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Introduction
We use spectral partitioning to reconstruct a watertight surface from
point cloud data. This method is particularly effective for noisy and
undersampled point sets with outliers, because decisions about the
reconstructed surface are based on a global view of the model.

Algorithm
To reconstruct a surface from an unorganized point set S, we create
a point set S+ that adds the vertices of a cubical bounding box, then
compute the Delaunay triangulation T and Voronoi diagram Q of
S+. We form a graph G whose nodes are vertices of Q, and use
a spectral graph partitioning algorithm to cut this graph into two
pieces, the inside and outside subgraphs. Because every Voronoi
vertex in Q represents a tetrahedron in T , these labels are affixed to
the tetrahedra too. If the points in S are sampled densely enough
from a simple closed surface, then the surface is approximated rea-
sonably well by the faces of T that separate the inside tetrahedra
from the outside tetrahedra.

Our algorithm first identifies the set V of Voronoi vertices called
poles [Amenta et al. 2001], which are likely to lie near the medial
axis of the surface being recovered. The algorithm then constructs
a sparse pole graph G = (V,E). The set E of edges is defined as
follows. For each sample point s with poles u and v, (u,v) is an
edge in E. For each edge (s,s′), of the Delaunay tetrahedralization
T , the edges (u,u′), (u,v′), (v,u′), and (v,v′) are all edges of E,
where u and v are the poles of s, and u′ and v′ are the poles of s′.

The edge weights are based on observations of Amenta et
al. [2001]. If a sample s has a long, thin Voronoi cell, the like-
lihood is high that its poles u and v are on opposite sides of the
surface. We assign a negative weight to edge (u,v). Let tu and tv
be the tetrahedra in T whose duals are u and v. The circumscrib-
ing spheres of tu and tv intersect at an angle φ . We assign (u,v)
a weight of wu,v = −e4+4cosφ . Next, let (u,v) be an edge of E
that is not assigned a negative weight. We assign (u,v) a weight of
wu,v = e4−4cosφ . If φ is close to 180◦, u and v are likely to lie on the
same side of the surface, so we use a large, positive edge weight.

We know a priori that tetrahedra with vertices on the bounding
box must be labeled outside. So, we fix their labels prior to the
partitioning step by collapsing the poles dual to such tetrahedra into
a single supernode z, yielding a modified graph G′.

From the modified pole graph G′, we construct a pole matrix L.
(L is often called the Laplacian matrix.) L is sparse and symmetric
and has one row and one column for each node of the graph G′. For
each edge (u,v) of G′ with weight wu,v, the pole matrix L has the
entries Li j = −wu,v and L ji = −wu,v. The diagonal entries of L are
the row sums Lii = ∑ j 6=i |Li j|.

We partition G′ by finding the eigenvector x associated with the
smallest eigenvalue λ of the generalized eigensystem Lx = λDx,
where D is a diagonal matrix whose diagonal is identical to that of
L. Because L is a sparse matrix, we compute the eigenvector x us-
ing TRLAN, an implementation of the Lanczos algorithm [Pothen
et al. 1990]. When this method is applied to smooth, well-sampled
surfaces, we find that the eigenvector x is relatively polarized: most
of its entries are clearly negative or clearly positive, with few en-
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Figure 1: Reconstruction of the Stanford dragon from noisy raw
data that includes outliers (upper right). At lower right are the
sorted entries of the eigenvector used to reconstruct the model.
1,770,421 input points, 3,031,078 triangles, 229 minutes.

tries near zero. Noisy models are more ambiguous; see Figure 1.
Each entry of the eigenvector x corresponds to one tetrahedron of
T . Suppose the entry corresponding to the supernode z is positive;
then the nodes of G′ whose entries are positive are labeled outside,
and the nodes whose entries are negative are labeled inside.

Spectral partitioning labels each tetrahedron whose dual Voronoi
vertex is a pole. To label a tetrahedron t whose dual vertex v is not
a pole, we examine the poles of its four vertices. If t has a vertex u
that has a pole p that is labeled inside, and ∠vup < 90◦, we label t
inside. Otherwise, we label t outside.

After all the tetrahedra are labeled, a final step searches for lo-
cations where the surface is non-manifold, and attempts to make
the surface manifold by relabeling selected tetrahedra from inside

to outside.
We output every triangle at which an inside tetrahedron meets an

outside tetrahedron. This is the reconstructed surface.
An alternative is to use power cells (all of which dualize to poles)

instead of Delaunay tetrahedra, like Amenta et al.’s power crust al-
gorithm. Power cells offer better reconstruction of sharp corners,
but pay for it by generating many extra vertices in the surface.

The goal of our algorithm is to produce the same labeling as
the provably good power crust algorithm when the surface is well-
sampled and the samples are noiseless, but to behave more robustly
otherwise. Because the spectral partitioner has a global view of
the samples, it can fill large holes and correct for noise and under-
sampling in circumstances where the local labeling algorithm that
Amenta et al. use fails. Outliers are usually removed: if every tetra-
hedron adjoining an outlier is labeled outside (or every tetrahedron
is labeled inside), the outlier does not appear in the final surface.
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