

Toward the Optimal Bit Aspect Ratio in Magnetic Recording

William E. Ryan

Associate Professor The University of Arizona

with contributions from Fan Wang, Roger Wood, and Yan Li

March 25, 2004

Outline

Background

- **#** Channel Model
- **#** Approach for Shannon Codes
- **#** Optimal Code Rates for Shannon Codes on the Lorentzian Channel
- ₭ Approach for LDPC Codes
- **#** Optimal Code Rates for LDPC Codes on the Lorentzian Channel
- ₭ On the Optimal Bit Aspect Ratio
- **#** Concluding Remarks

Background

Coding on a magnetic recording channel: Lorentzian model

due to ISI, the code rate loss is R² -- on the AWGN channel it is R
on the AWGN channel, performance improves with decreasing code rate; on ISI channels such as the Lorentzian, it does not

Background (cont'd)

In [Ryan, Trans. Magn., Nov. 2000] we examined optimal code rates empirically for specific parallel and serial turbo codes

Channel Model

₭ Lorentzian model (in AWGN)

$$r(t) = \sum_{k} \frac{1}{2} a_k s(t - kT_c) + w(t)$$

where $s(t) = h(t) - h(t-T_c)$ is the dibit is AWGN with spectral density $N_0/2$ and h(t) is the Lorentzian pulse

$$h(t) = \sqrt{\frac{4E_i}{\pi \ pw_{50}}} \ \frac{1}{1 + (2t \ pw_{50})^2}$$

E_i = the energy per isolated Lorentzian pulse h(t) and pw_{50} is its width measured at half its height

Channel Model (cont'd)

applying a whitened matched filter to r(t) leads to the discrete-time equivalent model depicted below

$$a_{k} = \pm 1$$

$$X_{k}$$

$$1 - \frac{1}{2}\sqrt{E_{dibit}} f(D)$$

$$Y_{k}$$

$$n_{k} \sim \eta(0, N_{0}/2)$$

₭ where

∑ E_{dibit} is the energy in s(t), ∑ f(D) is the minimum phase factor in the T_c -sampled autocorrelation function of s(t), R_s(D) ∑ $\sum_k f_k^2 = 1$

Approach for Shannon Codes

Cur goal is to determine optimal code rates for this channel for both Shannon codes and LDPC codes.

Approach for Shannon Codes (cont'd)

possibly better is data such as that in the figure below

Approach for Shannon Codes (cont'd)

- **%** can now use the result of Arnold-Loeliger (ICC'01) (also, Pfister-Siegel, GC'01) to compute the achievable information rate of the binary-input ISI channel $\frac{1}{2}\sqrt{E_{dibit}} f(D)$ assuming iid inputs
- ***** Note by computing the information rate for $\frac{1}{2}\sqrt{E_{dibit}} f(D)$, we do not assume PR equalization. Rather, optimal (ML) detection is assumed.
- **K** Note also that we use E_i / N_0 as our SNR measure

Results for Shannon Codes

\mathbb{H} Note I_{xy} is in units of *information bits* channel bit

- **#** we would like a capacity measure relative to a physical parameter of the channel, such as *info bitsl inch* (along a track)
- **#** *info bits/pw*₅₀ is particularly convenient:

 \square note $S_c = pw_{50}/T_c$ may be regarded as *channel bits*/ pw_{50}

 \bigtriangleup (Example: $S_c = 3 \rightarrow 3$ *channel bits*/ pw_{50})

define a new information rate

$$I'_{xy}\left(\frac{\text{info bits}}{pw_{50}}\right) = I_{xy}\left(\frac{\text{info bits}}{\text{channel bit}}\right) \cdot S_c\left(\frac{\text{channel bits}}{pw_{50}}\right)$$

EXAMINATION OF THE DEVIATION OF I(X; Y) WITH κ_{max}

S_c	κ_{max}	L	$E_i/N_0~(\mathrm{dB})$	I(X;Y)	$\%\Delta_{max}$
3	18	15	3	0.1368	
	19			0.1328	3.04
	23			0.1353	
	19		8	0.3057	
	25			0.3025	4.75
	30			0.3169	
	18		13	0.6264	
	25			0.6211	1.53
	30			0.6306	

Examination of deviation of I(X;Y) with $R_s(D)$ truncation parameter κ_{max}

Approach for LDPC Codes

Extrinsic information transfer (EXIT) chart

provides a simple way of determining the capacity limit (or decoding threshold) for a specific coding scheme.

describes the flow of extrinsic information through SISO processors (detectors/decoders) operating cooperatively and iteratively.

Approach for LDPC Codes (cont'd)

possibly better is data such as that in the figure below

Approach for LDPC Codes (cont'd)

EXIT chart for channel density Sc=1/3 and LDPC code rate 0.61

Results for LDPC Codes

Information rate I(X;Y) for Lorentzian channel versus channel density - Shannon codes and LDPC codes.

Results for LDPC Codes (cont'd)

Scaled Information rate I'(X;Y) for Lorentzian channel versus channel density - Shannon codes and LDPC codes.

Results for LDPC Codes (cont'd)

Results for LDPC Codes (cont'd)

On the Optimal Bit Aspect Ratio

The information-theoretic areal density may be computed via

 I_{areal} (bits/nm²) = I'_{XY} (bits/PW₅₀) / $[L_{50}$ (nm/PW₅₀) x TW⁻¹ (tracks/nm)]

where L_{50} is the length of PW₅₀ in nm and TW is the track width.

- It is well-known that the SNR along a track is proportional to the bit-length² under the Lorentzian model (Bergmans, Immink)
- Cone may argue that at the optimal track density (which maximizes areal density), SNR will be proportional to the bit-width² as well (let bit-width = TW):

 $SNR = \alpha TW^2$

Optimal Bit Aspect Ratio (cont'd)

Combining these two equations yields

$$I_{areal} = \sqrt{\alpha} \cdot I'_{xy} / \left(L_{50} \sqrt{SNR} \right)$$

% Since α and L_{50} are constants dependent on a specific hard disk drive, we define a normalized areal density measure

$$I_{areal,norm} = I_{areal} / (\sqrt{\alpha} / L_{50}) = I'_{xy} / \sqrt{SNR}$$

We may plot $I_{areal,norm}$ as a function of S_c (since I'_{xy} is a function of S_c) and the normalized track width $\sqrt{\alpha}$ TW (since \sqrt{SNR} in the previous equation may be replaced by $\sqrt{\alpha}$ TW).

Optimal Bit Aspect Ratio (cont'd)

 $I_{areal,norm}$ is maximized at $TW_{norm} = 3.4$ and $S_c = 2.3$.

We could convert $I_{areal,norm,max} =$ 0.433 to a density in bits/in² by scaling this value by the factor $\sqrt{\alpha} / L_{50}$, if known.

Optimal Bit Aspect Ratio (cont'd)

Even in the absence of knowledge of a density measure in bits/in²,
 this analysis yields the following operating values at the optimum:

SNR: $E_i/N_0 = 10.5 \text{ dB}$ Code rate: R = 0.62 Channel density: $S_c = 2.35$ User density: $S_u = 1.45$

For comparison, today's (approximate) values:

SNR: $E_i/N_0 = 18 \text{ dB}$ Code rate: R = 0.95Channel density: $S_c = 3.0$ User density: $S_u = 2.85$

THE UNIVERSITY OF ARIZONA. TUCSON ARIZONA

- **#** These results serve as a guide to choosing the optimal operating parameters (linear density, bit aspect ratio, code rate, etc.).
- His work can be extended to include media noise and/or perpendicular recording.
- It can also be extended to codes which do not have iid inputs (e.g., Markovian codes).
- Cone of the implications is that work toward increased areal densities should target bit-width, not bit-length, leading to new challenges in track servo design.

