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Management Solutions
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Formal Synthesis Approach
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* (Very) High initial investment
» Ad-hoc solution for each management problem
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Formal synthesis

* Provably-correct general framework

« Automated solution for small instance,

£ compositional synthesis for scaling

7 * Guidance for quickly developing heuristics on
s large networks
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Formal Synthesis Approach
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Closed System Synthesis for Migration

* Formulate network migration as reachability
problem

— Model network migration by a transition system

— Find a migration ordering t (a sequence of
atomic updates) from initial network state to the
target final state s.t. constraints P holds during
all transient states along t

— A migration t exists if =P does not always hold
* Solving by model checker

— Model check =P on the transition system
— Counter example of -P gives t



Solution for VM Migration
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[HotSDN’12] Walk the Line: Consistent
Network Updates with Bandwidth Guarantees

Constraints P
— One substrate node can hold only one VM
— Heavy dashed lines show inter-VM

Solution

— Migrating with sequer.ce V4, V2 V5 succreds to
migrate all nodes while nuy: &t vviai sequence
V5, V2, V4 can migrate only one node



Solutlon for Conflguratlon I\/||grat|on

--{ specification !( Q & I s = F3) & F2 ssh = Hu 1tor) & G (((u_ f‘h r

each = Deny & g_ssh_ & s s ssh_reach = Allow) & T ssh reach = Allow
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Deny * Migration goal

Allow —__Configuration | -> Configuration |I

= Allow Constraints P
B — Enforce a security policy that denies SSH traffic from
untrustworthy hosts, but allows all other traffic to
-- Loop starts here pass through the network unmodified
> i — olution

— update | to forward S traffic to Fo
- Update F2 to deny SSH packets
— upgdate | to forward G traffic to 72




Formal Synthesis Approach
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Open System Synthesis for
Virtualization
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Compositional Synthesis for
Virtualization
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Conclusion: Formal Synthesis
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