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Motivation: Optical Communications
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o Scenario: High data-rate (~ 40 Gbps) communications over

long-haul fibre optic link.

o A train of pulses, corresponding to bits, is sent across an

optical fibre.

o Each bit is allocated a time slot of some duration 7T', and a ‘1’

or a ‘0’ is marked by the presence or absence of a pulse.
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/ 4-Wave Mixing (The Ghost Pulse Effect) \

o Interaction between pulses in the kth, [th and mth time slots
(k,l, m need not all be distinct) pumps energy into the
(k +1 — m)th time slot.

o If the (kK + ! — m)th time slot did not originally contain a
pulse, the transfer of energy creates a spurious “ghost” pulse
there, thus changing the original ‘0’ to a ‘1’.

o This effect may propagate — ghost pulses may interact with

\ other pulses to create more ghost pulses. .. /
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Ghostbusting: Can Coding Help?

Some phase modulation schemes have been proposed in the
optics literature to deal with the ghost pulse effect —
eg., Liu, Wei et al (2002), Alic & Fainman (2002).

Ghost pulse formation is phase-sensitive. Phase modulation
schemes work by removing phase coherence in the pulses.

Is it possible to use codes to alleviate the ghost pulse effect?

Can such codes be efficient in terms of rate and complexity?

Related work — Vasic, Rao et al (2004).
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/ Basis for a Coding Scheme \

Binary data sequence, bgby ...bpr_1.
Coded sequence (also binary), coc1...cny_1-

Suppose the coded sequence can be constructed in such a
way that no ghost pulses can be created at positions 5 such
that c; = 0.

Example of such coded sequences are the all-ones sequence or

sequences of alternating zeros and ones.

Such sequences can be transmitted across the optical fibre

\ without being corrupted by ghost pulse formation. /
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The Binary Ghost Pulse (BGP) Constraint

Definition [BGP constraint]:

A sequence, x = (zox1...Tn—1) € {0,1}*, n € ZT,
is BGP-constrained if V k,l,m € [0,n — 1]

such that xp, = x; = xm = 1,

k—l—l—mE[O,n—l] — Tg4i—m = L.

o Sa(n) 2 {xe€{0,1}" : x is BGP-constrained}.

o 52 é UZO:1 Sa(n)
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/ Ghostbusting Scheme #1 \

Any x € S2 can be transmitted across an optical fibre

without being affected by ghost pulses.

To send binary data sequence bgby ...bps_1, encode it into a
sequence cgci ...CN—_1 € Sa.

The efficiency (coding rate) of such a scheme is limited by
the capacity of So, which is defined to be

1
fo — i 19821S2(n)

n— 00 n
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Unfortunately ...

Fact: (easily proved by an inductive argument)

x € So iff supp(x) forms an arithmetic progression (A.P.)
(supp(x) = {k : z # 0}).

Consequently, |S2(n)| = O(n?), and hence,

1
Hy = lim —log, [S2(n)| = 0.

n—o00 n,

Thus, the BGP constraint is too strong.

Coding schemes using BGP-constrained sequences are

\ doomed to be inefficient. /

DIMACS Workshop 8 March 26, 2004




4 N

Weakening the Constraint

Pulse triples that are relatively close together in the
transmitted pulse train cause the most severe problems.

The interaction between pulses that are sufficiently far apart
in the pulse train is weak.

In a typical optical communication scenario, pulses that are
more than 10—12 time slots apart do not contribute
significantly to ghost pulse formation.

So, we weaken the BGP constraint by disregarding the
interactions between 1’s that are separated by more than
some fixed distance, t.

\_ /
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/ The BGP(t) Constraint \

Let t be a positive integer.

Definition [BGP(t) constraint]:

A sequence, x = (zox1...Tn—1) € {0,1}", n € ZT,
satisfies the BGP(t) constraint if V k,[,m € [0,n — 1]
such that x, = r; = z,,, = 1 and

maX{|k o l|7 |l o m|7 |m R k|} < t,

k—l—l—mE[O,n—l] —  Tg4i—m = L.

In the BGP(t) constraint, only indices that are within a distance

th from each other play a role in the constraint. /
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The BGP(t) Constraint
o So¢(n) 2 {xe€{0,1}":x is BGP(t)-constrained}.
o Sat 2 S, S2.4(n).

For moderate values of t (¢’s of 10—12 or higher), sequences in
Sao.+ are only weakly affected by ghost pulses, and so can be
used as codewords to transmit data across the fibre optic link.

\_ /
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Ghostbusting Scheme #2

To send binary data sequence bgby ...bys_1, encode it into a

sequence coci ...CN—1 € S2.¢.

The efficiency (coding rate) of such a scheme is limited by
the capacity of Sa ¢, which is defined to be

1 S
Moy tim [982152:00)

n— o0 n
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(ii)

-

successive ones are separated by at least t zeros.

Such sequences are unaffected by the BGP(¢) constraint.

sequences X such that supp(x) forms an arithmetic
progression with common difference d < t.

This is forced by the BGP(t) constraint, for the same
reasons as in the case of BGP-constrained sequences.

For any n, there are at most (¢t + 1)2 such sequences of

length n.

Determining Hy;:
The Structure of S5

So.+ consists of two kinds of sequences —

(i) (t,00)-constrained sequences: sequences in which any two

~
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Determining Ho,

It thus follows that H2 ; = Ct , where C} o is the capacity
of the well known (¢, 00) constraint, defined in the usual

manner:
, 1
Ct oo = lim —log, St co(n)|
n—oo n
Hence, for any t € ZT,
Hy ¢+ = logy pt,

where p: is the largest-magnitude root of the polynomial
Pl L —
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Hy i for 1 <t <20

t Ho ¢ ¢ Ho ¢

1 0.6942 11 | 0.2301
2 0.5515 12 | 0.2180
3 0.4650 13 | 0.2073
4 0.4057 14 | 0.1977
5 0.3620 15 | 0.1891
6 0.3282 16 | 0.1813
7 0.3011 17 | 0.1742
8 0.2788 18 | 0.1678
9 0.2600 19 | 0.1618
10 | 0.2440 20 | 0.1564
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/ Encoding & Decoding \

BGP constraint:

Enumerative coding based on the fact that

i(n + 2)? n even

Sa(n)| =
52(n) %(n+1)(n—|—3) n odd

BGP(t) constraint:

Essentially nothing lost by encoding into the (¢, co)
constraint instead of the BGP(¢) constraint.

Using constrained coding techniques, we can design efficient
finite-state encoders and sliding-block decoders for the (¢, 0c0)

\ constraint. /
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/ A Different Approach: Phase Modulation \

At transmitter end, apply phase shift of 7w to certain pulses.

Interaction of pulses with opposite phases suppresses ghost

pulse formation.
[Liu, Wei et al. (2002), Alic & Fainman (2002)]

Effectively, this phase modulation converts a binary sequence

bob1 ...bps_1 into a ternary sequence cgcy...cpr—1,
c; € {—1,0,1}, such that b; = |c¢;].

We shall assume that the most severe problems are created

by situations when there are indices k, [, m such that

\ ck =¢c =cm = =x1 and cg4;—m = 0. /
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The Ternary Ghost Pulse (TGP) Constraint

Definition [TGP constraint]:

A sequence, x = (zox1...Tn—1) € {—1,0,1}", n € ZT,
is TGP-constrained if V k,l,m € [0,n — 1]

such that zp, = ¢; = z,,, = *1,

k+l—-mec0,n—1 = zgyi—m #0.

o Ts3(n) 2 {xe€{-1,0,1}":x is BGP-constrained}.

o T3 2 Un=1T5(n).
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/ Ghostbusting Scheme #3: \

Combining Coding & Phase Modulation

Any x € T3 can be transmitted across an optical fibre
without being severely affected by the ghost pulse effect.

To send binary data sequence bgby ...bps_1, encode it into a
sequence cgcl ...cnN—1 € 15.

\_ /
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/ Well, Not Quite .. . N\

In reality, an optical receiver can only detect the magnitude
of the received signal, not its phase.

In other words, the receiver cannot distinguish between a 1
and a —1.

So, if the transmitted ternary sequence was cgcy ...cnN—_1,
then the receiver only sees the sequence |col|c1]- .. |en—1].

As a result, cannot use two ternary sequences differing only
in sign (phase) to encode two different binary sequences.

This means that coding and phase modulation must be done

\ separately. /
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Ghostbusting Scheme #3

(Coding + Phase Modulation)

S3(n) 2 {y € {0,1}" : y = |x| for some x € T3(n)}.
Ss 2 Une,

Schematic of proper encoding procedure for scheme using

S3(n).

TGP-constrained sequences:

~

ao al o o o aM_l boblo o o bN_l Ph COCI. o o cN_l

: Encoder > Modulator >

binary data sequence in S3 sequence in T3
sequence .
Optical
fibre
- ccoder =< (Demodulator)< /
21 March 26, 2004
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Capacity of S

The efficiency (coding rate) of Scheme 3 is limited by the
capacity of S3, which is defined to be

1 S
b — 1im 1082153(0)

n—r 00 n

A classification of sequences in S3, similar to that obtained
for sequences in S and S2 ¢, would help us determine Hs.

Unfortunately, this is a much harder problem, which we have
not been able to solve completely.

\ More on this later. /
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/ Relaxing the TGP constraint \

It makes sense to relax the TGP constraint as was done for
the BGP constraint.

As before, only indices that are within a distance of ¢ from
each other are allowed to play a role in the constraint.

Definition [TGP(t) constraint]:

A sequence, x = (zox1...Tn—1) € {—1,0,1}", n € ZT,
satisfies the TGP(t) constraint if V k,l,m € [0,n — 1]

such that p, = ; = z,,, = =1 and
maX{lk o l|7 |l o m|7 |m o k|} < t,

\ k+l—me0,n—1 — Ti+1—m 7 0. /
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/ Ghostbusting Scheme #4 \

Define T3 ¢(n) and T3+ = |J,—_; 73,:(n) as usual.
S3¢(n) 2 {y € {0,1}" : y = |x| for some x € T3 ¢(n)}.

S3.¢ 2 U2, S3(n).

Schematic of encoding procedure:

aoal coe aM_l bobl. o bN—l Ph Cocl. . CN—l
. > Encoder > Mo d?lslg tor -
binary data sequence in 53 ¢ sequence in 73
sequence ’ ’ Optical
fibre
ao al coe aM_l bobl. o bN—l Receiver Cocl. eo C N-1

— Decoder | —= (Demodulator)<

\_ /
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/ The Capacity of S3; \

The capacity of S3 ¢ is defined to be

logs, |S

n— 00 n

This capacity is useful for two reasons:

(i) It indicates how efficient coding schemes using
TGP (t)-constrained sequences can be.

(ii) It is an upper bound on Hj3, the capacity of the TGP
constraint. In fact,

H3 — inf H3 t — lim Hg,t.
t>1 ’ t— 00

So, the H3 ¢’s form a sequence of increasingly tight
\ upper bounds on Hs.
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/ Classification of Sequences in 53 ; \

As was done for the BGP-constrained systems of S2 and Sa ¢,
we attempt to classify the sequences in S3 ;.

The classification can then be used to determine H3 ;.

Also, such a classification can provide us with the tools to
design efficient encoders and decoders for the TGP(t)
constraint.

This also turns out to be a difficult problem in general.
The cases t = 1,2 have been completely analyzed, but higher

\ t’s remain open. /
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The TGP(1) constraint on a ternary sequence
x = (o1 ...Tn_1) is equivalent to the following condition:

Tp =Tk41 70 — xp_1 70, zp_2 #0

This is seen to be equivalent to the condition that x does not
contain 011, 110, 011 or 110 as a subblock. (1 = —1.)

We can easily construct a “phase modulation” function that
maps an arbitrary binary sequence to a ternary sequence
satisfying the above.

This shows that S3 1(n) = {0,1}", and hence,

logy |53,1(n)] _

\ Hg,l = lim 1. /
N — 00 n
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Theorem:

-

Let F2 = {011100,001110,001111100}.

A finite-length binary sequence, y, is in S3 2 if and only if
y contains no member of F2 as a subblock.

Remarks on the proof:

Necessity is relatively easy to show.

Sufficiency is shown by an explicit construction of a “phase
modulation” mapping that takes the binary sequence y to a
ternary sequence satisfying the TGP(2) constraint.

~

/
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Corollary:

H3 2 = log, p, where p is the largest-magnitude root of the
polynomial 210 — 229 4 25 — 24 4223 — 22 — 22 4+ 1.

Numerically, H3 2 ~ 0.96048.

Proof:

@%‘%’?’@‘%ZQ

%é@%>%
N y
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Encoding & Decoding

aoal o o o aM_l

bgby... by_g

~

T

Phase

COCI. o o cN_l

—

Modulator

sequence in S3
9

. > Encoder
binary data
sequence
ao al o o o aM_l
—-< Decoder

bgby... by_g

sequence in 77 ¢

Optical
fibre

-

Phase modulator: Explicit mappings given by proofs.

Receiver

COCI. o o cN_l

(Demodulator

I

Encoder/Decoder: not needed for t = 1;

for t = 2, can be derived from

graph on previous slide.

/
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Comparing BGP(¢) and TGP (?)
t=1
Hy1 = 0.6942
H31 = 1
t =2
Hoo = 0.5515
Hso = 0.9605

\_ /
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/ S5+ for Arbitrary ¢ \

The analysis for ¢t = 1,2 does not easily generalize to
arbitrary t.

A systematic approach:

We construct a deterministic presentation of the constrained
system 53 ¢.

A presentation of Ss3 ¢ is a finite, directed, labeled graph, G,
such that S3 ¢ is precisely the set of sequences obtained from
reading the labels of finite paths in G.

A deterministic presentation is one in which the outgoing

\ edges at each vertex have distinct labels. /
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/ S3.¢ for Arbitrary ¢ \

Given a deterministic presentation, Gz ¢, of S3 ¢,
we can directly compute its capacity, H3 ¢, and

design encoders/decoders.

The capacity of S3 ¢ is given by
H3 ¢ = logg A(As,t),

where A\(Agz ;) is the largest eigenvalue of the adjacency
matrix, Az ¢, of G3 ;.

Systematic procedures for constructing finite-state encoders
and corresponding decoders can be found in the constrained

\ coding literature (see e.g., Marcus, Roth & Siegel in HCT)./
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/ Constructing Gs ; \

Define the finite, directed, labeled graph, I'3 ; as follows:

Vertices: All ternary sequences (£ —tX—t41...%0-.-T2¢t)
such that for all k,1,m € [0, t],

Ty =T =Tm =*£1 = Tgi;—m #0

Edges: An edge goes from (z_+T_¢41...T2¢) to

(BBt ... Bop) iff

—tZT—t41 ... T2t—1)

>

(T—t41T—t42...72t) = (

Edge labels: Above edge labeled by Z2+ € {—1,0,1}.

This is a deterministic presentation of the constrained

\ system, 73 ;, of TGP(t)-constrained ternary sequences. /
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Constructing G

From I'3 :, derive the graph é\g,t by replacing each edge label,
r € {—1,0,1}, in T's ¢, with its absolute value, |z| € {0,1}.

QAg,t is a presentation of S3 :, but it is no longer deterministic.

Apply the subset construction method to ég,t to obtain a
deterministic presentation, G3 ¢, of S3 ;.

Main Drawback:

The resultant G3 : has at least 29" vertices
(and this is a vast underestimate).

\_ /
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/Some Notes on the Full-Blown TGP constraint\

We extend the definition of the constraint to bi-infinite
sequences, to gain some insight into the finite-length case.

Definition [TGP constraint]:

A ternary sequence, X = (T).cz € {—1,0, 1}%, is
TGP-constrained if V k,l, m € supp(x),

Tk =T =Tm = ZThti—m # 0.
[Note: supp(x) = {k : xx # 0}.]
o T3 2 {x€{-1,0,1}%: x is TGP-constrained}.

\o Sa - {y € {0,1}% : supp(y) = supp(x) for some x € T3} /
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/ Classification of Sequences in 53 \

We use results from the branch of mathematics known as
Ramsey theory to analyze the structure of sequences in S3.

Theorem 3:

Let y € {0,1}% be aperiodic. Then, y € S if and only if
supp(y) is one of the following:

(i) a set with either 1 or 2 elements;
(ii) (kZ + 1)U {j} for some k € ZT, 1 € [0,k — 1],
and j € Z, j Z1i (mod k);

(iii) (3tZ + 1)UV for some t € ZT, i € [0,3t — 1],
andV CZ, |V|=2,V={t+1,2t+ i} (mod 3t).

Consequently, any binary sequence y € S; can be made

\ periodic by changing at most two 1’s to 0’s. /

March 26, 2004
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Periodic Sequences in S5;

This is still work in progress.

We have a complete classification of sequences of
prime period in S3.

Theorem:

Let y € {0,1}* be periodic with fundamental period p prime.
Then, y € S5 iff one of the following two conditions holds:

(i) the fundamental period of y contains at most two 1’s;

(ii) p=>5 and y is (01111)% or one of its shifts.

\_ /
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/ The finite-length case: \

S3(n)| for 1 <n < 18

n | [S3(n)| || n | |S3(n)]
1 2 11 | 501
2 4 12 | 705
3 8 13 | 937
4 16 14 | 1248
5 32 15 | 1609
6 60 16 | 2078
7 | 100 17 | 2591
8 162 18 | 3245
9 | 240

—
)

\_ /

DIMACS Workshop 39 March 26, 2004




-

Hs =

Conjecture

]
L logy|S3(n)| _

N — 00 n

0

/
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Open Problems

o How effective are these codes in actually mitigating the ghost

pulse effect?
o Determining Hg, H3 ;.

o Designing practical and efficient encoders/decoders for these

codes.

\_ /
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