRank ordinal of P
Heuristic for incremental PageRank

- Locate the changed nodes
- Expand the seed set
- Recompute PageRank for expanded set
- Propagate values to the rest of the graph
Finding related pages

Input: One of more web pages
Goal: Find web pages that are related to input

Link-based algorithm [Dean Henzinger 1999]
 – Build a neighborhood graph around the input
 – Run HITS on the neighborhood graph
 – `Query-less’ mode
Building neighborhood graph

From p, go back, forward, back-forward, forward-back

Carefully limit the size of the graph
II: More search
Roadmap

• Duplicate detection
• Template elimination
• Link-based application: Focused crawling
• Link-based application: Trawling
• Link-based application: Web decay
• Search application: Intranet search
• Search application: WebFountain
Duplicate detection: Shingling

[Broder Glassman Manasse Zweig 1997]
Sketching/fingerprinting

D = domain of objects
f : D → R, a sketching function
 If f(a) ≠ f(b) then a ≠ b
 If a ≠ b then f(a) ≠ f(b) with high probability
 f(.) is easy and quick to compute

• Checking if two URLs are same
• Checking if two pages are near-duplicates
Why is this important?

• Page duplication
 – Mirrors (servers, documents/manuals)
 – Plagiarism
 – Minor modifications (email, last modified date, access counters, dynamic URLs)

• Expensive for crawling
• Expensive for indexing (memory, processing)
• 30% of web pages are duplicates
• Can be used to detect plagiarism
Shingle sets

Given a document $D = \{d_1, \ldots, d_n\}$, a k-shingle set S_D is the (multi)-set of k-grams

Eg, $D = \{\text{Welcome to my homepage} \ldots\}$, $k = 2$

$S_D = \{\{\text{Welcome to}\}, \{\text{to my}\}, \{\text{my homepage}\}, \ldots\}$

Intuition: If A and B are near-duplicates then shingle sets overlap a lot, ie, $|S_A \cap S_B|$ is large
Jaccard coefficient

- Measure of intersection between two sets

\[J(S_A, S_B) = \frac{|S_A \cap S_B|}{|S_A \cup S_B|} \]

- \(1 - J(S_A, S_B)\) is a metric [Charikar 2002]
- \(J(S_A, S_B)\) large if A and B are near-duplicates
Min-wise independent permutations

Method to quickly test if $J(S_A, S_B)$ is large

$S_A, S_B \subseteq U$

$\pi: U \rightarrow U$, a random permutation

$a' = \min \{ \pi(a) \mid a \in S_A \}$

$b' = \min \{ \pi(b) \mid b \in S_B \}$

Min-wise lemma: $\Pr_{\pi}[a' = b'] = J(S_A, S_B)$
Proof of min-wise lemma

\[c' = \min \{ \pi(c) \mid c \in S_A \cup S_B \} \]
\[a' = b' \iff c' \in S_A \cap S_B \]

Probability this happens
\[= \frac{|S_A \cap S_B|}{|S_A \cup S_B|} = J(S_A, S_B) \]
Shingling algorithm

• Shingle sketch of a document
 – Minimal elements under $\pi_1(S_A)$, $\pi_2(S_A)$, ...
 – Expectation preserved
 – Variance is reduced
 – Truly random permutation not needed
 2-universal hashes work fine!
Template elimination

[Bar-Yossef Rajagopalan 2002]
Recall: Hypertext IR principles

- Relevant linkage principle
 \(p \) links to \(q \) \(\Rightarrow \) \(q \) is relevant to \(p \)

- Topical unity principle
 \(q_1 \) and \(q_2 \) are co-cited in \(p \) \(\Rightarrow \) \(q_1 \) and \(q_2 \) are related to each other

- Lexical affinity principle
 Closer the links to \(q_1 \) and \(q_2 \) are the stronger the relation between them

Fact: All these principles are systematically and frequently violated!
Violations of lexical affinity principle

- Alphabetical index lists/hubs
- HTML representation

Adjacent cells in the same column are far from each other in the HTML text
Templates

Template – Master HTML shell page used for composing new pages
Templates are bad for Web IR

• Violate the hypertext IR principles
 – Relevant linkage principle
 – Topical unity principle
• Extremely common
 – Web authoring tools
 – Standard in website design

Fact: Template elimination is crucial for effective Web search
Pagelets
[Chakrabarti 2001]

Pagelet – a region in a page that:

- Has a single theme
- Not nested within a bigger region with the same theme

Use pagelets for template elimination
Issues with pagelets

• **How to divide a page into pagelets?**
 – Use HTML cues
 – Machine learning

• **May lose semantic information in pages**
 – Use pages and pagelets together

• **No natural link structure on pagelets**
 – Pagelets point to pages

• **Adapt algorithms to work with pagelets**
 – HITS/Clever/PageRank can work with pagelets
Template elimination

• Characterizing properties of templates
 – Common look and feel
 – Controlled by a single authority

• A template is a collection p_1, \ldots, p_k of pagelets satisfying
 – Similarity: p_1, \ldots, p_k are identical or almost identical
 – Proximity: p_1, \ldots, p_k belong to pages that are controlled by the same authority (eg, same website)

• Use shingling for similarity
Link-based application: Focused crawling

[Chakrabarti van den Berg Dom 1999]
Focused crawling

- Obtain pages within a specific topic
 - Web is huge
 - Full-scale crawling involves huge resources
 Disk space, bandwidth, crawling/processing time
 - Construct a focused portal (eg, bicycling)
 - Maintain high quality

Assumption: Relevant linkage principle, ie, p links to q ⇒ q is relevant to p
Naïve approach

- Fetch a page
- Check to see if it `belongs’ to a topic
- If so, retain
- If not, discard

Intuition: Visit and retain as many relevant pages and as few irrelevant pages as possible
Focused crawler: Construction

Crawler

Classifier

Visit priorities

Distiller

Relevance judgements

Seed
Seed set

- Given a topic, obtain example pages
 - Yahoo/OpenDirectory
 - Eg, if topic is bicycling, Yahoo! nodes could be bicyling, bicycle manufacturers, biking trails, ...
 - Topic is in a hierarchy

- Examples define topic, not the query
Distiller

• Identify hubs using HITS/Clever
• Use relevance of documents for weighting the edge
• Good hubs are crawled earlier
Link-based application: Trawling

[Kumar Raghavan Rajagopalan Tomkins 1999]
Communities on the web

• Where are the communities
 – Popular communities are listed
 • Yahoo!, OpenDirectory
 • Webrings, blogs (livejournal, xanga, orkut)
 • News groups, email lists
 – Subtler ones evolve/implicit

• Why study
 – Web sociology
 – Information organization
 – Marketing/commercial potential

• Thesis: Latent communities on the web outnumber the explicit ones by an order of magnitude
Link-based definition

- Communities = dense-bipartite subgraphs

- Why?
 - Insights from HITS
 - Links usually imply interest in a topic
 - Co-citation

Diagram showing a network of connections between entities like AT&T, MCI, Sprint, Alice, and Bob.
Communities from cores

- Finding communities not easy
- Core = small, complete bipartite subgraph

![Diagram of fans and centers]

- Fact: Every `large` enough `dense` bipartite graph `almost surely` has `small` core (eg, large = 3 x 10, dense = 50% edges, almost surely = 90% chance, small = 3 x 3)
Approach

• Preprocess the data

• Find all cores

• Expand cores into communities
Preprocessing

- Alexa crawl (1Tb data, 200M pages)
- Duplicate elimination
 - Syntactic (URL)
 - Content (Shingling)
- Popular page elimination
 - Don’t want too ‘popular’ communities
 - Popular community gives popular page
 - Popular page: indegree ≥ 50
- Potential fans = has > 5 non-nepotistic links
Finding cores

- Database solution
 Find all triples of pages such that intersection of their outlinks is at least 3? Too expensive
- Eigen computations? Voluminous

- Heuristics
 - Pruning (Simple, inclusion-exclusion)
Simple pruning

- Examine each page if it is a potential fan or center
- Repeat
- Reduces to a sequence of sorting operations
Inclusion-exclusion pruning

a is a (3,*)-core if and only if the intersection of inlinks of x, y, and z is at least 3

- Include or exclude each page
- With index, can do it in main memory!
- Without index, needs two passes (only index of edges out of fans with indegree ≥ 3)
Sample cores (out of 200K)

- Hotels in Costa Rica
- Clipart
- Japanese elementary schools
- Turkish student associations
- Oil spills off the coast of Japan
- Australian fire brigades
- Aviation/aircraft vendors
- Guitar manufacturers

Many of them were not present in 1999 Yahoo!
From cores to communities

- Use finding related-pages algorithm
 - Fans are exemplary hubs
 - Centers are exemplary authorities
 - Queryless operation

- Fossils can be recovered
Costa Rican hotels and travel

- The Costa Rica Inte...ion on arts, busi...
- Informatica Interna...rvices in Costa Rica
- Cocos Island Research Center
- Aero Costa Rica
- Hotel Tilawa - Home Page
- COSTA RICA BY INTER@MERICA
- tamarindo.com
- Costa Rica
- New Page 5
- The Costa Rica Internet Directory.
- Costa Rica, Zarpe Travel and Casa Maria
- Si Como No Resort Hotels & Villas
- Apartotel El Sestec... de San José, Cos...
- Spanish Abroad, Inc. Home Page
- Costa Rica's Pura V...ry - Reservation ...
- YELLOW\RESPALDO\HOTELES\Orquide1
- Costa Rica - Summary Profile
- COST RICA, MANUEL A...EPOS: VILLA
- Hotels and Travel in Costa Rica
- Nosara Hotels & Res...els &
- Restaurants...
- Costa Rica Travel, Tourism &
- Resorts
- Association Cívica de Nosara
- Untitled:
 http://www...ca/hotels/mimos.html
- Costa Rica, Healthy...t Pura Vida
- Domestic & International Airline
- HOTELES / HOTELS - COSTA RICA
- tourgems
- Hotel Tilawa - Links
- Costa Rica Hotels T...On line
- Reservations
- Yellow pages Costa ...Rica Export
- INFOHUB Costa Rica Travel Guide
- Hotel Parador, Manuel Antonio, Costa Rica
- Destinations
Japanese elementary schools

- The American School in Japan
- The Link Page
- Kids’ Space
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
- welcome to Miasa E&J school
- ****E%o1•s—$’â‘ŠZ,J/fy[/fW
- Untitled: http://www...iglobe.ne.jp/~IKESAN
- fukui haruyama-es Home Page
- Torisu primary school
- goo
- Yakumo Elementary,Hokkaido,Japan
- FUZOKU Home Page
- Kamishibun Elementary School...
- schools
- LINK Page-13
- “ú…ţ ŠZ
- 100 Schools Home Pages (English)
- K-12 from Japan 10...net and Education)
- Untitled: http://www...iglobe.ne.jp/~IKESAN
- oŠ…‘ ŠZ,
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Home page (Japanese)
- UNIVERSITY
- %o—ŠZ DRAGON97-TOPO
- %’ê⁄4Å© YáYÉYá’¼ YáYÉYá’¼
Link-based application: Web decay

[Bar-Yossef Broder Kumar Tomkins 2004]
The changing web

- Web changes everyday
 - Average half-life of a page is quite short (few days)
 - Web littered with dead links
 - Changes are not predictable
- How to define quality wrt the changes?
- How do we know a page is not up-to-date?
 - Last modified date
 - Topics are quite out-dated
 - Dead links!
Automatically detecting decay

• Dead links
 – Easiest, noisy
• Last modified date
 – Server provided, not reliable
• Dates in the text
 – Difficult, noisy
• Understanding the text
 – Futuristic

Conclusion: Decay is hard to detect automatically
Definition of decay

Random surfer model (like PageRank)

• If current page is dead, output 1 (dead state)
• If current page is alive
 – W/p α, output 0 (alive state)
 – W/p 1 - α, choose a random outlink of current page and recurse

Decay(P) = probability that a random surfer starting at page P ends up in a dead state
Interpretation

- P is dead \Rightarrow decay(P) = 1
- P is alive, no links \Rightarrow decay(P) = 0
- P is alive, all links dead, \Rightarrow decay(P) = 1 - α
- Decay(P) = fraction of dead pages reachable from P, exponentially weighted by distance
Computing and using decay

- Computing decay
 - Recursive computation on the web graph
 - Can be approximated by random walks

- Using decay
 - Ranking web pages
 - Crawling decisions
 - Web sociology/economics
 - Web graph models
Decay scores for Yahoo!

Decay scores of pages from 30 Yahoo! nodes
Search application: Intranet search

[Fagin Kumar McCurley Novak Sivakumar Tomlin Williamson 2003]
Intranet vs. internet

- Different structure
- Democratic vs. autocratic or bureaucratic
- Approval processes, censorship, etc.
- Personal and organizational incentives
- Few hubs, but ultimate authorities
 - Not obvious if link-based search is effective
- Little published research
Axioms about intranets

1. Intranet documents created for simple dissemination of information, rather than to attract and hold attention
2. Large portions are not search-friendly
3. Intranets are essentially free of deliberate spam
4. Many queries tend to have a small set of correct answers (often unique!) and these pages are not easily identified
Potential ranking factors

• Anchortext vs. content vs. titles & metadata
• Query terms in the URL
• Length of URL (shorter is better)
• Depth of URL (fewer slashes are better)
• Hyperlink indegree (more is better)
• Length of document (more is better)
• Order of crawling (earlier is better)
• PageRank
Combining rankings...

U

Content index
Title index
Anchortext index
PageRank
Indegree
Discovery date
Words in URL
URL length
URL depth
Discriminator

TFxIDF

Result

Aggregation
Intranet search: Lessons

- Intranet search different from Internet search
 - Queries different (heavy on jargons, acronyms, etc)
 - Notion of good answer different (context-sensitive, user-sensitive)
 - Social processes of content creation different
- Efficacy of anchortext and title-keyword indices
- Customization at various levels very useful
 - Intranet-specific, user-specific, and query-specific
- Rank aggregation valuable tool for intranet search
Search application: WebFountain

IBM Almaden Research Center
Data Sources

Content Acquisition
- Crawler
- Ingest
- CO Mining

Data Analysis
- **Store** - Holds billions of pages of content and mined information.
- **CO Miners** - Analysis performed on every page.
- **Index** - Provides fast lookup to page content and mined data.
- **Dynamic Re-Index**
- **Entity Re-mine**
- **Entity Remine** – Customers request tracking of key terms through the corpus

Applications
- **WF and our partners deliver hosted applications based on:**
 - Temporal databases
 - On-topic stores
 - Customer applications that execute against the cluster

Cross-page cluster
- Trend DB
- On-topic Stores

Data is gathered by a large-scale crawler and by a number of data feeds provided by partners.
- Feeds include syndicated content, bulletin boards, weblogs, netnews, and data from customers.
Layers of Mining

Domain Specific Applications

EXTENSION MINERS
- Trend Analysis
- Dossier Creation
- Buzz Analytics
- Content Augmentation
- Brand Attributes
- Complex Queries

CROSS-PAGE MINERS
- Classification
- Clustering
- Associations, Seq. Patterns
- Ranking (Clever)
- Similarity
- Relationships

PER-PAGE MINERS
- Text Analyzer
- Links
- Regex
- People, Place, Date, etc.
- Geo Spatial
- SPAM, Porn, Dups
- Extraction, Tables, Lists

Declarative API

Data acquisition
- Web
- Intranet
- DB

Data Store
- Raw Data
- Meta Data
- Indexes
- Mining Results
III: Metasearch
Roadmap

- Metasearch problem and rank aggregation
- Voting and social choice
- Kemeny optimal/approximate aggregation
- Algorithms/heuristics and results
- Median rank aggregation and implications
- Other approaches to metasearch
Metasearch

MySearchEngine

Google
Yahoo!
msn
alltheweb
WiseNut
TEOMA
Why metasearch?

• **Coverage:** Search engines don’t overlap much
• **Consensus ranking:** Get the best out of several ranking heuristics
• **Spam resistance:** Hard to fool many search engines
• **Query robustness:** Work for both broad-topic and specific queries
• **Feedback:** Reflects the effectiveness of a particular search engine
Combining ranking functions

Aggregate ranking

Links

Page title

Anchor text

URL

Last modified date

Text
Similarity search in databases

Given collection of \(n \) database elements (each is a \(d \)-tuple of attributes) and given at run-time a query element \(q \) (another \(d \)-tuple of attributes) find the database element that best matches \(q \)

Each of the \(d \) attributes is a voter

Database elements = candidates

Each voter ranks all candidates

Database elements ranked by voter \(i \), based on similarity to the query \(q \) in attribute \(i \)

Find top winners of this election by aggregation
Basic theme: Rank aggregation

Input: n candidates and k voters

 Preferential voting: Each voter gives a (partial) list of the candidates in order of preference

```
1 3     ...     10
3 19    ...     17
7 n     ...     1
...
n 10    ...
```

Goal: Produce a good consensus ordering of all n candidates

Deja vu: Voting/elections
Voting/elections

- Politics, jury decisions, pooling expert opinions, program committees, …
- More than balance subjective opinions
 Seek the truth
 Find the “best” candidate, second “best”, …
- What is “best”?
- Majority opinion represents (objectively) best?
CS vs SC

- Small number of voters
- Large number of candidates
- Algorithmic efficiency
- Input could be partial lists/top k lists
- Limited overlap among top results
- Output might have to be a ranking
Desiderata (CS)

- Simple algorithm
- Fast algorithm (near-linear time)
- Provable quality of solution
- If approximation, factor should be independent of number of candidates/voters
Borda’s proposal (1770)

Election by order of merit

First place is worth 1 point, second place is worth 2 points ...

Candidate’s score = Sum of points

Borda winner: Lowest scoring candidate

Eg, MVP in MLB
Condorcet’s proposal (1785)

Partition candidates into A, B

If for every $a \in A$ and $b \in B$, a majority ranks a ahead of then aggregation must place all elements in A ahead of all elements in B

Condorcet winner: A candidate who defeats every other candidate in pairwise majority-rule election

Marie J. A. N. Caritat, Marquis de Condorcet
Condorcet ≠ Borda

Borda scores: A \((1*6 + 3*4 = 18)\), B \((2*6 + 1*4 = 16)\), C \((3*6 + 2*4 = 26)\)

B is the Borda winner

Condorcet criterion: A beat both B and C in pair-wise majority

A is the Condorcet winner
Condorcet paradox

A B C
B C A
C A B

Condorcet winner may not exist!

Black (1950s): Choose Condorcet winner; if none, choose Borda winner
Copeland (1951): Choose candidate with highest outdegree – indegree in the majority graph
Many other voting schemes

- **Plurality vote**
 - Candidate with most # first positions is winner

- **Instant runoff vote**
 - President of Ireland, Australian parliament, many US university student elections

- **Single-transferable vote**
 - Malta, Republic of Ireland, Australian Senate

- ...
Arrow’s theorem (1951)

The following are irreconcilable

• Every result must be achievable somehow
• Monotonicity: Ranking higher should not hurt a candidate
• Independence of irrelevant attributes: Changes in rankings of “irrelevant alternatives” should have no impact on ranking of “relevant” subset
• Non-dictatorship

Conclusion: ⌈ satisfactory rank aggregation function
Borda vs. Condorcet debate

- **Borda**
 - Score-based
 - Consistent: two separate set of voters yield same ranking \Rightarrow their union yields same ranking
 - Any score-based method not Condorcet

- **Condorcet**
 - Majority-based
 - Meet Arrow’s criteria where “independence of irrelevant attributes” criterion is modified
 - Winner may not exist
Kemeny’s proposal (1959)

Axiomatic approach

- “Distance” between two preference orderings
 \[\text{Distance} = \text{number of pair-wise disagreements} \]
- Obtain ordering that is “least-distant” from the individual orderings

Theorem [Young Levenglick 1988]: Kemeny’s rule is the unique preference function that is neutral, consistent, and Condorcet

- Reconciles Borda and Condorcet
- Satisfies additional properties (Pareto, anonymity)
- Maximum likelihood interpretation: [Young 1988]
Metrics on permutations

- Domain: \([n] = \{1, 2, \ldots, n\}\)
- \(\sigma \in S_n\)
- \(\sigma(i) < \sigma(j)\) means that “\(\sigma\) ranks \(i\) above \(j\)”

Kendall \(\tau\) distance

Spearman’s footrule distance
Kendall τ distance

$K(\sigma, \tau) = \text{Number of pairs } (i, j) \text{ such that } \sigma \text{ ranks } (i, j) \text{ in one order and } \tau \text{ ranks them in the opposite order}$

- Bubble-sort distance
- K is a metric
- K is right invariant: $K(\sigma, \tau) = K(\sigma \tau^{-1}, 1)$
- Eg

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>number of disagreements: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

(AB, AD, CD)
Spearman’s footrule distance

\[F(\sigma, \tau) = \sum_{i = 1, n} |\sigma(i) - \tau(i)| \]

- \(F \) is a metric (L₁ norm)
- \(F \) is right invariant: \(F(\sigma, \tau) = F(\sigma \tau^{-1}, 1) \)
- \(\text{Eg.,} \)

\[
\begin{array}{cc}
A & B \\
B & D \\
C & A \\
D & C \\
\end{array}
\]

shift(A) = 2 shift(B) = 1, etc., so

footrule distance: 6
There are several others, but...

Many of the other metrics are computationally expensive (some NP-hard, some not known to be polynomial-time computable, etc.)

[Diaconis; Group Representation in Probability and Statistics]

Also these two are perhaps the most natural for many applications
Diaconis--Graham inequality

\[K(\sigma, \tau) \leq F(\sigma, \tau) \leq 2 \, K(\sigma, \tau) \]

This inequality is essentially tight
\[F(\sigma) \leq 2 \, K(\sigma) \]

\[
F(\sigma) = \sum_i |\sigma(i) - i| \\
= \sum_i \left| \sum_j [\sigma(i) > \sigma(j)] - [i > j] \right| \\
\leq \sum_i \sum_j |[\sigma(i) > \sigma(j)] - [i > j]| \\
= \sum_{i,j} [\sigma(i) > \sigma(j), i < j] \\
= 2 \, K(\sigma)
\]
\[K(\sigma) \leq F(\sigma) \]

- \([i: j] = \text{inversion } i < j, \sigma(i) > \sigma(j)\]
 - Type 1 inversion: if \(\sigma(i) \geq j \Rightarrow i < j \leq \sigma(i)\)
 \[\Rightarrow \forall i, \#\{ j \mid [i; j] \text{ is type 1 inversion} \} \leq \sigma(i) - i \]
 - Type 2 inversion: if \(\sigma(i) \leq j \Rightarrow \sigma(j) < \sigma(i) \leq j\)
 \[\Rightarrow \forall j, \#\{ i \mid [i; j] \text{ is type 1 inversion} \} \leq j - \sigma(j) \]

- Every inversion is type 1, or type 2, or both

\[K(\sigma) \leq \text{type 1 inversion + type 2 inversion} \]
\[\leq \sum_{i \mid \sigma(i) > i} (\sigma(i) - i) + \sum_{j \mid j > \sigma(j)} (j - \sigma(j)) \]
\[\leq F(\sigma) \]
Optimal rank aggregation

Given metric $d(\cdot, \cdot)$ and input permutations $\sigma_1, \ldots, \sigma_k$, find permutation π^* such that

$$\sum_{i=1}^{k} d(\sigma_i, \pi^*)$$

is minimized

Kemeny (Kendall) optimal aggregation: $d = K$

Spearman footrule optimal aggregation: $d = F$
Kemeny optimal aggregation

Theorem [Bartholdi Tovey Trick 1989]: Kemeny optimal aggregation is NP-hard

Theorem [DKNS]: Kemeny optimal aggregation is NP-hard even for 4 lists

– Reduction using feedback edge set
c-approximate aggregation

Given metric \(d(\cdot, \cdot) \) and input permutations \(\sigma_1, \ldots, \sigma_k \), find permutation \(\pi \) such that

\[
\sum_{i=1}^{k} d(\sigma_i, \pi) \leq c \cdot \sum_{i=1}^{k} d(\sigma_i, \pi^*)
\]
Trivial approximation

Theorem: $2(1 - 1/k)$-approximation can be computed easily

Proof: K, F are metrics and simple geometry

$\pi^* = \text{Optimal aggregation wrt. } d(\cdot, \cdot)$

$i^* = \arg \min_i \sum_j d(\sigma_i, \sigma_j)$

$\sum_j d(\sigma_j, \sigma_{i^*}) \leq (1/k) \sum_{j, j'} d(\sigma_j, \sigma_{j'})$

$\leq (1/k) \sum_{j, j'} (d(\sigma_j, \pi^*) + d(\pi^*, \sigma_{j'}))$

$\leq 2 \sum_j d(\sigma_j, \pi^*)$
Footrule optimal aggregation

Theorem [DKNS]: F-optimal aggregation can be computed in polynomial time

Proof: Via minimum cost perfect matching

\[
\sum_{i = 1, k} |\sigma_i(a) - p|\]
2-approximation to K-optimum

Use Diaconis--Graham inequality

$\pi = $ Footrule optimal aggregation

$\pi^* = $ Kendall-optimal aggregation

\[
\sum_i K(\sigma_i, \pi) \leq \sum_i F(\sigma_i, \pi) \\
\leq \sum_i F(\sigma_i, \pi^*) \\
\leq 2 \sum_i K(\sigma_i, \pi^*)
\]

Open question: Better factor approximations for Kemeny optimum? Hardness?
Heuristics: Markov chains

- States = candidates
- Transitions = function of preference orders
 Probabilistically switch to a better candidate
- Final ranking = order of stationary probabilities
Advantages of Markov chains

- Handling partial lists and top k lists using available information to infer new ones
- Handling uneven comparisons and list lengths
- Motivation from PageRank---more wins better, more wins against good players even better
- With $O(nk)$ preprocessing, $O(k)$ per step for about $O(n)$ steps
Sample Markov chains

If current state is candidate P, next state is:

• **MC1:** Choose uniformly from the multiset of all candidates that were ranked higher than or equal to P by some voter that ranked P

...

• **MC4:** Choose uniformly a candidate Q from all candidates and switch if the majority preferred Q to P
Metasearch results

- Using top 100 from AV, AW, EX, GG, HB, LY, NL
- Queries: affirmative action, alcoholism, ...

<table>
<thead>
<tr>
<th></th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borda</td>
<td>0.214</td>
<td>0.345</td>
</tr>
<tr>
<td>Footrule</td>
<td>0.111</td>
<td>0.167</td>
</tr>
<tr>
<td>MC1</td>
<td>0.130</td>
<td>0.213</td>
</tr>
<tr>
<td>MC2</td>
<td>0.128</td>
<td>0.210</td>
</tr>
<tr>
<td>MC3</td>
<td>0.114</td>
<td>0.183</td>
</tr>
<tr>
<td>MC4</td>
<td>0.104</td>
<td>0.149</td>
</tr>
</tbody>
</table>
Heuristics: Median

Theorem [DKNS]: If the median ranks of the candidates are unique (ie, form a permutation), then this permutation is a footrule optimal aggregation.

What about using the median itself for ranking, even if it is not unique?
Median rank aggregation

Given \(\sigma_1, \ldots, \sigma_k \),

\[\mu'(i) = \text{median} \ (\sigma_1(i), \ldots, \sigma_k(i)) \]

Order \(\mu' \) to obtain a permutation \(\mu \)

Eg,

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

\(\mu'(A) = 3, \ \mu'(B) = 2, \ \mu'(C) = 3, \ \mu'(D) = 2 \)

\(\mu = B \ D \ A \ C \)
Median is a good approximation

Theorem $[^{FKMSV}]$: Median rank aggregation is a 3-approximation to footrule optimal aggregation

Median ranking is used in Olympic figure skating

Open question: Is the constant 3 tight?
Consistent permutations

Given $\sigma' = \sigma'_1, \ldots, \sigma'_n$ where $\sigma'_i \in R$, call a
permutation $\sigma \in S_n$ to be consistent with σ' if
$$\sigma'_i < \sigma'_j \Rightarrow \sigma(i) < \sigma(j)$$

Consistency lemma: If σ is consistent with σ', then
for any other permutation τ, $F(\sigma, \sigma') \leq F(\tau, \sigma')$
Proof of consistency lemma

Fact: \(a' \leq b'\) and \(a < b\) \(\Rightarrow\)
\[
|a - a'| + |b - b'| \leq |a - b'| + |a' - b|
\]

If \(\tau \neq \sigma\), apply this fact repeatedly to differing pairs until \(\tau\) becomes \(\sigma\)
Each time \(F(\tau, \sigma')\) can only improve
Median lemma

Fact: Given x_1, \ldots, x_n where $x_i \in \mathbb{R}$,

\[
\text{median}(x_1, \ldots, x_n) = \arg \min_y \sum_i |x_i - y|
\]

Median lemma: Given permutations $\sigma_1, \ldots, \sigma_k$, let μ' denote their median function. Then, for any permutation τ,

\[
\sum_i F(\mu', \sigma_i) \leq \sum_i F(\tau, \sigma_i)
\]
Proof of median theorem

Let τ be any permutation

$$\sum_i F(\mu, \sigma_i) \leq \sum_i F(\mu, \mu') + \sum_i F(\mu', \sigma_i) \quad \text{(triangle)}$$

$$\leq \sum_i F(\tau, \mu') + \sum_i F(\mu', \sigma_i) \quad \text{(consistency)}$$

$$\leq \sum_i F(\tau, \sigma_i) + 2 \sum_i F(\mu', \sigma_i) \quad \text{(triangle)}$$

$$\leq \sum_i F(\tau, \sigma_i) + 2 \sum_i F(\tau, \sigma_i) \quad \text{(median)}$$

$$= 3 \sum_i F(\tau, \sigma_i)$$
Merits of median

- Simple to implement
- Admits instance optimal algorithms: among all algorithms that do sequential and random access to pre-sorted preference orders, the run-time of this median-finding algorithm is optimal up to a factor of 2
- Provably good method for nearest-neighbor applications
Borda rank aggregation

Given \(\sigma_1, \ldots, \sigma_k \),

\[
\beta'(i) = \sigma_1(i) + \cdots + \sigma_k(i)
\]

Order \(\beta' \) to obtain a permutation \(\beta \)

Eg,

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

\(\beta'(A) = 8, \beta'(B) = 6, \beta'(C) = 8, \beta'(D) = 8 \)

\(\beta = B A C D \)
Borda is a good approximation

Theorem [FKMSV]: Borda rank aggregation is a 5-approximation to footrule optimal aggregation

Borda lemma: \[\sum_i F(\beta', \sigma_i) \leq 2 \sum_i F(\mu', \sigma_i) \]
Prove this point-wise for every \(j \) in the domain

Open question: Aggregating wrt other metrics on permutations (eg, Borda is near-optimal wrt Spearman’s rho)
Copeland rank aggregation

Given $\sigma_1, \ldots, \sigma_k$,

$$\Gamma(i, j) = \text{majority}\ \{\sigma_1(i) \text{ vs } \sigma_1(j), \ \sigma_k(i) \text{ vs. } \sigma_k(j)\}$$

$$\gamma'(i) = \sum_i \Gamma(i, j) - \sum_j \Gamma(j, i)$$

Order γ' to obtain a permutation γ

Eg,

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

$\gamma'(A) = -1, \ \gamma'(B) = 3, \ \gamma'(C) = -1, \ \gamma'(D) = -1$

$\gamma = B \ A \ C \ D$
Copeland is a good approximation

Theorem [FKMSV]: Copeland rank aggregation is a 6-approximation to Kendall optimal aggregation

Proof: As before, but using K instead of F
Plurality method

Given $\sigma_1, \ldots, \sigma_k$,

$$\pi'(i) = \langle \ldots, \# j\text{-th place votes, }\ldots \rangle$$

Lexicographically order π' to obtain a permutation π

Eg,

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\pi'(A) = \langle 1 \ 0 \ 1 \ 1 \rangle$, $\pi'(B) = \langle 1 \ 1 \ 1 \ 0 \rangle$,

$\pi'(C) = \langle 1 \ 0 \ 1 \ 1 \rangle$, $\pi'(D) = \langle 0 \ 2 \ 0 \ 1 \rangle$

$\pi = B \ A \ C \ D$
Plurality is not a good approximation

Theorem [FKMSV]: Plurality rank aggregation is not a good to approximation to Kendall optimal aggregation

Proof: n candidates, k voters, $n \gg k$

1 1 2 3 4 ... k-1 $\pi = 1 2 \ldots n$
2 2 3 2 2 ... 2 $\sum_i F(\pi, \sigma_i) \geq (k-2)(n-1)$
3 3 4 4 3 ... 3 $\beta = 2 3 \ldots n 1$

$\sum_i F(\beta, \sigma_i) \leq k^3 + n$

n n 1 1 1 ... 1 $n \uparrow \Rightarrow \text{Ratio} = \Omega(k)$
More rank aggregation applications

- Comparing search engine quality [DKNS, FKS]
- Spam reduction [DKNS]
- Intranet search [FKMNSTW]
- Similarity search [FKS]
- Multiple-criteria selection (eg, travel, restaurant)
- Word association techniques (AND queries) [DKNS]
Other approaches to Metasearch

• **Support vector machines** [Joachims 2002]

• **Learning** [Cohen Schapire Singer 1999]
 – Hedge algorithm—iterative weight update

• **Condorcet fusion** [Montague Aslam 2002]
 – Finding Hamiltonian paths in Condorcet graphs

• **Bayesian** [Aslam Montague 2001]