

SPARTA: Scalable Per-Address RouTing Architecture

John Carter

Data Center Networking IBM Research - Austin

IBM Research activities related to SDN / OpenFlow

IBM Research started a strategic initiative in data center networking in 2010

- Global participation from multiple labs, partnered with product teams
- SDN is one of the focus areas of the strategic initiative
- Heavily involved in ONF standards work (esp. FAWG → Table Typing Pattern)

Current SDN uses a tiny fraction of switch capabilities

- Previously proposed SDN routing architectures:
 - Largely based on OpenFlow 1.0
 - OpenFlow 1.0 only maps well on to (small) TCAM switch tables
 - Tiny fraction of switch functionality
 - Thus, they often artificially constrain topology and/or addressing

Exposed by OpenFlow 1.0 (and thus most of SDN)

SPARTA: Scalable Per-Address RouTing Architecture

- SPARTA: Simple, HW-efficient, flexible routing mechanism
 - Build one spanning tree per destination host ([VLAN ID, DMAC])
 - Install one rule per tree per switch in (huge) L2 exact match table
- Characteristics of SPARTA
 - Supports arbitrary (connected) physical topology
 - Exploits all available paths (statistically)
 - Leaves TCAMs for designed purposes (security, policy-based routing, ...)
 - Flexible framework for traffic engineering, traffic steering, failure recovery, quality of service management, ...

Data Center Network Design Goals

- Scalable
 - 10s to 100s of thousands of hosts
- Efficient use of bandwidth
 Mesh topologies from HPC?
- Efficient host mobility
- Low latency
- Respect layering
- Multi-tenancy
- Very dynamic \rightarrow self-configuration
- Compatible with existing / planned hardware
- Converged data and storage networks (CEE)

A Brief Tour Through a Modern 10GbE Switch

IBM Research - Austin

IBM

© 2012 IBM Corporation

Simplified Switch Pipeline (BRCM Trident)

- **TCAMs**: Designed for limited use (security ACLs, PBR, ...)
- L2/FDB table: Huge, plentiful, simple to expand (RAM)
- ECMP and multicast tables: Additional flexibility

Basic SPARTA routing

- Goal: Route using large L2 table on arbitrary (mesh) topology
- Solution: Build spanning tree rooted at each destination
- All links used → approximate load balancing w/o ECMP

Constructing SPARTA Routes

- Basic option: Use BFS to build min-length paths
 - Random
 - Weight links by load
 - ...

Constructing SPARTA Routes

- Basic option: Use BFS to build min-length paths
 - Random
 - Weight links by load

- ...

- Some workloads/topologies benefit from non-min routes
- Non-minimal (NM) PAST
 - Do a BFS from a random switch as the root
 - Change directions on route from root to destination

SPARTA Discussion

- One L2 entry per switch per tree \rightarrow scales to > 100K hosts
- Consumes no TCAM entries for basic routing
- Obeys layering (does not re-use VLAN tag or other bits)
- Broadcast/multicast: No change \rightarrow provide via STP or SDN
- Security: Use VLANs as normal (or ACLs)
- Virtualization: Use any higher layer virtualization overlay (e.g., NetLord, SecondNet, MOOSE, VXLAN)

SPARTA Implementation

SPARTA Implementation Details

- Address detection and resolution:
 - Uses controller for ARP, DHCP, IPv6 ND, and RS for scalability
- Route computation:
 - 8,000 hosts \rightarrow 40µsecs 1ms per tree (300ms per network)
 - 100,000 hosts \rightarrow 500µsecs 5ms per tree (40s per network)

Route installation:

- 700-1600 new rules per second per switch
- 2-12ms rule install latency \rightarrow eagerly install routes
- Failure recovery:
 - Should patch affected portions of trees first
 - Randomly rebuild trees for link joins

SPARTA Performance

- Simulated to allow evaluation at scale
 - Assume max-min TCP fairness to make simulation feasible
- Compared against:
 - STP, Valiant routing, ECMP (multipath routing)
- Workloads:
 - Urand: Uniform random benign
 - Stride-S: Host i sends to host ((i+S)%N) adversarial (intra-rack)
 - Shuffle-K: 128MB to all hosts, random order, K active connections
 - MSR: Synthetically generated from MSR data (light load)
- Topologies: Equal bisection bandwidth (oversubscription ratios) of...
 - EGFT (fat tree), Hyper-X (flattened butterfly), Jellyfish (random)

Spanning Tree performs terribly

© 2012 IBM Corporation

Spanning Tree performs terribly

© 2012 IBM Corporation

Summary for SPARTA

- Meets all of our requirements for a DCN by exploiting only the most basic Ethernet forwarding hardware
- Scalable, low-latency, high-bandwidth network from COTS ToR switches (So we can exploit HPC-style mesh topologies!)
- Can provide 1-2X performance of ECMP
- Implemented on existing hardware w/ OF 1.0 (!!!)
- Leaves TCAM entries for designed uses: PBR, security, …
- Flexible framework for traffic engineering, traffic steering, QoS management, resiliency, …
- For full results, see CoNEXT 2012 paper (next week)

Suggestions for SDN Research

- Understand and exploit what is in the actual hardware
 - Do not let OpenFlow specification restrict your vision...
 - ... but don't assume magical hardware ("*unicorns and rainbows*")
- Consider what can be done by running "SDN-aware" functions on the control processor (ala HP Labs' DevoFlow)
 - Controller understands "big picture" \rightarrow guides switch-local decisions
 - Switch firmware can respond in µsecs, not msecs
 - Opportunity: Indigo or similar open source OpenFlow switch firmware
 - Pushing it to the limit \rightarrow switchlets (Active Networking reborn?)
- Why just networks? Software-defined everything
 - SDS: software-defined storage (lots of startups claiming this)
 - SDC: software-defined computation (VMs kind of do this)
 - SDDC: software-defined data center

- Send at line-rate immediately
- 1.5-3X better than vanilla TCP for 64K–8M
 many real DC flows are this size

