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The DIMACS Workshop on Software Security was held at the DIMACS Center on January 6 - 7, 2003. It
was organized by Gary E. McGraw (Cigital, Chair), Edward W. Felten (Princeton University), Virgil D.
Gligor (University of Maryland), and David Wagner (UC Berkeley).

The security of computer systems and networks has become increasingly limited by the quality and
security of the software running on these machines. Researchers have estimated that more than half of all
vulnerabilities are due to buffer overruns, an embarrassingly elementary class of bugs. All too often
systems are hacked by exploiting software bugs. In short, a central and critical aspect of the security
problem is a software problem. How can we deal with this?

The Software Security Workshop explored these issues. The scope of the workshop included security
engineering, architecture and implementation risks, security analysis, mobile and malicious code,
education and training, and open research issues. In recent years many promising techniques have arisen
from connections between computer security, programming languages, and software engineering, and one
goal was to bring these communities closer together and crystalize the subfield of software security.

A summary report, scheduled to appear in IEEE S&P issue, is Appendix 1. Appendix 2 provides a list of
participants, Appendix 3 a program, Appendix 4 links to workshop presentations that are on the web, and
Appendix 5 a booklet of talk abstracts. Further information can be found at the workshop website:
http://dimacs.rutgers.edu/Workshops/Software/.
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Worse, more complex problems
such as race conditions and subtle
design errors wait in the wings for
the buffer overflow’s demise. Soft-
ware security problems will be with
us for years, and hackers will con-
tinue to exploit systems via software
defects. Clearly, a central and critical
aspect of the computer security
problem resides in software.

Software security—the idea of
engineering software that continues
to function correctly under mali-
cious attack—is not new, but it is re-
ceiving renewed interest as reactive
network-based security approaches
such as firewalls prove to be ineffec-
tive. Unfortunately, today’s software
is riddled with both design flaws and
implementation bugs, which result
in unacceptable security risks.

As security researcher Steve
Bellovin puts it, “any program, no
matter how innocuous it seems, can
harbor security holes.” This notion is
common knowledge, and yet devel-
opers, architects, and computer sci-
entists only recently began systemat-
ically to study how to build secure
software. In fact, the first books on
software security and security engi-
neering were published in 2001,2–4

and a body of literature on the sub-
ject has just begun to emerge. (See

Further reading sidebar.) 
The DIMACS Software Security

Workshop held in New Jersey this
January (http://dimacs.rutgers.edu/
Workshops/Software) explored is-
sues such as security engineering, ar-
chitecture and implementation risks,
security analysis, mobile and mali-
cious code, education and training,
and open research issues. Many
promising techniques have grown
from connections between com-
puter security, programming lan-
guages, and software engineering,
and one workshop goal was to bring
these communities closer together to
crystallize the software security sub-
field. I report the workshop’s results
in this article.

A new security 
paradigm
Internet-enabled software applica-
tions—especially custom applica-
tions—present the most common
security risks we encounter today
and are the targets of choice for mali-
cious hackers. Software security is
about understanding software-in-
duced security risks and how to
manage them. Good software secu-
rity practice leverages good software
engineering practices: thinking
about security early in the software’s

life cycle, knowing and understand-
ing common threats (including lan-
guage-based flaws and pitfalls), de-
signing for security, and subjecting
all software artifacts to thorough ob-
jective risk analyses and testing. 

By any measure, security holes
in software are common, and the
problem is growing. Figure 1 shows
the number of security-related soft-
ware vulnerabilities reported to
CERT/CC over the past several
years. The evidence points to a clear
and pressing need for a disciplined
approach to software security. 

Before we continue, I need to es-
tablish some definitions. The “Soft-
ware security definition” sidebar de-
fines four of the most important
terms we use when we discuss soft-
ware security. I included them to re-
inforce the areas that each covers.

The Trinity 
of Trouble
Most modern computing systems
are susceptible to software security
problems. So, why is software secu-
rity a bigger problem now than in
the past? Three trends—a trinity of
trouble—have heavily influenced the
problem’s growth and evolution.
(Interestingly, these three general
trends also are responsible for the rise
in malicious code.5)

Reliance 
on networked devices
First, growing Internet computer
connectivity has increased attack-
vector numbers and made it easier
for hackers to launch attacks. This
puts software at greater risk. We are
connecting ever more computers,
ranging from home PCs to systems
that control critical infrastructures
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(for example, the power grid), to en-
terprise networks and to the Inter-
net. Furthermore, people, busi-
nesses, and governments
increasingly depend on network-en-
abled communication such as email
or Web pages provided by informa-
tion systems. Things that used to
happen offline now happen online.

Unfortunately, as these systems
connect to the Internet, they be-
come vulnerable to software-based
attacks from distant sources. Attack-
ers no longer need physical access to
systems to exploit vulnerable soft-
ware and shut down banking ser-
vices and airlines (as shown by Janu-
ary’s SQL Slammer worm).

Because access through a net-
work does not require human inter-
vention, launching automated at-
tacks is relatively easy. The ubiquity
of networking means more software
systems to attack, more attacks, and
greater risks from poor software se-
curity practice than in the past. 

Easily extensible systems
A second trend negatively affecting
software security is how extensible
systems are. Extensible systems ac-
cept updates or extensions—some-
times referred to as mobile code—to
evolve system functionality incre-
mentally.6 The plug-in architecture
of Web browsers, for example,
makes it easy to install viewer exten-
sions for new document types as
needed. Today’s operating systems
support extensibility through dy-
namically loadable device drivers
and modules, and applications such
as word-processors, email clients,
spreadsheets, and Web browsers sup-
port extensibility through scripting,
controls, components, and applets.

From an economic standpoint, ex-
tensible systems are attractive because
they provide flexible interfaces that
can be adapted through new compo-
nents. In today’s marketplace, vendors
must deploy software as rapidly as pos-
sible to gain market share. Yet the mar-
ketplace also demands that applica-
tions provide new features with each

release. An extensible architecture
makes it easy to satisfy both demands
by letting the base application code
ship early and then shipping feature
extensions later, as needed. 

Unfortunately, the very nature of
extensible systems makes it hard to
prevent software vulnerabilities from
slipping in as unwanted extensions.
Advanced languages and platforms
including Sun Microsystem’s Java and
Microsoft’s .NET Framework are
making extensibility commonplace.

Increasingly 
complex systems
A third trend is the unbridled growth
of modern information systems’ size
and complexities, especially software
systems. A desktop system running
Windows/XP and associated applica-
tions depends on the proper function-
ing of the kernel as well as the applica-
tions to ensure that vulnerabilities
won’t compromise the system. How-
ever, XP consists of at least 40 million
lines of code, and end-user applica-
tions are becoming at least as complex.

When systems become this large,
bugs cannot be avoided. Figure 2
shows how Windows’ complexity
(measured in lines of code) has
grown over the years. The point of

the graph is to emphasize the growth
rate rather than the numbers. Note
that the flaw rate tends to progress as
the square of code size. Other factors
that deeply affect complexity in-
clude whether the code is tightly in-
tegrated, the overlay of patches and
other post-deployment fixes, and
critical architectural issues.

The complexity problem is exac-
erbated by the use of unsafe pro-
gramming languages such as C or
C++, which do not protect against
simple kinds of attacks, such as buffer
overflows. In theory, we should be
able to analyze and prove that a small
program has no problems, but this
task is impossible for even the sim-
plest desktop systems, much less the
enterprise-wide systems used by
businesses or governments.

Proactive Security
Software security follows naturally
from software engineering, pro-
gramming languages, and security
engineering. It fortifies computer
security by identifying and expung-
ing problems in the software itself by
building software that proactively re-
sists attack. 

For decades, computer security
literature has discussed some aspects
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Figure 1: Security-related software vulnerabilities reported to
CERT/CC over several years. This figure shows that the problem is
growing, however, we don’t know the exact reasons for this
growth (for example, more defective code, better hacking, more
code, and so on).
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of software security but only recently
has software security been recog-
nized as a clearly defined subdisci-
pline. It’s still in its infancy. 

Architecture versus
implementation
Though Figure 1 shows that software
vulnerability is growing, scientists
have done little work to classify and
categorize software security problems.

Security vulnerabilities in soft-
ware systems range from local imple-
mentation errors (for example, use of
the gets() function call in C and
C++), through interprocedural in-
terface errors (for example, a race
condition between an access control
check and a file operation), to much
higher design-level mistakes (such as
error-handling and recovery systems
that fail insecurely or object-sharing
systems that mistakenly include tran-
sitive trust issues).

These vulnerabilities define a
large range based on how much pro-
gram code we must consider to un-
derstand the vulnerability, how much
detail regarding the execution envi-
ronment we must know to under-
stand the vulnerability, and whether a
design-level description is best for

determining whether a given vulner-
ability is present. For example, we
can determine that a call to gets()
in a C and C++ program can be ex-
ploited in a buffer overflow attack
without knowing anything about the
rest of the code, its design, or the exe-
cution environment other than as-
suming that the user entering text on
standard input might be malicious.
Hence, we can detect a gets() vul-
nerability with good precision using
a simple lexical analysis.

Mid-range vulnerabilities involve
interactions among more than one
code point. For example, precisely
detecting race conditions depends on
more than just analyzing an isolated
line of code—it could depend on
knowing about the behavior of sev-
eral functions, understanding sharing
among global variables, and knowl-
edge of the operating system provid-
ing the execution environment.

Design-level vulnerabilities ex-
tend this trend further. Ascertaining
whether a program has design-level
vulnerabilities requires great exper-
tise, which makes design-level flaw
identification hard to do and partic-
ularly difficult to automate. Unfor-
tunately, design-level problems ap-

pear to be prevalent and are at the
very least a critical category of secu-
rity risk in code. During the work-
shop, Microsoft reported that over
50 percent of the problems it en-
countered during its security push
were architectural in nature.

As an example, let’s consider an
error-handling and recovery system.
Failure recovery is an essential aspect
of security engineering, but it is
complicated because it interacts with
failure models, redundant design,
and defense against denial of service.
Understanding whether an error-
handling and recovery system in an
object-oriented program is secure
involves ascertaining a global prop-
erty spread throughout many classes
in typical design. Error-detection
code usually is included in each ob-
ject and method, and error-handling
code usually is separate and distinct
from the detection code. Sometimes
exceptions propagate up to the sys-
tem level and the machine running
the code handles them (for example,
Java 2 VM exception handling),
which makes determining whether a
given error-handling and recovery
design is secure quite difficult. This
problem is exacerbated in transac-
tion-based systems commonly used
in e-commerce solutions where
functionality is distributed among
many different components running
on several servers.

Other examples of design-level
problems include object-sharing and
trust issues, unprotected data chan-
nels (both internal and external), in-
correct or missing access control
mechanisms, lack of auditing/log-
ging or incorrect logging; ordering
and timing errors (especially in mul-
tithreaded systems), and many oth-
ers. To make forward progress as a
scientific discipline, software secu-
rity must rigorously understand and
categorize problems like these.

Building secure software is like
building a house. We liken correct
low-level coding (such as checking
array references) to using refractory
bricks instead of bricks made of saw-
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dust. The kinds of bricks that we use
are important to the house’s in-
tegrity, but even more important (if
the goal is to keep bad things out) is
having four walls and a roof in the
design. The same thing goes for soft-
ware: what system calls are used and
how they are used is important, but
overall design properties often count
for more. In general, software secu-
rity research has paid much more at-
tention to bricks than to walls.

Software security 
areas of interest
Practitioners and scientists focus on
the following areas of interest in soft-
ware security:

• Reconciling security goals and soft-
ware goals, software quality man-
agement in commercial practice

• Security requirements engineering
• Design for security, software archi-

tecture, and architectural analysis
• Security analysis, security testing,

and the use of the Common Criteria
• Guiding principles for software se-

curity, case studies in design and
analysis, and pedagogical ap-
proaches to teaching security ar-
chitecture

• Software security education; edu-
cating students and commercial
developers

• Auditing software; implementa-
tion risks, architectural risks, auto-
mated tools, and technology devel-
opments (such as code scanning,
information flow, and so on)

• Common implementation risks:
buffer overflows, race conditions,
randomness, authentication sys-
tems, access control, applied cryp-
tography, and trust management

• Application security; protecting
code post production

• Survivability and penetration resis-

tance, type safety, and dynamic
policy enforcement

• Denial-of-service protection for
concurrent software

• Penetrate and patch as an approach
to securing software

• Code obfuscation and digital con-
tent protection

• Malicious code detection and
analysis

Much work remains to be done in
each of these areas, but some basic
practical solutions are becoming
available in the market. Examples in-
clude using simple code-scanning
tools during implementation review
and reactive “application firewalls.”

Best practices and
the state of the art
As practitioners become aware of
software security’s importance, they
adopt and evolve a set of best prac-
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The reintroduction of basic terminology with a security

emphasis can help clarify things when trying to categorize

problems. I propose the following usage:

• Defects. Implementation and design vulnerabilities are defects. A

defect is a problem that may lie dormant in software for years and

then surface in a fielded system with major consequence.

• Bug. A bug is an implementation-level software problem. Bugs

might exist in code but never execute. Though many software prac-

titioners apply the term “bug” quite generally, I reserve use of the

term to encompass fairly simple implementation flaws. Bugs easily

can be discovered and remedied. Researchers have made significant

progress in detecting security vulnerabilities stemming from low-

level and mid-level implementation bugs. Tools include FIST,1

ITS4,2 Jscan,3 Splint,4 Metal,5 and PreFix/PreFast.6 These tools de-

tect a wide range of low-level implementation bugs including buffer

overflow vulnerabilities, format string bugs, resource leaks, and sim-

ple race conditions, all of which depend on only limited code analy-

sis and knowledge of the external environment. 

• Flaw. A flaw is a problem at a deeper level. Often flaws are much

more subtle than simply an off-by-one error in an array reference or

use of an incorrect system call. A flaw certainly is instantiated in soft-

ware code, but is also present (or absent!) at the design level. For ex-

ample, a number of classic flaws exist in error-handling and recov-

ery systems that fail in an insecure or inefficient fashion. Automated

technologies to detect design-level flaws do not yet exist.

• Risk. Flaws and bugs lead to risk. Risks are not failures. Risks capture

the probability that a flaw or a bug will impact the purpose of the

software. Risk measures also take into account the potential damage

that can occur. A very high risk is not only likely to happen, but also

likely to cause great harm. Risks can be managed by technical and

non-technical means.
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tices to address the problem. Com-
mon approaches in practice today
encompass training for developers,
testers, and architects; analysis and
auditing of software artifacts; and
security engineering. Later we’ll
see that Microsoft has carried out
one noteworthy effort under the
rubric of the Trustworthy Comput-
ing Initiative. 

Training and education
Software security problem awareness
is growing among researchers and se-
curity practitioners. However, the
most important audience has in some
sense experienced the least exposure.
For the most part, software architects,
developers, and testers remain
blithely unaware of the problem.
One form of best practice involves
training software development staff
on critical software security issues.

The most effective form of train-
ing begins with a description of the
problem and then demonstrates its
impact and importance. During the
Windows security push in February
and March 2002, Microsoft pro-
vided basic awareness training to all
its developers. Beyond awareness,

more advanced software security
training should cover security engi-
neering, design principles and
guidelines, implementation risks,
design flaws, analysis techniques, and
security testing. Quality-assurance
personnel—especially those who
perform testing—should have spe-
cial tracks.

Today’s academic curricula do
little to expose students in engineer-
ing and computer science to secu-
rity. Introductory programming
courses can and should cover basic
security tenets, because software se-
curity education is critical to chang-
ing the way software is built. One
excellent technique is to have groups
of students analyze the work of their
peers for security problems. 

Analysis, auditing, 
and engineering
You cannot bolt security onto an ex-
isting program or even implement
particular sets of “security function-
ality” as a complete solution. The
most generic instantiation of this
problem is the common, but flawed,
over reliance on cryptography. A
classic rejoinder heard from software

architects and developers when con-
fronted with security is the claim,
“It’s secure because we use SSL.”
Though applied cryptography is an
important weapon in the software
security arsenal, it is insufficient for
security. Put glibly, software security
is not security software.

Because security is an emergent
property of a complete system, we
must take a holistic approach. We
should weave in security throughout
the complete software development
life cycle:

• At the requirements level, we must
consider security explicitly. Secu-
rity requirements should not be an
“add on,” and should take into ac-
count emergent characteristics of
security, including explicit cover-
age of what should be protected,
from whom, and for how long.

• At the design and architecture level, a
system must be coherent and pre-
sent a unified security architecture,
document assumptions, and iden-
tify possible attacks. At this stage of
development, risk analysis is a ne-
cessity—risks can be uncovered and
ranked so mitigation can begin.

• At the code level, focus on imple-
mentation flaws, especially those
that can be statically discovered in
an automated fashion. Note that
code review, although necessary
(especially when problematic lan-
guages such as C are used), is not
sufficient for software security.
Finding and removing all imple-
mentation flaws in source code
does nothing to address architec-
tural problems.

• When it comes to testing, security
is a special case. Security testing
must encompass two strategies:
testing security functionality with
standard functional testing tech-
niques and risk-based testing based
on attack patterns and threat mod-
els. Note that security problems
are not always apparent, even
when directly probing a system. 

• We must monitor fielded systems
during use. Simply put, attacks will
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Figure 3. Microsoft has put the following software security process into place. Notice
that security does not happen at one life cycle stage, nor are constituent activities
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software security.
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happen, regardless of the strength
of the design and implementation.
Monitoring software behavior is
an excellent defensive technique. 

Successful security analysis in-
volves two levels of system under-
standing: architectural risk analysis and
implementation analysis. Doing only
one provides a high likelihood of fail-
ure. Today, there is an over emphasis
on code review, which alone cannot
solve the software security problem. 

Microsoft’s Trustworthy
Computing Initiative
Microsoft’s chairman, Bill Gates re-
leased a memo in January 2002 that
highlights the importance of building
secure software to Microsoft’s future.
Its Trustworthy Computing Initiative
has changed the way Microsoft builds
software. To date, Microsoft has spent
over $200 million (2,000 person days)
on its software security push.

Microsoft is focusing on people,
process, and technology to tackle the
software security problem. On the
people front, Microsoft is training
every developer, tester, and program
manager in basic techniques of
building secure products. Microsoft
enhanced its development process to
make security a critical factor in de-
sign, coding, and testing of every
product, for example.

There are many possible ways to
integrate software security practices
into the development lifecycle. Fig-
ure 3 illustrates Microsoft’s way by
showing where “security cycles” can
be applied during a standard software
development life cycle.

Risk analysis, code review, secu-
rity testing, and external review and
testing have their places in the new
process. Microsoft is building tools,
including PREfix and PREfast for
defect detection,7 to automate as
many process steps as possible, and
changing its Visual C++ compiler to
detect certain kinds of buffer over-
runs at runtime. Microsoft also has
begun thinking about measurement
and metrics for security.

The importance 
of measurement
Measurement is critical to the future
of software security. Only by quan-
tizing our approach and its impact
can we answer such questions as:
How secure is my software? Am I
better off now than I was before? Am
I making an impact on the problem?
How can I estimate and transfer risk?

Measurement is one founda-
tional approach critical to any sci-
ence. As Lord Kelvin put it:

When you can measure what
you are speaking about, and
express it in numbers, you
know something about it; but
when you cannot measure it,
when you cannot express it in
numbers, your knowledge is
of a meager and unsatisfac-
tory kind: it may be the be-
ginning of knowledge, but
you have scarcely, in your
thoughts, advanced to the
stage of science.

The future belongs 
to the quants
We can begin to approach the mea-
surement problem by recycling num-

bers from software literature. For ex-
ample, we know that fixing software
problems in the design stage is much
cheaper than fixing them later in the
life cycle. An often-quoted IBM
study reports relative cost weightings
as design = 1, implementation = 6.5,
testing = 15, and maintenance = 100.
We also know relative cost expendi-
tures for life cycle stages: design = 15
percent, implementation = 60 per-
cent, and testing = 25 percent. This
range of numbers can provide a foun-
dation for measuring software secu-
rity impact.

Measuring ROI
A preliminary study (www.cio.com/
archive/021502/security.html) re-
ported by @stake (www.atstake.
com) demonstrates the importance
of concentrating security analysis ef-
fort at the design stage relative to the
testing and implementation phases
(see Figure 4). Separately, Microsoft
reports that over 50 percent of the
software security problems it finds
are design flaws. We need more such
analyses to advance the field.

Risk management calls out for
quantitative decision support. We
have work to do on measuring soft-
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ware security and software security
risk.

A Call to Arms
Much work remains to be done in
software security. Some of it is basic
and practical (for example, making
software security part of the standard
software development life cycle) and
some of it is far beyond current capa-
bilities (for example, automating
software architecture analyses for se-
curity flaws). The US National Sci-
ence Foundation suggests using the
following 11 open questions as dri-
vers for research. There is clearly
overlap among these problems, but
the list raises a large number of inter-
esting subquestions. How do we

• Avoid building security flaws and
security bugs into programs?

• Know when a system has been
compromised?

• Design systems that can tolerate at-
tack and carry out the intended
mission?

• Design systems with security that
can be reasonably managed?

• Provide reasonable protection of
intellectual property?

• Support privacy enforcement
technically?

• Get trustworthy computations
from untrusted platforms?

• Prevent–withstand denial-of-ser-
vice attacks?

• Quantify security trade-offs?
• Reveal and minimize assumptions

in security system designs?
• Build programs and systems and

know exactly what they will do
and what they are doing?

We must give careful considera-
tion to design for security. Given a
set of principles and properties that
we wish a system to have, we must
identify design guidelines and en-
forcement rules. Open questions
along this line of thinking include:

• Can principles be refined to
guidelines?

• How can guidelines be reduced to
rules that can be enforced stati-
cally?

• What technologies are suited for
automated analysis?

Some concrete open research
problems include explaining why

the software security problem is
growing; quantifying, analyzing, and
explaining bug/flaw categories; per-
forming cost/benefit analyses to
prove that early is good; untangling
security software from software se-
curity at the requirements stage; ex-
ploring how to teach software secu-
rity most effectively to students and
professionals; and inventing and ap-
plying measures and metrics.

Software security is here to stay.
In the near future, awareness, train-
ing, and process integration are likely
to be a big focus. A market category
will emerge with impact on tradi-
tional network security shops and
software development organizations.
As science begins to answer the
questions posed here, the field will
evolve in interesting ways. Because
both theoretical and practical soft-
ware security aspects remain, there’s
plenty of work ahead. Now is the
time to get in on the ground floor. 
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• R. Bisbey II and D. Hollingsworth, “Protection Analysis Project Final Report,” Technical Report ISI/RR-78-13, DTIC AD A056816, USC/Infor-

mation Sciences Inst., May 1978.

• M. Bishop and M. Dilger, “Checking for Race Conditions in File Access,” Computing Systems, vol. 9, Feb. 1996, pp. 131–152.

• C. Cowan et al., “Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks,” Proc. 7th Usenix Security Symp., Usenix Assoc.,

1998, pp. 63–77.

• M. Gasser, Building a Secure Computer System, Van Nostrand Reinhold, 1988.

• D. Larochelle and D. Evans, “Statically Detecting Likely Buffer Overflow Vulnerabilities,” Proc. of Usenix Security Symp., Usenix Assoc., 2001.

• G. McGraw, “Software Assurance for Security,”Computer, vol. 32, Apr. 1999, pp. 103–105.

• Miller, L. Fredricksen, and B. So, “An Empirical Study of the Reliability of Unix Utilities,” Comm. ACM, vol. 33, Dec. 1990, pp. 32–44.
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consin, Apr. 1995.

• F. Schneider, ed., Trust In Cyberspace, Nat’l. Academy Press. Washington, DC, 1998.

Further reading
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Gligor, Michael Howard, Brian Kernighan,
and David Wagner. Materials from the work-
shop are available at www.cigital.com/ssw.

References

1. D. Wagner et al., “A First Step
Towards Automated Detection of
Buffer Over-run Vulnerabilities,”
Proc. Year of 2000 Network and Dist.
Sys. Security Symp. (NDSS), 2000.

2. R. Anderson, Security Engineering:
A Guide to Building Dependable Dis-
tributed Systems, John Wiley & Sons,
2001.

3. J. Viega and G. McGraw, Building
Secure Software. Addison-Wesley,
2001; www.buildingsecuresoftware.
com.

4. M. Howard and D. LeBlanc, Writ-
ing Secure Code, Microsoft Press,
2001.

5. G. McGraw and G. Morrisett,
“Attacking Malicious Code: A
Report to the Infosec Research
Council,” IEEE Software, vol. 17,
Sept./Oct., 2000, pp. 33–41.

6. G. McGraw and E. Felten, Securing
Java: Getting Down to Business with
Mobile Code, John Wiley & Sons,
1999; www.securingjava.com. 

7. W. R. Bush, J. D. Pincus, and D. J.
Sielaff, “A Static Analyzer for Find-
ing Dynamic Programming Errors,”
Software Practice and Experience, vol.
30, June 2000.

Gary McGraw is Cigital’s CTO, where
he researches software security and sets
technical vision for software quality man-
agement. He received a BA in philosophy
from the University of Virginia and PhDs
in cognitive science and computer science
from Indiana University. He has coau-
thored four books: Java Security (Wiley,
1996), Securing Java (Wiley, 1999), Soft-
ware Fault Injection (Wiley 1998), and
Building Secure Software (Addison-Wes-
ley, 2001) and more than 50 peer-
reviewed papers. Contact him at gem@
cigital.com; www.cigital.com.

http://computer.org/security/ ■ IEEE Security & Privacy 9



3

Appendix 2

List of Participants 



4

Workshop on Software Security
List of Participants

Organizing Chair

Gary E. McGraw, Cigital

Organizers

Edward W. Felten, Princeton University
Virgil D. Gligor, University of Maryland
David Wagner, UC Berkeley

Participants:

Godmar Back, Computer Systems Laboratory
Lee Badger, DARPA
Lee Begeja, AT&T
Steven Michael Bellovin, AT&T
Ali Bicak, University of Maryland
Scott Robert Bourne, Rutgers University
Bill Cheswick, Lumeta Corporation
Crispin Cowan, WireX Communications, Inc.
Scott A. Crosby, Rice University
Drew Dean, SRI International
Jeffrey Dielle, Hewlett-Packard Managed Services
Dominic Duggan, Stevens Institute of Technology
David E. Evans, University of Virginia
Debin Gao, Carnegie Mellon University
Dan Geer, @stake
Santoshkumar Girish Nair, New Jersey Institute of Technology
Robert J. Hall, AT&T
Michael Howard, Microsoft Corp.
Trent Jaeger, IBM
Trevor Jim, AT&T
Danny Max Kaufman, Rutgers University
Lev Kaufman, Rutgers University
Gaurav S. Kc, Columbia University
Brian Kernighan, Princeton University
Larry Koved, IBM
Carl E. Landwehr, National Science Foundation
Ben Laurie, OpenSSL
Yow-Jian Lin, SUNY Stony Brook
Annie Liu, SUNY Stony Brook
Rebecca T. Mercuri, Bryn Mawr College
Lakshmankumar Mukkavilli, Cisco Systems, Inc.
Afroze Naqvi, SIAST, Wascana Campus
Thomas Ostrand, AT&T
Jonathan D. Pincus, Microsoft
William W. Pugh, University of Maryland



5

Sandeep Radharkrishnan, Stevens Institute of Technology
Marcus J. Ranum, Ranum.com
Harshvardhan Ulhas Revankar, New Jersey Institute of Technology
Fred Roberts, DIMACS, Rutgers University
Algis Rudys, Rice University
John Charles Slimick, University of Pittsburgh at Bradford
Nicol So
John Steven, Cigital Inc.
Scott D. Stoller, Stony Brook University
John Viega, Secure Software
Dan S. Wallach, Rice University
Ronald Phillip Waterbury, AT&T
Elaine J. Weyuker, AT&T
Gregory Wright, AT&T
Rebecca Wright, Stevens Institute of Technology



6

Appendix 3

Program 



7
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1:30-2:00 Breakout session Administration
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The Microsoft Trustworthy Computing Initiative from the Inside
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Implementation
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� Experience and expertise

Gary McGraw
5:00-7:30 Dinner (on your own)
7:30-10:00 Wine and cheese reception and poster session

Tuesday, January 7th, 2003

Time Agenda
8:00-9:00 Breakfast (DIMACS)
9:00-10:00 Invited talk: Brian Kernighan

Coding Excellence: Security as a Side Effect of Good Software
10:00-10:30 Group discussion
10:30-10:45 Morning break
10:45-12:00 BREAKOUT: Security Analysis

� Role of expertise 
� Auditing design 
� Auditing code 
� Security Testing

Gary McGraw

BREAKOUT: Mobile code and
Malicious Code

� NET and Java 
� Web services 
� Modern malicious code

Ed Felten
12:00-1:30 Lunch (DIMACS)
1:30-2:30 Invited talk: Dan Geer, @stake

Software Security in the Big Picture: Repeating ourselves all over again
2:30-3:30 BREAKOUT: Open Research Issues

� Hard problems

Virgil Gligor

BREAKOUT: Education and Training

� Academia 
� Industry developers

Dave Wagner
3:30-4:00 Break
4:00-5:30 Workshop wrap-up

� Reports from breakout sessions 
� Program committee summary
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Presentation Links

Main Web page with Schedule:

http://www.cigital.com/ssw/presentations.php

Individual Talks:

Gary McGraw, Cigital
The Art and Science of Software Security
http://www.cigital.com/ssw/presentations/gem/

Ed Felten, Princeton University
Nothing we do can improve security
http://www.cigital.com/ssw/presentations/felten/

Dave Evans, University of Virginia
Protecting Bits with Atoms (and Vices with Verses)
http://www.cigital.com/ssw/presentations/evans/

Crispin Cowan, WireX Communications, Inc.
Security and Open Source: the 2-Edged Sword
http://www.cigital.com/ssw/presentations/dimacs_opensource/

Michael Howard, Microsoft
The Microsoft Trustworthy Computing Initiative from the Inside
http://www.cigital.com/ssw/presentations/howard.ppt

Brian Kernighan, Princeton University
Coding Excellence: Security as a Side Effect of Good Software
http://www.cigital.com/ssw/presentations/kernighan/

Dan Geer, @stake
Software Security in the Big Picture
http://www.cigital.com/ssw/presentations/geer/

BREAKOUT: Open Research Issues
http://www.cigital.com/ssw/presentations/landwehr/

Workshop wrap-up
http://www.cigital.com/ssw/presentations/gem_end/
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http://www.cigital.com/ssw/presentations/dimacs_opensource
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http://www.cigital.com/ssw/presentations/landwehr/
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ABSTRACTS

DIMACS Workshop on Software Security

January 6-7, 2003
DIMACS Center, CoRE Building, Rutgers University

Organizers:

Gary McGraw
Cigital

gem@cigital.com

Ed Felten
Princeton University

felten@cs.princeton.edu

Virgil Gligor
University of Maryland

gligor@umd.edu

Dave Wagner
University of California at Berkeley

daw@cs.berkeley.edu

Presented under the auspices of the Special Focus on Communication Security and Information Privacy.
See: http://dimacs.rutgers.edu/SpecialYears/2003_CSIP/

Supported by The National Science Foundation (NSF), the NJ Commission on Science and Technology, and also the
DIMACS partners at Rutgers University, Princeton University, AT&T Labs - Research, Bell Labs, NEC

Laboratories America, and Telcordia Technologies, and the DIMACS' Affiliate Members at Avaya Labs, IBM
Research and Microsoft Research.  In particular, DIMACS thanks Microsoft Research for a special contribution to

support this workshop.
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Steve Bellovin, AT&T

We can't write secure programs

Assertion: we cannot, in general, write secure programs.  Security is a subset of correctness;
correct programming is -- and will remain -- the oldest unsolved problem in computer science.
*All* non-trivial programs, including firewalls, operating systems, and privileged or networked
applications, are and will remain insecure.  The challenge to security professionals is to design
*systems* that will be "secure enough", despite the failure of many of the individual
components.
                                                                                                                                                            

Dan Geer,  @stake

Software Security in the Big Picture

Security investment does not yet have the direct linkages to the creation of business value that
other IT investments do, and executives cannot hope to show value via cost-benefit -- cost-
effectiveness will be hard enough--but the future unequivocally belongs to the quants.  Metrics
that make security rational will be vulnerability-modeled and data-calibrated.  They will rely on
information sharing about incidents (frequency, dollars lost, whether the event was even
caught...) and on log analysis that can separate the anomalous from the normal.  The National
Strategy already focuses on vulnerabilities rather than threats, and SDLCs should include
security before software liability takes hold, as it soon will.  None of this is surprising -- it is just
what business maturity would predict.
                                                                                                                                                            

Michael Howard, Microsoft

Trustworthy Computing - An Insider's View

In this presentation, Michael Howard will outline the overall Trustworthy Computing goals, as
well as the short-term and long-term steps being taken to achieve the goal. He will also outline
the tactical and strategic goals of the series of 'security pushes' at Microsoft, as well as the
development life-cycle changes underway at the company.
                                                                                                                                                            

Brian Kernighan, Princeton University

Coding Excellence: Security as a Side Effect of Good Software

Good programming languages are often thought a prerequisite for robust and secure software.
Yet most of the time, language is secondary: sound design and good programming practices are
much more important. Good programmers program well in any language, but no language can
prevent a bad programmer from writing bad code.  So while we wait for more perfect languages
to be developed, and then be accepted by the majority of programmers, there is much that we can
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do today to improve programming practice and thus improve the security properties of our
programs.
                                                                                                                                                            

Ben Laurie, OpenSSL

TCPA and Palladium solve capabilities confinement

A standard problem in distributed capabilities is the confinement problem. Once you have given
someone a capability, you cannot prevent them from giving it to someone else. TCPA and
Palladium provide a mechanism by which this can be solved. The protocol is left as an exercise
for the reader, but it involves a private key closely held by the TCPA/Palladium hardware, a
nonce, and, of course, the capability (or, more precisely, its Swiss number).
                                                                                                                                                            

Gary McGraw, Cigital

The Art and Science of Software Security

Computer security researchers and practitioners have come to recognize the critical role that
software plays in security.  Software security is the art of proactively building software to be
reliable and secure.  By contrast, network security tends to emphasize a reactive law enforcement
stance, and in many cases does not identify the root cause of security problems (bad software).

Making software behave is hard, and security subtleties only exacerbate the problem.  Internet-
enabled software applications, especially custom applications, present the most common security
risk encountered today, and are the target of choice for real hackers. 

This talk provides an introduction to the problem of software security. I discuss the magnitude of
the problem and some of the root causes, which I call the trinity of trouble. I briefly discuss
security engineering, security requirements, testing for security, and the idea of software risk
management.  I then propose some open questions meant to stimulate discussion and clarify
some aspects of this exciting new field.
                                                                                                                                                            

Jon Pincus, Microsoft

Stop telling me I should be speaking Esperanto!

Every time there's a buffer overrun, everybody shakes their head and sighs "if only people didn't
program in C and C++ this wouldn't be an issue."  It's obvious ... and, equally obviously, if only
everybody spoke Esperanto, we'd all be able to understand each other.  Can we just return to
reality here?  Today, virtually nobody writes system software (OSs, drivers, databases, web
servers, browsers) in safe languages; perhaps, just like with Esperanto, there are other factors
that mean the "obvious right answer" isn't actually right in practice.  What will actually cause
things to change (or, if it's not going to change, what should we do instead)?  And since I'm
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cynical enough to question the original Esperantists' assumption that a world language would
bring us noticeably closer to world peace, why should I believe that changing languages will
bring us noticeably closer to "software security"?
                                                                                                                                                            

Bill Pugh, University of Maryland

It is time to abandon C and C++

It is difficult to write reliable and secure code in C and C++. Instead, any new projects should be
performed in type safe programming languages such as Java, C#, Cyclone and CCured. While
those languages do not eliminate security problems, they eliminate broad categories of them.
Strong consideration should be given to trying to migrate security critical components of existing
C and C++ applications to a type safe language.
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