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The shock scaffold is a hierarchical organization of the
medial axis (

���
) in 3D consisting of special medial

points, and curves connecting these points, thereby form-
ing a geometric directed graph [7]. We will describe a new
method for segregating the shock scaffold ( ��� ) for an un-
organized cloud of points in 3D in two sub-groups, one of
which is used to mesh the point generators into a surface
interpolant.1 In the practical scenario where point genera-
tors are sampling the surfaces of 3D objects, we expect in-
tuitively that part of the symmetry structure in the resulting
��� closely approximates the original surface symmetries,
while the remaining part arises from symmetries pertaining
to the interaction of nearby sampled points. (e.g., compare
Figure 1 (c) and (e-f)).

We segregate an initial ��� in two sub-groups in three
main steps: (S1) rank shock curves by a geometric mea-
sure of the triangle (e.g., area) interpolating their associ-
ated triplet of generators; (S2) select a threshold to obtain
a first segregation of the ��� in the “initial surface and me-
dial scaffolds;” (S3) examine the topology of each surface
interpolant and clean-up the resulting surface (Fig.1).

The construction of the initial segregation of ��� in S2 is
a “one shot,” i.e., non-iterative, process. We march through
the sorted list of shock curves of the ��� until an end condi-
tion is reached, e.g., all generators are interpolated as ver-
tex of at least one surface triangle. In general, whichever
(global) threshold we pick, we will have certain triangles
which are not part of the desired interpolant to the surface.
Typically, these extraneous triangles occur near concave,
saddle-like regions, necks of the shape, i.e., where remote
surface patches can be arbitrarily near each other. Our
strategy is then to seek in S3 triangles which if removed
do not change the connectivity of adjacent triangles, i.e.,
lead to no new holes in the mesh (Figure 2). Once this
triangle removal step is completed, we obtain a final sur-
face scaffold, ����� , and a final medial scaffold, ���
	 . Each
shock curve of ���
� has an associated triangular surface in-
terpolant; together, these triangles constitute the final sur-
face interpolant, � . An optional fourth step (S4) uses ���
	
to construct coarse-scale axial and and rib curves (Figure

1We join to this abstract a draft paper, which covers most computa-
tional aspects of our method (see [7] for more details).
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Figure 1: Example of a �
 before and after segregation.
(a) A set of 3200 generators are uniformly distributed on a
pair of planes, one of which is deformed by an elongated
Gaussian kernel. (b) The �� for (a) where those shock
curves which shoot off to infinity are not shown, for greater
visibility. (c) A side-view of the surface scaffold . (d) The
automatically reconstructed surface arising from the shock
curves in (c) and their associated triangular interpolants. (e)
The medial scaffold structure which approximates the ���
of the original continuous surface. NB: The “sum” of (c)
and (e) gives back (b). (f) The largest components of the
medial scaffold. The recovered “axial” shock curve sits at
the intersection of the two large medial sheets, one vertical
due to the pull of the Gaussian bump, which is bounded by
a shock curve corresponding to the ridge of the bump.
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Figure 2: Top row: Outside and inside views of the top of
the “two planes with Gaussian bump” dataset which was
used in Figure 1. Bottom row: Front and back views of the
face of Michelangelo’s David (dataset shared by the Graph-
ics group of Stanford University [6]). Color code: extrane-
ous triangles are shown in yellow, remaining pre-surface
interpolants in blue, and generators as white dots. Notice
how extraneous triangles accumulate near ridges, like at
the inside of the elongated Gaussian bump (top-left), and
for the lips, eye lines, neck, etc., of the David.

1.(f)) approximating those of the
���

of � [7].
Our approach makes no special assumption about the

input generators and requires no user interaction. In par-
ticular we do not require a priori knowledge of the local
geometry of the surface at each generator locus as is done
in approaches based on differential geometry [3, 5] or on
level sets [9]. Our approach is most closely related to those
based on the use of the Voronoi diagram [2, 1, 8, 4]. How-
ever, there are two main assumptions in these recent “com-
binatorial” approaches for solving the problem of surface
reconstruction from point clouds: (i) assume some local
knowledge of the geometry of the surface (such as nor-
mals), or (ii) assume some knowledge of proximity to an
idealized

���
, which in effect imposes strict requirements

on the sampling density.
Our presentation consists of three main parts. (i) We

summarize the definition of the ��� , which is based on the
notion of contact with maximal spheres and singularities of
shock flows [7, Ch.3], and explain its relation to the

���

and Voronoi diagram. (ii) We present the main aspects of
our new method to segregate the shock scaffold of unorga-
nized points clouds in 3D [7, Ch.6]. (iii) We illustrate the

Figure 3: Examples of surface recovery (Left : shaded tri-
angulation, Right : triangular wire-mesh) from unorganized
data (white dots on left). Top: (i) human aorta (CT scan,
7691 points), (ii) Michelangelo’s David (laser scan, 31043
points).

application of this technique on artificial and real datasets
from the domain of cultural heritage and medical imaging
(Figure3), and discuss some of its present limitations.
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