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Abstract

We investigate how stochastic reaction processes are affected by external perturbations. We
describe an extension of the deterministic metabolic control analysis (MCA) to the stochastic

regime. We introduce stochastic sensitivities for mean and covariance values of reactant concen-
trations and reaction fluxes and show that there exist MCA-like summation theorems among

these sensitivities. The summation theorems for flux variances are shown to depend on the size of
the measurement time window, within which reaction events are counted for measuring a single
flux. The degree of the dependency can become significant for processes involving multi-time-scale

dynamics. This dependency is shown to be closely related to the power-law scaling observed in
flux fluctuations in other kinds of complex networks. We propose a systematic way to control

fluctuations of reactant concentrations while minimizing changes in mean concentration levels.
Such orthogonal control is obtained by introducing a control vector indicating the most-sensitive

control strength and direction. We also propose a possible implication in the control of flux
fluctuation: The control distribution for flux fluctuations changes with the size of the time window

for single flux measurements. When a control engineer applies a specific control operation on a
reaction system, the system can respond in a way that depends on the time window size that is

opposite to the one expected.

Metabolic control analysis (MCA) [1] and the closely related biochemical systems theory [2]
have greatly enhanced our ability to understand the dynamics of cellular networks. However,

these approaches are based on a deterministic picture of cellular processes and in recent years it
has become very clear that many networks, for example gene regulatory networks, operate with

a significant degree of stochasticity. In these situations a deterministic formalism is inadequate
and here we begin the process of developing a new theory of control based on stochastic dynamics

which we call stochastic control analysis (SCA).
There have some efforts to introduce general approaches to studying stochastic models of cellular

networks, however no attempt has been made to try to reformulate MCA into the stochastic regime.
We introduce new stochastic measures, in particular control coefficients of fluctuation strength

and fluctuation correlations with respect to concentrations and fluxes. These control coefficients

quantify the global responses of the fluctuation strength and correlations due to perturbations in
the system parameters. We also introduce sensitivities for the mean levels of concentrations and

fluxes, which are closely related to the MCA control coefficients.
We will investigate the relationship among these sensitivities and show the existence of MCA-like

summation theorems. As an application of the sensitivities, we will provide a systematic non-local
method for controlling noise in networks.

The model system we will consider is a chemical reaction system described by the chemical
master equation. We introduce sensitivity measures called control coefficients. The system vari-

ables (y) of interest can be either mean values or coefficients of variation (CV) of concentrations
and reaction fluxes. We define the control coefficients for these variables as

Cy
p =

The percentage change in y

The percentage change in p
=

d log y

d logp
,
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which indicates the percentage change in y due to the percentage change in a parameter p. The
change in y is from one stationary state to another corresponding to before and after the pertur-
bation, respectively. The parameter p will be called here a control parameter, which is not affected

by the system’s reactions. We restrict the set of the control parameters (p = (p1, · · · , pL)) to be
the global proportionality constants of reaction rates. E.g., for a reaction rate v = p s

KM +s
with s a

concentration and KM a Michaelis-Menten constant, p is a control parameter but KM is not.
We have found that there exist MCA-like summation theorems among the proposed stochastic

sensitivities, which are valid under any strength of noise and finite perturbations of parameters p.
The existence of these theorems is rooted in the fact that the stochastic measures satisfy certain

scaling properties under a specific kind of scale change in time and control parameters.
We derive the concentration summation theorems:

∑L
i=1

C
〈sj 〉
pi = 0, and

∑L
i=1

C
V s

jk
pi = 0,

for all species j and k. V s
jk denotes concentration CV between species j and k. We obtain the

summation theorems for mean fluxes: ∑L
i=1

C
〈Jj 〉
pi = 1.

Here the reaction flux J is measured by counting the number of reaction events within a time
window ε. The variances of J are dependent on ε (as will be discussed later). Therefore, we label

fluxes by ε hereafter: Jε. We also obtain the summation theorems for flux CVs, denoting flux CVs
between two fluxes Ji and Jj by V J

ij :

L∑

i=1

C
V Jε

jk
pi =

d logV Jε

jk

d log ε
, (1)

for all reactions j, k. The sum varies depending on the value of ε. More specifically, the sum value
is equal to the slope of a log-log plot of flux CV vs. ε.

We investigate how the sum value of Eq.1 depends on ε. We have found an interesting fact that
the sum value can vary significantly with the change in ε when the system shows wide separation of

reaction time scales (see Fig.1D). For a general reaction systems, a plateau region (for intermediate
ε) appears typically if the slow and fast fluctuations are well separated. The plateau region can be

tilted if the time scales of internal and external noise is not separated far enough. In this case, the
sum value of the flux CV control coefficients will deviate from zero in the region of the plateau.

As an application of the introduced stochastic sensitivities, we consider the orthogonal control

of mean concentration levels and concentration CVs. Such control needs to satisfy the following
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FIG. 1: Two step cascade reaction system: S1 down-regulates the reaction of creating S2 (A). The reaction
rates involving S1 is set 100 times slower than those involving S2. S1 applies an external noise onto the
(internal) system of S2. Time evolution of S1 and S2 is shown (B). The region of t = [100, 120] is extended
(B,top). J3 is measured with three different time window sizes, ε = 0.0625, 8, 1024 (C). J3 matches with v3

for ε ' 8, because the internal noise is averaged out, i.e., the external noise is dominant in this time scale.
Flux variance of J3 decreases with time window size ε (C,D). The CV of flux J3 shows a plateau, while the
CV of flux J1 does not (D).
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requirements. First, the concentration CV decreases with the concentration mean, and thus the
control of mean and CV can be anti-correlated. In this case parameters need to be perturbed
by a large amount to achieve a significant change in the level of CV. Second, the concentration

CV is dependent on noise propagation, implying that a set of multiple parameters may need to
be controlled simultaneously. Taking into account these requirements, we present a systematic

non-local method for orthogonal control using the control coefficients.
We introduce a control vector Cx

p ≡ (Cx
p1

, Cx
p2

, · · · , Cx
pL

) defined in control parameter space.

When parameters are perturbed in the direction of the control vector, the response of a system
variable y (concentration mean or CV) increases. To perform orthogonal control of concentration

mean and CV, the corresponding control vectors need to be estimated. The angle (θ) between the
two control vectors shows how much the two controls, done along the control vectors, are correlated.

If θ is close to −180◦, the two controls are anti-correlated and the orthogonal control can difficult.
If θ is close to 90◦, the two controls are orthogonal and no change needs to be made. Consider that
our aim is to decrease V s without changing 〈S〉. To accomplish this, we can perturb parameters in

the direction of a vector (λ) obtained by projecting CV s

p onto the parameter space perpendicular to
Cs

p. We provide an example of orthogonal control to reduce the concentration CV by investigating a

linear chain reaction system with a negative feedback (Fig.2). After the parameters are perturbed
along λ iteratively, we could reduce the noise level by 25% without changing the mean level.
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Finally, we discuss a way to reduce

the flux CV. Consider a scenario where a
metabolic engineer aims to reduce the fluc-

tuations in the production rate of an end product (e.g., v6 in Fig.2). To this aim, her/his first guess
is that reducing the concentration fluctuations (S4 in Fig.2) will lead to a reduction in the rate
fluctuations. The engineer introduces a negative feedback to reduce the concentration fluctuations.

The question we might ask is whether this operation guarantees that the rate fluctuations are
reduced. As we have shown in the previous analysis there is no definite correlation between flux

and concentration fluctuations but depends on the measurement time scale, ε. For the negative
feedback system shown above, decreasing p6 causes a reduction in the concentration CV of S4. We

can decide to decrease p6 to reduce the flux fluctuations. We found that the sign of the control

coefficients C
V J

66
p6

is however negative for ε . τf (τf : feedback time scale) and positive for ε & τf .

This means that controlling p6 can have an opposite effect depending on ε. Therefore, in this case,
we need to choose the value of ε sufficiently larger that the feedback time scale.

In summary, we have extended deterministic MCA to the stochastic regime for general bio-
chemical reaction networks. We have shown that there exist MCA-like summation theorems for

stochastic sensitivity measures. The summation theorems for the reaction fluxes have shown that
the sum values of control coefficients for flux CVs depend on the size of the measurement time win-

dow (ε). In terms of the stochastic sensitivity measures, we have provided a non-local systematic
way to control the noise levels of concentrations and fluxes. We hope this method to be useful for
controlling noise levels in various reaction networks such as gene regulatory networks, metabolic

reaction networks, and protein-protein interaction networks.
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