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Statistics for March 2008

20%  of the world 
population uses the internet 
[internetworldstats.com]

~300 million searches per 
day  [Nielsen NetRatings]

search engines are the 
second largest application 
on the web



3

Outline of this talk

Search engine architecture
• Open problem: Loadbalancing

Large-scale distributed programming model
• Open problem: Relationship to data stream model

Sponsored search auctions
• Open problem: Realistic user modeling
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Search Engine Architecture

Crawler 
(Spider):
downloads 
web pages

Document
Collection

“Search Engine”:
• builds inverted index
• serves user queries 
using index

User query

ONLINE
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Inverted Index

All web pages are numbered consecutively
For each word keep an ordered list (posting list) of all 

positions in all document

query running time linear in length of posting lists of 
query terms

Princeton (3,1) (3,10) (6,2) (9,4) (9,8) (10,1) (20,2)…

Tarjan (3,2) (3,20) (7,4) (8,3) (9,2) (9,20) (104,2)  …
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Query Data Flow

Split document set into subsets

Place complete index for one or 
more subsets on each index 
server

Problems: 
• Some servers might have more 

indices than others

• Some indices have lower 
throughput  than others 
causing their servers to 
become bottlenecks 

Index Servers
Index Servers

Web Server

User query

Index Server
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Idea: Copy Indices

Questions:

Which indices to copy?

How to assign indices and copies to machines?

Where to send individual requests?

Offline file layout & online loadbalancing problem

m1 m2 m3

f3f1
f2

m2m1 m3

f3
f2f1

f1f2
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Model

Offline layout phase: 
• Set m1 … mm of identical machines, each has si slots s.t. 

each indices fits into each slot

• Set f1… fn of indices

• Assign files and copies to machines 

Online loadbalancing phase: A sequence of requests arrives 
s.t. 

• every request t needs to access one index fj and

• places a load of l(t) on the machine that it is assigned to
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Model (cont.)

Machine load MLi = sum of loads placed on mi

Goal: Minimize maxi MLi (makespan)
• A(s) = maximum machine load on sequence s
• OPT(s) = maximum machine load on sequence s for optimum 

offline algorithm that might use a different file layout

Competitive Analysis:  An algorithm A is k-competitive if for any 
sequence s of requests

Goal: Study tradeoff between competitive ratio and number of used 
slots

)1()()( OskOPTsA +≤
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Parameters

Set α s.t. 
where FLj = sum of loads of requests for index fj

Set β = maxt individual request load l(t)

Note: In web search engines: α is < 1, β is constant
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Results
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Open questions

Lower bounds 

Different models:
• Performance measures

• Machine properties:
• Speeds (related/unrelated machines)

• Slots per machine

• Arrival times and duration
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Outline of this talk

Search engine architecture

• Open problem: Loadbalancing                        √
Large-scale distributed programming model: MapReduce

• Open problem: Relationship to data stream model

Sponsored search auctions
• Open problem: Realistic user modeling
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What is MapReduce?
System for distributing batch operations over many data 

items over cluster of machines

Map phase:
• Extracts relevant information from each data item of the input

• Outputs (key, value) pairs

Aggregation phase:
• Sorts pairs by key

Reduce phase:
• Produces final output from sorted pairs list

User writes two simple functions: map and reduce. 
Underlying library takes care of all details

frequently used within Google (70k jobs in 1 month)
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Model (Feldman et al. ’08)

Massive unordered distributed (mud) model of computation:
A mud algorithm is a triple (Φ, +,Γ), where

Φ: Σ → Q maps an input item to message
the aggregator +: Q → Q maps two message to a single message
post-processing operator Γ: Q → Σ produces the final output

For input x = x1, … xn it outputs

A mud algorithm computes a function f if for all x and all possible topologies 
of + operations: 

f(x) = m(x)

))(...)()(()( 21 nxxxm Φ++Φ+ΦΓ=x
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Relationship to streaming algorithms

Observation: Any mud algorithm can be computed by a streaming 
algorithm with the same time, space, and communication 
complexity.

Inverse:
• f must be order invariant on input, since mud works on 

unordered data
Theorem: For any order-invariant function f computed by a 

streaming algorithm with

• g(n)-space and c(n)-communication s. t. g(n)=Ω(log n) and 
c(n)=Ω(log n)

there exists a mud algorithm with

• O(g2(n))-space, O(c(n))-communication, and Ω(2polylog(n)) time
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Open problems

More efficient mud algorithm

Multiple mud algorithms, running simultaneously over same 
input, each aggregating only values with same key 

closer to MapReduce

Multiple iterations
• Example: Finding near-duplicate web pages using k 

fingerprints per page:
• 1 MapReduce with space O(k2n)

• 2 MapReduces with space O(kn)
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Outline of this talk

Search engine architecture

• Open problem: Loadbalancing                                     √
Large-scale distributed programming model: MapReduce

• Open problem: Relationship to data stream model            √
Sponsored search auctions

• Open problem: Realistic user modeling
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Search: hotel princeton
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Sponsored Search Auctions

Advertisers enter bids for keywords.

At query time:
Ranking Scheme: System ranks ads by

• Bid
• Effective bid = bid * click-through-rate

2. Payment Scheme: Charge advertisers only if users click on an ad.
• Generalized First Price (GFP): Pay what you bid: Advertisers 

see-saw.
• Generalized Second Price (GSP):

Pay what the ad below you bid: stable

Goal: Design ranking and payment scheme
that makes everybody “happy”

Adv           Bid             Price
Alice        $0.32          $0.24 
Bob          $0.24          $0.17
Carol        $0.17          $0.14
David       $0.14             ---
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Pay what you bid: Non-stability

Source: Edelman, Ostrovsky, Schwarz: Internet Advertising and the
Generalized Second Price Auction: Selling Billions of Dollars Worth of Keywords
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Sponsored Search Auctions
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Most desirable properties

Stability: Bidders reach an equilibrium where it’s not in their 
interest to change bids

Simplicity: Bidders can understand how the price is derived 
from the bids

Monotonicity: Increasing bid does not decrease position and 
does not decrease click probability
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Current Model
Assumptions: 

• ca(i) = click-through rate for ad i
• cp(j) = click-through multiplier for position j, cp(j) < cp(j-1)
• Separability: Pr[click on ad i at pos j] = ca(i) cp(j)
• Each bidder i has internal value v(i)

• Expected value at position j: ca(i) cp(j) v(i)
• Expected utility at position j: ca(i) cp(j) (v(i) – price(j))

• If pi is the position for bidder i then total expected value =

Goal: Maximize total expected value (efficient allocation)
Observation: Ranking by decreasing ca(i) v(i) maximizes total 

expected value 

∑
i

i ivpcpica )()()(
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Current Model (cont.)

Observation: Ranking by decreasing ca(i) v(i) maximizes total 
expected value 

Recall: System ranks by effective bid = ca(i) b(i)
System knows only b(i) not v(i)
Payment scheme:

• Vickrey-Clarke-Groves (VCG):
• It’s best for bidder i to bid v(i)

stable
ranking maximizes total expected value

• Price depends on “damage caused to the other players” not very 
simple

• GSP: 
• simple, monoton, stable, 
• but bidding v(i) is not usually best ranking does not usually 

maximize total expected value
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Separable user models

Above separable user model: 
Pr[click on ad i at pos j] = ca(i) cp(j)
• "Pick position according to distribution cp(j). Click on 

the ad in that position with probability ca(i) ."
More realistic separable user model:

• “Scan from top down. When you reach an ad, click 
with probabilty ca(i). Continue scanning with probability 
q(i,j).”
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Different User Model: Markovian (Feldman et al.’08)

Markovian user model:
• Scans ads from top down.

• When reaches ad i in position j, clicks with probability ca(i).

• Continues scanning with probability q(i,j).

For q(i,j) does not depend on j, Feldman et al. 
• give simple algorithm for finding best ranking of ads 

• monoton

• VCG payments resulting auction is stable and maximizes 
total expected value
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Open problems

Markovian User Model
• Non-VCG pricing: Is there a simple, stable payment scheme in the 

Markovian User Model? 
• User impatience: Analyze the case that q(i,j) depends on both i and j

Model budgets for bidder (Feldman et al, Borgs et al, Dobzinski et al.)
Consider a variety of advertiser preferences = utility functions

• I don't care how much I pay, but I always want slot 3.

• I'm willing to pay up to $5 per click, or up to $1 per impression.

• My margin is $1 per click. Give me position that maximizes my profit, 
i.e. value of clicks minus price paid.

• Maximize my profit, but never spend more than $0.50 per click.
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Summary

Search engine architecture

• Open problem: Loadbalancing                                     √
Large-scale distributed programming model: MapReduce

• Open problem: Relationship to data stream model           √
Sponsored search auctions

• Open problem: Realistic user modeling                           √
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Happy Birthday, Bob!
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