Security as an App and
Security as a Service:
New Killer Applications for
Software Defined Networking?

Department of .
Computer Science
& Engineering

Credits

e Seungwon Shin (TAMU)

* Phil Porras, Vinod Yegneswaran... (SRI
International)

Roadmap

Security in the paradigm of SDN/OpenFlow

Security as an App (SaaA)
— New app development framework: FRESCO
— New security enforcement kernel: FortNOX

Security as a Service (SaaS)

— New security monitoring service for cloud tenants:
CloudWatcher

Summary

Problems of Legacy Network Devices

* Too complicated

— Control plane is implemented with complicated S/
W and ASIC

* Closed platform

— Vendor specific

* Hard to modify (nearly impossible)
— Hard to add new functionalities

Software Defined Networking (SDN)

* Three layer
— Appllcahon layer APPLICATION LAYER |
e Application part of control layer |
* Implement logic for flow control Business Applications

— Control Iayer CONTROL LAYER SDN ﬁ

Control ,
* Kernel part of control layer PP Ntwork Services

* Run applications to control
network flows

Control Data Plane interface

(e.g., OpenFlow)
INFRASTRUCTURE LAYER

— Infrastructure layer

e Data plane
* Network switch or router SDN architecture from ONF

OpenFlow Architecture

OpenFlow Switch specification application

controller

A controller application
can enforce any flow rules
to network switches

From openflow tutorial

Killer Applications of SDN?

Reducing Energy in Data Center Networks
(load balancing)

WAN VM Migration

How about security?

— We are going to talk about this, more specifically:
— Security as an App (SaaA)

— Security as a Service (SaaS)

Software App Store Today

Available on the iPhone
D App Store

SRS

i P et for

Security as an App

 SDN naturally has an application layer

» Security functions can be apps on top of SDN/
networking OS
— Firewall
— Scan detection

— DDoS detection
— Intrusion detection/prevention

* Why SaaA?
— Cost efficiency
— Easy deployment/maintenance
— Rich, flexible network control

Security as a Service

* Clouds are large, complicated, and dynamic

 How do tenants deploy security devices/
functions?

* Tenant can use some pre-installed fixed-location security
devices

— Not able to keep up with the high dynamisms in network
configurations

* Tenant can Install security devices for themselves
— Difficult

* Need a new Security Monitoring as a Service
mechanism for a cloud network

Challenges and Our Contributions

* |tis not easy to develop security apps
— FRESCO: a new app development framework for
modular, composable security services
* [tis not secure when running buggy/vulnerable/
multiple security apps (e.g., policy conflict/
bypass)
— FortNOX: a new security enforcement kernel
* [t is not convenient to install/use security devices

for cloud tenants

— CloudWatcher: a new security monitoring service
model based on SDN

FRESCO:
Framework for Enabling Security
Controls in OpenFlow networks

What is FRESCO?

e A new framework

— Enables to compose diverse network security
functions easily (with combining multiple
modules)

— Enables to create own network security functions
easily (without requiring additional H/Ws)

— Enables to deploy network security functions
easily and dynamically (without modifying the
underlying network architecture)

— Enable to add more intelligence to current
network security functions

—L—-}L}I_L__l_'—b_

FRESCO Script Module 1 Module 2 Module 3 Module 4

KK KK K HAKKK o FI
u %}}!ég? -
Instance 1 Instance 2 ‘ OpenFlow
Instance execution Application
FRESCO Development Environment | || ceeviiinnnnn,
i OpenFlow
FRESCO Resource Controller - Application
FRESCO Application Layer

s fs i

NOX FRESCO Security Enforcement Kernel

OpenFlow switch OpenFlow switch OpenFlow switch OpenFlow switch

FRESCO — Overall Operation

|

Create
Modules

i

Load
Modules

1

Run
Modules

1

l Answer from NOX

-

-

Notify NOX
of loading
FRESCO
modules

~

Monitor
OpenFlow
switches

|

FRESCO Modular Design

event
parameter
input output
action
Module
k
e values
y
F-DB instance
Event Incoming flow Plfh
v
Vv —— v Actionl = Drop
Destination (parameterl = 80) . ;
—.>> ~—p P Action2 = Forward
Inpuf . Parameter (1,, n) Output 1 port > >
. : lfg\:tutult?l{aarameterl: If inputt == 1:
Input n Action (1,, n) Butoitm el P ; Do Actionl
; Else:
Output = 0; Do Action 2

FRESCO — Script Language

Goal

Define interfaces, actions, and parameters

— Connect multiple modules
— Similar to C/C++ function, start with { and end with }

Format

Instance name (# of input) (# of output)

* denotes the module name and the number of input and output variables
INPUT: a,,a,,

e denotes input items for a module a, may be set of flows, packets or integer values
OUTPUT: by,b,,

e denotes output items for a module b, may be set of flows, packets or integer values

PARAMETER: c,,C,,

* denotes configuration values of a module ¢, may be real numbers or strings
EVENT: dl,dz,
¢ denotes events that will be delivered to a module d, may be any predefined string

ACTION : condition ; action,
* denotes actions that will be performed based on condition

Simple Working Example: Reflector
Net

do_redirect (2) (0) {

find_scan (1) (2){ TYPE: ActionHandler
TYPE: ScanDetector EVENT:PUSH
EVENT:TCP_CONNECTION_FAIL INPUT:SRC_IP, scan_result
INPUT: SRC_IP OUTPUT: -
OUTPUT: SRC_IP, scan_result PARAMETER: -
PARAMETER: 5 ACTION: scan_result == 1? REDIRECT:
ACTION: - o FORWARD
/* no actions are defined */ /* if scan_result equals 1, redirect;
) otherwise, forward */
}

Module 1 Module 2

Reflector Net

root@openf lowwms
hd4-eth0 Link encap:Ethernet Huaddr 00:00:00:00:00:04
inet addr:;10,0,0,4 Bcast:10,255,255,255 Hask:255,0,0,0
inetE addr: feB0::200:ff:fe00:4/64 Scopeilink
S 10 0 0 2 UP BROADCAST RUMMING MULTICAST HMTU:1500 Metricil
R¥ packet=:119885 errorsi0 dropped:O overruns:O frame:0
canner oliionsi TX packets:110599 errors:0 dropped:0 overruns:0 carrier:0
19 e —, | collisions:0 txqueuelens1000
- = | R¥ bytes:10733448 (10,7 MB) TX bytes:9722672 (9,7 MB)

collisionsi0 txqueuelen;1000

RK bytes:6243736 (5.2 HB) TX bytes:7281468 (7.2 HB) JostRorentlosimstpoosandadtbon ot top-server.py 45 |

Target 10.0.0.4
Port445 is open

|root@openf lowwm: /program/python# nmap -v -sF -p T:442-446 10,0,0,4

|Starting Mmap 5,00 { http://rmap,org) at 2011-06-21 23:38 PDT

NSE: Loaded 0 scripts for scanning,

i Initiating ARP Ping Scan at 23:38

|Scanning 10,0,0,4 [1 port]

iCompleted ARP Ping Scan at 23:38, 0,25z elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host, at 23:38

ICompleted Parallel DNS resolution of 1 host, at 23:38, 13,03s elapsed
i Initiating FIN Scan at 23:38

|Scanning 10,0,0,4 [5 ports]

Completed FIN Scan at 23:38, 4,82s elapsed (5 total ports)
IHost 10,0,0,4 is up (0,0082s latency),

PORT ST SERVIE.
A v .

(4) Scanner thinks

brt 444 is open

Node: h3

root@openflowwm:”/progran/python# if
h3-eth0 Link encap:Ethernet Huadd
inet addr:10,0,0,3 Boast
inetb addr: feB0:i200:ff:f
UP BROADCAST RUMNING MULTE MTU31500 Metricil

R¥ packets:33092 errors:Q geed:0 overruns:0 frame:0
TH packets333263 errors:0 Spped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

R¥ bytes:3462136 (3.4 MB) T bytes:3475680 (3.4 MB)

442/tcp closed cvc_hostd

ig
0:00:00:00300303
255,255,255 Mask:255,0,0,0
+3/64 Scopeilink

444/tcp openlfiltered snpp
1445/ tcp closed microsoft-ds
h o i~

Yorthes e
IMAC Address: 00:00:00:00:00:04 (Kerox)

Read data files from: Jusr/share/nmap

INmap done: 1 IP address (1 host up) scanned in 18,79 seconds
Raw packets sent: 17 (682B) | Recvd: 11 (442B)

| rootBopenf lowwm: “/progran/pythont |

Hopenflowvm:”/program/python# python tcp_server,py

HoneyNet 10.0.0.3
Port444 is open

Cooperating with Legacy Security
Applications

FRESCO Application k

\ -
(4) QUARANTINE
BRESERDE. " “Loc e \

}» (3) alert level and

FRESCO SEK detected host

\
(5)

NOX

Attacker

BotMiner - Overview

e How to detect botnet C&C channels

— Find C-plane
* Who is talking to whom?
— Flow: SRC IP, DST IP, DST Port, Protocol
— Features
» BPS (bytes per second), FPH (flows per hour)
» BPP (bytes per packet), PPF (packets per flow)
— Clustering based on features

— Find A-plane
* Who is doing what?
— Clients perform malicious activities
» E.g., scanning, spam activity and etc
— Clustering based on malicious actions
» E.g., scan cluster
— Co-Clustering
* Combine results of two clusters to find botnet C&C channels

* Channels showing similar C-plane patterns and performing malicious
actions

BotMiner in FRESCO (Diagram

TCP connection fail or

SRC IP—>p»>

Push
TCP conneclion success ¢ A-Plane Clustering
v v
. If inputl ==1:
Lookup table(inputl) >p - >
If table contains input1: > outputl = input2
outputl =1 s .
output2 = inputl Do scan_detection()
Else: p—>p If scan_detecion() detects
outputl =0 scan: .
output2 = inputl outputl = input2
TCP connection fail or Push
TCP connection success . -Cl rin
C-Plane Clustering 4 Co-Clustering
v v
Co-Cluster(inputl, input2) |
Lookup flow table(SRC IP, DST IP) If Co-Cluster() finds common
Gather flow information(SRC IP, DST IP) p—> IPs:
Find BPS and PPS(SRC IP, DST IP) outputl = 1 >
Cluster(SRC IP, DST IP) output2 = [common IPs]
Output = [cluster results]
Push i
v Action
v
- Actionl = Drop
If inputl == 1:
Do Actionl on output2

_>>

BotMiner in FRESCO (Script)

BM1 (1) (2) { BM2 (2) (1) { BM3 (0) (1) {

EVENT:TCP_CONNECTION_FAIL, | EVENT:PUSH EVENT:TCP_CONNECTION_FAIL,
TCP_CONNECTION_SUCCESS INPUT:BM1-0, BM1-1 TCP_CONNECTION_SUCCESS
INPUT: Source IP OUTPUT: Result INPUT: -
OUTPUT: Result, Inputl PARAMETER:10 OUTPUT: Result
PARAMETER: - ACTION: - PARAMETER: -
ACTION: - } ACTION: -

} }

A-Plane Clustering C-Plane Clustering
l !
BM4 (2) (2) { BMS5 (2) (0) {
EVENT:PUSH EVENT:PUSH
INPUT:BM2-0, BM3-0 INPUT:BM4-0, BM4-1
OUTPUT: Resultl, Result2 OUTPUT: -
PARAMETER:- PARAMETER:-
ACTION: - ACTION: BM4-0 == 1 ?Drop
})
Co-Clustering Action

More ...

* Tarpits

* White Holes

* Scan detector

e P2P detector (P2P Plotter)
* Botnet detector (BotMiner)

* Over 90% reduction in lines of code compared
with their standard implementations

* Already include more than 16 commonly
reusable modules (expending over time)

“FRESCO: Modular Composable Security Services for Software-Defined Networks.” NDSS’13

FortNOX:
A Security Enforcement Kernel
for OpenFlow

New Threat

 SDN apps can compete, contradict, override
one another, incorporate vulnerabilities

 Worst case: an adversary can use a vulnerable
and deterministic SDN app to control the state
of all SDN switches in the network

SDN/OpenFlow Evasion Scenario

Dynamic Flow Tunneling

10.0.0.2 2 10.0.0.3:20; Modify SRC IP to 10,0.0.1
10.0.0.1 > 10.0.0.3:80; Modify DSTIP to 10.0.0.4
| 10.0.0.1 > 10.0.0.4:80; Forward

- - AR
OF controller /(Y
BLOCK 10.0.0.2 = 10.0.0.4:80 - ik

——

(2)

10.0.0.3

l\,\ "

\

1000-0.1 9 10-0-0.4 M

-> 10.0.0.3:80 OF switch ~ (5)

(1)

10.0.0¢
1

Prerequisites for a Secure OpenFlow
Platform

 Must be resilient to
— Vulnerabilities in OF applications
— Malicious code in 3rd party OF apps

— Complex interaction that arise between OF app
interactions

— State inconsistencies due to switch garbage collection
or policy coordination across distributed switches

— Sophisticated OF applications that employ packet
modification actions

— Adversaries who might directly target our security
services to harm the network

Our Contributions

Development of a security enforcement
cernel for the NOX OpenFlow controller

Role-based authorization

Rule conflict detection
Security directive translation

Classic NOX Architecture

PY OF
Apps

| Fytron S)

DN

Send_OpenFlow_Command()

Native C
OF Apps

NOX

e NaEs,

FortNOX Architecture e

[
: Native C | Separate
Process
Security A PY OF ' OF Apps :
ecuri S
Yy ApPp o : I
[
: OF IPC Proxy
[
Actuator ‘ Python SWIG J : |
\ \ ______ / _______ !
\ /
Directive Translator E—

Aggregate Flow Table

Operator Rules

T~ e

FT_Send_OpenFlow_Command

Role-based Source Auth

[State Table Manager] OF Mod Commands
Add (conflict enforced)

SECURITY Rules Modify (conflict enforced)

[Conflict Analyzer ~==» Delete (priority enforced)

OF App Rules

[Switch Callback Tracking J

FortNOX

Switch Callback tracking

ass

Summary of FortNOX

* FortNOX — A new security enforcement kernel for OF networks
— Role-based Authorization
— Rule-Authentication
— Conflict Detection and Resolution
— Security Directive Translation

* Ongoing Efforts and Future Work
— Prototype implementations for newer controllers (Floodlight, POX)
— Security enforcement in multicontroller environments
— Improving error feedback to OF applications
— Optimizing rule conflict detection

“A Security Enforcement Kernel for OpenFlow Networks”. HotSDN’12

Some Demonstrations

« www.openflowsec.org

* Some technical reports and publications
 DEMO videos

— Demo 1: Constraints Enforcement [high res .mov or Youtube!]

— Demo 2: Reflector Nets [high res . mov or Youtube!]

— Demo 3: Automated Quarantine [high res .mov or Youtube!]

* FRESCO/FortNOX beta to be released soon

CloudWatcher:
Network Security Monitoring Using
OpenFlow in Dynamic Cloud Networks

or: How to Provide
Security Monitoring as a Service in Clouds?

Goal

* Provide Security Monitoring as a Service for a
cloud network

e How to Provide

— Routing algorithms

* The algorithms guarantee that specified (static) network
security devices can monitor (dynamic) specific network
flows

— A script language
* Register security devices easily
* Create security policies easily

CloudWatcher

e A new framework

— Provide security monitoring services for large and
dynamic cloud networks

— Detour network packets to be inspected by pre-
installed network security devices automatically

* OpenFlow

— Provide a script to operate this framework

Operating Scenario

{ID, TYPE, LOCATION, MODE, Func}

Register Security Devices
{1, NIDS, 8, PASSIVE, Detect HTTP}

!

Administrator Create Security Policies = {FLOW CONDITON, DEVICE SET}
. l i {10.0.0.* > *:80, {1}}
Parse Security Policies

Create Routing Rules \

Translate Routing Rules into
\ OpenFow Rules y Router (Device ID = 8)

NIDS (ID = 1)

[Enforce Flow Rules into
Routers

How to Control Flows

e 4 approaches
— Multipath naive
— Shortest through
— Multipath shortest
— Shortest inline

R2)—(R3)—Ra
o/

- Sample network -
S: start node, E: end node
R: router, C: security device

Oa0

Selected Controlling Algorithm
Example: Shortest Through

Find the shortest path passing through R4
— Shortest path between S and R4

— Shortest path between R4 and E

— Path:S> R1 > R2>R4—>R4>R62E

It considers the security device without producing
redundant paths

However, it may take more time to deliver packets

Summary of CloudWatcher

CloudWatcher provides a new framework to
monitor cloud networks

— With the help of the SDN technology

A cloud administrator can select algorithms
based on network status

A cloud administrator can monitor his network by
writing simple scripts

Work in progress; a position paper in NPSec’12

Summary of This Talk

SDN is a new technology, and security can be a new
killer app

— SDN is impactful to drive a variety of innovations in
network security

We investigate the possibilities of security as an app
and security as a service

We propose key technologies to enable SaaA and SaaS
— FRESCO

— FortNOX
— CloudWatcher

Let’s contribute together to SDN and Security!

Questions & Answers

Http://faculty.cse.tamu.edu/guofei

