Formal Synthesis In
Software-Defined Networks

Anduo Wang
University of Pennsylvania

A Project from the NSF Expeditions on Software Synthesis

http://excape.cis.upenn.edu

http://excape.cis.upenn.edu/

Management Challenges

Rule 1
Rule 1 Rule? Enforce policy
Rule 2
X &
o = Rule 1
E E Rule 2
o .2
zZ =
~ Maintain network- _~_
wide invariants
N\ P > N\ P
c
-S Alice’s Bob’s Alice’s Bob’s
« ﬁ Controller Controller Ensure isolation Controller Controller
% gcs Allocate resources R Translator
S £ {
zZ >
Openflow Openflow
Switch Switch

Management Solutions

Mechanism for

Rule 1

Rule 1 Rule 2 Consistent updates

Rule 2 >
X &
o = Rule 1
E E Rule 2
o .2
zZ =

Many heuristics
Optimization algorithms
N\ P > N\ P
c
-S Alice’s Bob’s Alice’s Bob’s
~ ﬁ Controller Controller Flowvisor Controller Controller
g [Emerging... Translator
= 2 >
3 E {
zZ >
Openflow Openflow
Switch Switch

Formal Synthesis Approach
m Mech_anism for a:r{"l’“rﬁr

Traditiona

* (Very) High initial investment
» Ad-hoc solution for each management problem

Network
I\/Imrn’rlnn

Formal synthesis

* Provably-correct general framework

« Automated solution for small instance,

£ compositional synthesis for scaling

7 * Guidance for quickly developing heuristics on
s large networks

\JrJ\l nniIvy \JrJ\,IIIIUVV

SW|tch Switch

Network
\/irti1alizat

Formal Synthesis Approach

c
< 9 :
S = Closed system synthesis
gD Reachability problem
z 2 solved by model
b checking s ad
7\ AN 7\ AN
O OO Q] O
_5 [AIice’sJ [Bob’s J (Ongoing) AIice’sJ [Bob’s J
IS Controller) (Controller . ontroller) (Controller
'%‘, N Open system synthesis
= 5 A\/ Compositional synthesis Translator
S > {
Openflow Openflow
Switch Switch

Closed System Synthesis for Migration

* Formulate network migration as reachability
problem

— Model network migration by a transition system

— Find a migration ordering t (a sequence of
atomic updates) from initial network state to the
target final state s.t. constraints P holds during
all transient states along t

— A migration t exists if =P does not always hold
* Solving by model checker

— Model check =P on the transition system
— Counter example of -P gives t

Solution for VM Migration

. specification !'((F ((v2 = s4 &

51 & v4 !=v5)) & G bandwldthl3 <
-4 as demonstrated by the following
Trace Description: LTL Counterexam
Trace Type: Counterexample

-> State: 1.1 <-

L -

) ‘1 S 7

L g o

-

bandwldthl3 = 1

-- LOOD starts here
e Ctata. 4 <=

-- Loop starts here

% 4 o ! r 2 o7 \ r I_- 'n |v 0™ I b s 4 C T |
\J \ \ V™ \ \ / ~—3 \ \ /
¥ e 0 > ¥V e . o J \\V<ZL ¥ Wy '
A -

-\
/|

[HotSDN’12] Walk the Line: Consistent
Network Updates with Bandwidth Guarantees

Constraints P
— One substrate node can hold only one VM
— Heavy dashed lines show inter-VM

Solution

— Migrating with sequer.ce V4, V2 V5 succreds to
migrate all nodes while nuy: &t vviai sequence
V5, V2, V4 can migrate only one node

Solutlon for Conflguratlon I\/||grat|on

--{ specification !(Q & I s = F3) & F2 ssh = Hu 1tor) & G (((u_ f‘h r

each = Deny & g_ssh_ & s s ssh_reach = Allow) & T ssh reach = Allow
1S Talse
-- as demonstrated by

Trace Description: LTL ST e. [SIGCOMM’12] Abstractions for Network Update

Trace Type: Counterexample Configuration I Configuration II

-> State: 1.1 <- Type| Action Type| Action
I u-=F1 U, & | Forward Fy I U |Forward Fy

f Forward Fag & |Forward Fa
Legr=akl Forward F S, F|Forward Fy
Is F2 Monitor F, [55H | Monitor
T ~ . Allow * Allow
LT F3 : Allow Fq Monitor
Fl ssh = Monlitor #* Allow
Allow Fs| + Allow

Deny

Deny * Migration goal

Allow —__Configuration | -> Configuration |I

= Allow Constraints P
B — Enforce a security policy that denies SSH traffic from
untrustworthy hosts, but allows all other traffic to
-- Loop starts here pass through the network unmodified
> i — olution

— update | to forward S traffic to Fo
- Update F2 to deny SSH packets
— upgdate | to forward G traffic to 72

Formal Synthesis Approach

C
= 0 :
S = Closed system synthesis
g 9 Rechability problem
z = solved by model
o Ld checking . o Ld
N\ AN 7\ AN
O QO QL |©
é [Alice’s] [Bob’s] (Ongoing work) AIice’s] [Bob’s]
« crg Controller) |Controller Open system synthesis ontroller) (Controller
% f_;“ \/ Compositional synthesis Tfa”i'ator %
O = >
< > Openflow Openflow
Switch Switch

Open System Synthesis for
Virtualization

Alice’ Alice’s Flow
ice's flow Table
Controller
Translator AIic_e’s

Policy

Openflow

_ Openflow
Switch ‘L

Switch

Openflow
Switch

10

Compositional Synthesis for
Virtualization

Alice’s Bob’s
Controller Controller

]

\/

Translator

Openflow Openflow
Switch ‘L Switch
Openflow

Switch

Alice’s
Policy

Bob’s
Policy

Alice’s
flow
Alice’s Alice’s
' uarantee
assumption Elow g
Table
Bob’s Bob’s
guarantee assumption
Bob’s

flow

11

Conclusion: Formal Synthesis

Rule 1
Rule 2

Rule 1
Rule 2

c
= o :
S = Rule Closed system synthesis
o2 Reachability problem
z 2 solved by model
b checking s ad
N\ PN 7\ AN
O lNO QL] O
_5 [Alice’s] [Bob’s] (Ongoing WOI’k) AIice’s] [Bob’s]
© Controller) [Controller . ontroller) (Controller
—CE) N Open system synthesis —
= g \/ Compositional synthesis Translator
S > {
Openflow Openflow
Switch Switch

