
Planar graphs: multiple-source
shortest paths, brick

decomposition, and Steiner tree
Philip Klein

joint work with Glencora Borradaile and Claire Mathieu

Program:

For fundamental optimization problems on graphs,
get “better” algorithm when input is restricted to
planar graphs:
• better run-time
• better approximation
• more outputs

Today, focus on approximate optimization in
undirected graphs

Exact optimization examples:
• Shortest paths in directed planar graphs
• linear time for single-source [HKRS 97]
• O(n log n) time for all-boundary sources [K 05]
• Maximum st-flow in directed planar graphs
• O(n log n) time [BK 06]

Multiple-source shortest paths

Steiner decomposition of planar graph

TSP on subset
of nodes

Steiner tree

Subset Spanner

{0,1,2} Survivability

Planar duality

c

d
e

a
b

For each connected planar embedded graph, the dual is
another connected planar embedded graph:
•Dual has a vertex for each face of the primal (the
original graph)
•Dual has an edge for each edge of the primal.

Multiple-source shortest paths

Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)

Multiple-source shortest paths
Key ideas:

•Use dual spanning tree (“interdigitating”)
•Represent dual tree by dynamic-tree

data structure [Sleator, Tarjan]

Algorithm:
•initialize T := r1-rooted shortest-path tree
•for k := 2, 3, 4,,

• reroot T at rk

• perform pivots to turn it into a
shortest-path tree

Theorem: Each arc enters T at most once.

Theorem: Each pivot can be done in O(log n) amortized time.

Steiner tree
Say the university wants to install new pipes
for distributing hot water for heating.
Must dig trenches along roads and paths.
Goal: minimize total trench length

Input: graph with edge-lengths, and node-subset S
Output: min-length connected subgraph spanning nodes in S

Complexity of Steiner tree
For general graphs, problem is NP-hard [Karp 75].

Worse, problem is max-SNP-hard [Bern,Plassman 89]:

for some constant c>0, approximation to within factor
of c is NP-hard.

For planar graphs, can give an O(n log n) approximation
scheme:

Theorem: for any ε>0, there is an O(n log n) algorithm
with approximation ratio of 1+ε.

Running time: O(2p(1/ε)n + n log n)

brick decomposition:
• spans terminals
• length is O(OPT)
• each face is approximable

[weights not shown]

Brick decomposition & Steiner tree

brick decomposition:
• spans terminals
• length is O(OPT)
• each brick is approximablea brick

Brick decomposition & Steiner tree

brick decomposition:
• spans terminals
• length is O(OPT)
• each brick is approximable

Brick decomposition & Steiner tree

brick decomposition:
• spans terminals
• length is O(OPT)
• each brick is approximable

Steiner-Tree Structure Theorem:
• length(green)<(1+ ϵ) length(red)
• O(1) green leaves
• green achieves red’s connectivity

[BKK SODA’07]

Brick decomposition & Steiner tree

Brick decomposition
Given:

•planar graph G with edge-lengths,
•subset S of nodes,
•ε>0

find a subgraph H such that:
•all terminals belong to H
•length of H < p(ε) ∙ length of min Steiner tree
•G has a nearly optimal Steiner tree that crosses

each face of H at most a constant number of times

Next up:
How to find the brick decomposition.
How to use it in an approximation scheme.
Little surprise at the end.

• Find a 2-approximate Steiner tree.
• Cut open the graph along the tree (doubling the edges).
• Invert the embedding (so gray region is the infinite face).

Step 1 of Construction: boundary

length(boundary of graph) ≤ 4 · min Steiner tree length

*x Strip
y*

Breaking off a strip

x*
y*

For boundary nodes x,y,
 (x,y) is an ε-shortcut if

(1+ε) distance(x,y) ≤ length(x-to-y subpath of boundary)

Choose a shortcut that does not enclose any other shortcut.
Region between shortcut and subpath of boundary is a strip.

Removing strip reduces boundary length by ≥ ε · length(shortcut)

Step 2: strips

Repeat until no shortcuts remain:
•choose a shortcut enclosing no other shortcut
•remove the strip

Total length of all shortcuts is ≤4(1/ε) · min Steiner tree length
so total length of all strip boundaries is at most
 4(1/ε + 1) · min Steiner tree length

Step 3: Columns

For each strip, for each node on the southern boundary, find
the closest node on the northern boundary.

x-to-y subpath of southern boundary

y-to-north

Choosing columns:
let x := leftmost node
for each node y on southern boundary from left to right,
 if length(x-to-y subpath of southern boundary) > ε distance(y, north)
 then set x := y and designate x as a column base

Can charge length of each surviving column to subpath of
southern boundary, so

length(columns) < (1/ε) length(southern boundary)

Summary of construction so far

length(strip boundaries)
 ≤ 4(1/ε +1) OPT

length(columns)
 ≤ (1/ε) length(strip boundaries)

Step 4: Select short set of columns

For each strip, color the columns according to position mod k
Select the color of minimum length

The regions bounded by strip boundaries and selected
columns are called bricks.

brick

brick brick
brickbrick

Value of k chosen so that
length(selected columns) ≤ ε OPT k := 4(1/ε +1)(1/ε)2

Summary of construction
Step 1:boundary-cutting Step 2: strips

Step 3: columns Step 4: every kth column

Fact 1: total length ≤ 4(1/ε +1+ ε) OPT.

Fact 2: Each resulting “brick” contains at most k columns,
and its boundary is four nearly-shortest paths.

Fast implementation

Only tricky step is strips.
.

Recall the strip decomposition algorithm:
Repeat
•find a minimally enclosing shortcut
•cut along it
•remove the strip

x*
Stripy*

Finding strips in O(n log n) time

designate a dividing line.
for k := 1,2,3,...

•build rk-rooted shortest-path tree
•trace clockwise along boundary to first node v

whose shortest path does not follow boundary
•cut along shortest path to v

r
k
r
k

PTAS for Steiner tree

1. Find brick decomposition.
2. Group the faces into narrow annuli

with total boundary length ≤ ϵ OPT
3. Break the annuli apart.
4. Introduce new terminals.
5. Solve the problem in each annuli.
6. Union these solutions together.

length of brick decomposition is O(OPT)

length of brick decomposition is O(OPT)
⇒ length of annuli boundaries is ≤ ϵOPT

PTAS for Steiner tree

1. Find brick decomposition.
2. Group the faces into narrow annuli

with total boundary length ≤ ϵ OPT
3. Break the annuli apart.
4. Introduce new terminals.
5. Solve the problem in each annuli.
6. Union these solutions together.

PTAS for Steiner tree

length of brick decomposition is O(OPT)
⇒ length of annuli boundaries is ≤ ϵ OPT

1. Find brick decomposition.
2. Group the faces into narrow annuli

with total boundary length ≤ ϵ OPT
3. Break the annuli apart.
4. Introduce new terminals.
5. Solve the problem in each annuli.
6. Union these solutions together.

length of brick decomposition is O(OPT)
⇒ length of annuli boundaries is ≤ ϵ OPT

⇒ cost of connecting to new terminals ≤ ϵ OPT

PTAS for Steiner tree

1. Find brick decomposition.
2. Group the faces into narrow annuli

with total boundary length ≤ ϵ OPT
3. Break the annuli apart.
4. Introduce new terminals.
5. Solve the problem in each annuli.
6. Union these solutions together.

PTAS for Steiner tree

length of brick decomposition is O(OPT)
⇒ length of annuli boundaries is ≤ ϵ OPT

⇒ cost of connecting to new terminals ≤ ϵ OPT

1. Find brick decomposition.
2. Group the faces into narrow annuli

with total boundary length ≤ ϵ OPT
3. Break the annuli apart.
4. Introduce new terminals.
5. Solve the problem in each annuli.
6. Union these solutions together.

PTAS for Steiner tree

length of brick decomposition is O(OPT)
⇒ length of annuli boundaries is ≤ ϵ OPT

⇒ connecting to new terminals costs < ϵ OPT

1. Find brick decomposition.
2. Group the faces into narrow annuli

with total boundary length ≤ ϵ OPT
3. Break the annuli apart.
4. Introduce new terminals.
5. Solve the problem in each annuli.
6. Union these solutions together.

Steiner tree in an annulus
Technique #1: portals

For each brick B, designate p(ϵ)
boundary nodes as portals.

Restrict paths between bricks to go
through portals.

Requires detours of length
 length(B)/p(ϵ).

By Structure Theorem, only c(ϵ)
detours.

Total length of detours:
c(ϵ) ∙ length(brick decomposition)
 p(ϵ)

Choose p(ϵ) to make this ϵ ∙ OPT

Steiner tree in an annulus
Technique #2: dynamic programming

Introduce zero-weight “portal
edges” between bricks to allow
crossings only at portals.

Because annulus is narrow and
portal edges are few, replacing
each brick with a supernode
yields a low-branch-width graph.

Use dynamic programming
where base case is a single brick
(can be solved by an algorithm of
[Erickson, Monma, Veinott, ’87])

Surprise

The analysis suggests this is a purely theoretical result: dependence
on ϵ is ridiculous.

To Fear or Not to Fear Large Hidden Constants:
 Implementing a Planar Steiner Tree PTAS
 Siamak Tazari and Matthias Muller-Hannemann

An implementation is described (suitably modified).
They report it works well.

Using Portals
Suppose the tree has only 3 leaves on the boundary of a grid face:

detours

Summing over all the faces, all the detours cost:
ϵ O(OPT)

Select 3/ϵ portal vertices along the boundary of the grid face.
Force the tree to also span the portal vertices nearest the leaves.

The detours cost (weight of boundary of face) ϵ

Problems

 Traveling-salesperson problem
Traveling-salesperson

problem among specified
nodes

Steiner tree

Approximate optimization in
planar graphs

For NP-hard problems, algorithm must output a solution
whose quality is within some factor of optimal
(approximation ratio).

These problems tend to be MAX-SNP-hard: for some
constant c>0, approximation to within factor of c is NP-hard.

When input is required to be planar, can try for
approximation scheme: for any ε>0, give algorithm with
approximation ratio of 1+ε.

Baker [1994] gave general planar-graph approximation
technique ⇒ min vertex cover, max independent set...
but apparently not applicable to connectivity problems.

Metric traveling-salesperson
problem

Input: graph with edge-lengths
Output: closed walk of min length
 visiting each vertex at least once

Complexity:
 For general graphs, MAX-SNP-Hard [PY 91]
 For planar graphs, a linear-time approximation scheme
[K 05]
(Previous: nO(1/ε2) approximation scheme [AGKKW 98])

Basic approach to TSP
approximation scheme [K 05]

•Find breadth-first search levels in planar dual
•Color edges according to level mod k
•Cut primal along edges of min-length color class
•In each parcel, solve problem exactly using D. P.

Results of cutting dual:
•Each piece has branch-width O(k)
•Total boundary length is at most 1/k times
length of input graph

Choose k = (1/ε) (length of input graph) / OPT
Then sum of lengths of solutions in parcels is at most

 (1+ ε) OPT
Run-time is exp[O(k)] n

Previous best:
 [AGKKW 98] nO(1/ε2)

Basic approach, cont’d
Choose k = (1/ε)/(length of input graph)/OPT
Then sum of lengths of solutions in parcels is at most

 (1+ ε) OPT
Run-time is exp[O(k)] n

If input graph edges all have same length,
length of input graph = O(OPT)
so run-time is exp[O(1/ε)] n

Previous best:
 [GKP 95]nO(1/ε)

Thm: Can find a (1+ ε)-times-
optimum tour in time exp[O(1/ε2)]n

For arbitrary lengths, preprocessing step
selects subgraph such that
•length(subgraph) is O(f(ε)OPT)
•OPT(subgraph) ≤ (1+ε) OPT(original graph)

Preprocessing step
Select subgraph such that
•length(subgraph) is O(f(ε)OPT)
• OPT(subgraph) ≤ (1+ε) OPT(original graph)

For TSP, since
length(min spanning tree) ≤ length(traveling salesman tour),

it suffices that
•length(subgraph) is O(f(ε) minimum spanning tree)
•subgraph approximately preserves all-pairs distances
(spanner property)

Each planar graph has such a subgraph [ADDJS 93]
The subgraph can be found in linear time [K 05]

TSP among subset of nodes
Road maps are basically planar.
Imagine a truck driver who must deliver soft drinks to
vending machines all over the city.

Minimizing travel-time is a TSP on a
subset of the nodes

Corollary: For any ε>0, there is a
algorithm for 1 + ε approximation of TSP among subset

TSP among subset of nodes

To apply previous approach, key technical requirement
is a spanner-like result:
Given ε > 0, a planar graph G, and a node-set S, there is a
subgraph H such that:
•length(H) is O(f(ε) minimum Steiner tree on S)
•H preserves distances among nodes in S
Conjectured by [AGKKW 98]
Proved by [K 06], with O(n log n) algorithm for construction

2poly(1/ε)n log n

Steiner tree

To apply previous approach, key technical requirement
is a spanner-like result:

Proved by [BKK 06], with O(n log n) algorithm for
construction
Corollary: For any ε>0, there is a
algorithm for 1 + ε approximation of Steiner tree

can be
improved

Given ε > 0, a planar graph G, and a node-set S, there is a
subgraph H such that:
•length(H) is O(f(ε) minimum Steiner tree on S)
•optimal Steiner tree for S in H ≤ (1+ ε) optimal Steiner tree in G

22poly(1/ε)
n log n

2poly(1/ε)n log n

TSP among subset of nodes
 and Steiner tree

To summarize, both approximation schemes follow from
appropriate spanner-type theorems:

For any planar graph G and subset S of nodes,
there is a subgraph H such that
•length(H) is O(f(ε) min Steiner tree on S)
• OPT(H, S) < (1+ ε) OPT(G,S)

Moreover, the two constructions are based on a common
decomposition of planar graphs.

where “OPT” refers to either TSP or Steiner tree

Each path P added to fan reduces x-to-yk distance by(1/ε)length(P).
Shows

For each column base x, find a fan of shortest paths from x
to northern boundary nodes.

Step 4 of distance spanner: fans

let ...y-3, y-2, y-1, y0, y1, y2, y3... be northern nodes in east-to-west
order, where y0 is northern node closest to x.
initialize y := y0
for i := 1, 2, 3, ...
 if (1+ ε) distance(x,yi) < distance(x,y) + distance(y,yi)
 then add x-to-yi path to fan and set y := yi

for i := -1, -2, -3, ... (same thing)

y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7y0

x

y1
y2 y3 y4 y5 y6 y7

length(fan) = O(ε−2) · distance(x, y0)

distance spanner weight bound

Combine strip boundaries, columns, and fans.

y0

x

y1
y2 y3

length(strip boundaries) = O(ε−1) · OPT

length(fan for node x) = O(ε−2) · length(column for x)
length(columns in a strip) = O(ε−1) · length(boundary of strip)

+
length(spanner) = O(ε−4) · length(OPT)

distance spanner preserves distances

•Because northern border was
minimally enclosing shortcut, can assume
endpoints are not both on south border.

Consider any shortest path P between nodes in subset S,
and let P′ be any max’l subpath whose internal nodes are
not on strip boundaries.

•Northern border is a shortest
path, so endpoints are not both on
northern border.

Short compared to P'Short compared to P'

•If south endpoint not a column base,
can reroute at low cost

•If north endpoint not in fan,
can reroute at low cost.

•Endpoints of P’ must be on
boundaries of a single strip.

Not much longer

Summary of construction so far

length(strip boundaries)
 ≤ 4(1/ε +1) OPT

length(columns)
 ≤ (1/ε) length(strip boundaries)

length(columns)
 ≤ 4(1/ε +1)(1/ε) OPT

so...

For each brick,
•Select p portal nodes at regular intervals along boundary.
•For each subset of portal nodes, find* an optimal Steiner
tree inside the brick.

Step 5 of Steiner spanner

Here p=poly(1/ε)

*There is a dynamic program [Erickson,
Monma, Veinott, 1987] for special case
where all terminals are on boundary

Steiner spanner weight bound

For each brick, each Steiner tree has cost at most
 length(brick’s boundary)

There are 2p trees. Total cost: 2p · length(brick’s boundary)

summing over all bricks, spanner has length O(OPT).

Spanner = brick boundaries + little Steiner trees

+

so length(brick boundaries) is O(OPT).

brick boundaries = strip boundaries + selected columns
length(strip boundaries) ≤ 4(1/ε +1) OPT
length(selected columns) ≤ ε OPT

Spanner includes a
near-optimal Steiner tree

Thm: For any brick, any set of terminals on brick boundary,
there is a “near-optimal” tree that has at most d connections
to boundary.

Proof uses:
•east and west boundaries are “free” (selected columns)
•north and south boundaries are near-shortest paths
•only a constant number of columns
Corollary: Moving connections to portals results in error ≤

d·(length(brick boundary)/p)

Final remarks

running time for resulting Steiner tree approximation
scheme is doubly exponential in poly(1/ε)
a new technique improves this to singly exponential (joint work
with Borradaile and Mathieu)

For both approximation schemes, asymptotically
dominant step is finding strip decomposition.

Can use the planar all-boundary-source-shortest-path
algorithm [K 2005] to find this in O(n log n) time.

1. Find a low-weight grid-like subgraph,
forming panels.

2. Within each panel, find a few optimal
Steiner trees.

The spanner is the union of the panel
boundaries and optimal Steiner trees.

Outline of Spanner Construction

Find a 2-approximate Steiner tree.
Cut open the graph along the tree (doubling the edges).
Invert the graph.

First Step of Spanner Construction

First Step of Spanner Construction

Find short paths crossing the graph to break the graph into strips.

Find short paths across the strips.

First Step of Spanner Construction

Using a shifting technique, select every O(1/ɛ ^3) of the vertical
paths whose total weight is ɛ/3 · OPT.

First Step of Spanner Construction

1. Find a low-weight grid-like subgraph,
forming panels.

2. Within each panel, find O(1) optimal
Steiner trees.

The spanner is the union of the panel
boundaries and optimal Steiner trees.

Spanner Construction

Second Step of Spanner Construction

Choose 2^poly(1/ɛ) portal vertices on the boundary of each panel.
For each subset, find the optimal Steiner tree (using Erickson et.
al. ‘87).

1. Find a low-weight grid-like subgraph,
forming panels.

2. Within each panel, find a few optimal
Steiner trees.

The spanner is the union of the panel
boundaries and optimal Steiner trees.

Low-Weight Property

weight() is O(OPT)

weight() is O(1/ɛ ^2 · OPT)

Approximating Property

Structural Theorem:
The optimal tree can be modified so that it crosses
each panel’s boundary O(1) times.

Proof:
(in the paper)

Approximating Property
Suppose the tree only crosses a panel boundary 3 times:

3ε
−3 portals ⇒ detours cost ≤ ε

3 · (weight of panel boundary)

detours

ε
3 · (weight of grid) ≤ ε

3 · O(ε−2 · OPT) ≤ O(ε · OPT)

Summing over all the panels and using that w() is O(1/ɛ^2 · OPT),
all the detours cost:

Conclusion

Theorem:
A (1+ɛ)-approximate Steiner tree in a planar graph
can be found in O(n log n) time.

constant is 2
2
2
1/ε

have since improved this to using
new techniques (stay tuned!)

2
1/ε

Thank you.

Steiner tree

Goal: Find the minimum-cost tree connecting a
given set of terminals.

