Non-linearity in
Davenport-Schinzel
Sequences

Seth Pettie
University of Michigan

Isomorphism and Subsequences

® Political Isomorphism
*BUSH is isomorphic to GORE

Seth Pettie

Isomorphism and Subsequences

® Political Isomorphism
»BUSH is isomorphic to GORE
» C is isomorphic to A

Seth Pettie

Isomorphism and Subsequences

® Political Isomorphism
»BUSH is isomorphic to GORE
» C is isomorphic to A
» THOMAS is isomorphic to SOUTER

Seth Pettie

Isomorphism and Subsequences

® Political Isomorphism
*BUSH is isomorphic to GORE
» C is isomorphic to A
» THOMAS is isomorphic to SOUTER
» CIA,NSA,DOD is not isomorphic to NSF,EPA ,NIH

Seth Pettie

Isomorphism and Subsequences

® Political Isomorphism
» BUSH is isomorphic to GORE
» C is isomorphic to A
» THOMAS is isomorphic to SOUTER -
» CIA,NSA,DOD is not isomorphic to NSF ,EPA ,NITH

® Happiness via Subsequences
*WITH WHOM WOULD I RATHER HAVE A BEER?

Seth Pettie

Isomorphism and Subsequences

® Political Isomorphism
» BUSH is isomorphic to GORE
» C is isomorphic to A
» THOMAS is isomorphic to SOUTER -
» CIA,NSA,DOD is not isomorphic to NSF ,EPA ,NITH

® Happiness via Subsequences
*WITH WHOM WOULD I RATHER HAVE A BEER?
TH WHO LD R VE ?

Seth Pettie

Isomorphism and Subsequences

® Political Isomorphism
» BUSH is isomorphic to GORE
» C is isomorphic to A
» THOMAS is isomorphic to SOUTER -
» CIA,NSA,DOD is not isomorphic to NSF ,EPA ,NITH

® Happiness via Subsequences

*WITH WHOM WOULD I RATHER HAVE A BEER?
TH_ WHO LD R VE ?

TARJAN FOR PR EZ ?

Seth Pettie

Definitions

® xCy : x is isomorphic to a subsequence of y

® Ex(o,n) = max |S] :
Se{l,...,n}
oS

S is |o|-regular (technical condition)

® How fast does Ex(o,n) grow as a function of n¢

Seth Pettie

(1) Give each object (line segment, quadratic, etc.) A symbol
(2) Map the lower envelope to a sequence |S|
(3) Show |S| < Ex(o,n) for some forbidden subseq. o

‘ab c b d b d ‘cece d a 'f' a 'f' d 'f'e'

R‘this sequence does not contain ababa

Seth Pettie

(1) Give each object (line segment, quadratic, etc.) A symbol
(2) Map the lower envelope to a sequence |S|
(3) Show |S| < Ex(o,n) for some forbidden subseq. o

standard case: o = ababab...a /length k+2

“order k Davenport-Schinzel sequence”

Seth Pettie

® Amortized analysis:

don't know how

NOrmally an for tOpayf?{tl;lese __________

Py

time consuming ops
with a reduction in
potential

Seth Pettie

New kind of amortized analysis:

Label nodes that cannot give them a label

. indicating thatthey -___, @&
be paid for by other hava't been paid for
means HAURN

Transcribe the labels
as a sequence S:

S| < Ex(o,n) a

In [SODA’08] o = abaabba or abababa
Thm. n deque operations take O(na’(n)) time

Seth Pettie

Splay trees and Davenport-Schinzel sequences

® New kind of amortized analysis:

® [abel nodes that cannot give them a label
. indicating thatthey -___, @
be paid for by other hava't been paid for

means

® Transcribe the labels
as a sequence S:
S| < Ex(o,n)

A much better way to end the proof:
... where Ex(o,n) = O(n)

Seth Pettie

Standard Davenport-Schinzel segs.

®a=o(n) «isthe inverse-Ackermann function

Ex(aba, n) | n
trivial — ()

> Ex(abab, n)|2n-1

Seth Pettie

trivial — Ex(aba, n) | n
i
Ex(abab, n) | 2n-1
Hart-Sharir — Ex(ababa, n) | ©(ha)

Seth Pettie

trivial <: Ex(aba, n) n
Ex(abab, n) | 2n-1
Hart-Sharir —» Ex(ababa, n) | ©(ha)
Agarwal-Sharir-Shor (ababab n)| A(n2%)

Seth Pettie

o <: Ex(aba, n)|n
Ex(abab, n) | 2n-1
Hart-Sharir — Ex(ababa, n) | ©(ha)
Agarwal-Sharir-Shor Ex(ababab, n)| ©(n2%)
Ex(abababa, n) | n exp(O(alog a))
Ex(abababab, n)| n exp(©(a?))
Ex(ababababa, n) | n exp(O(a?log o))
v Ex(ababababab, n) | n exp(®(a?))

Seth Pettie

trivial <: Eelesy
Ex(abab, n

Hart-Sharir —» Ex(ababa, n

Agarwal-Sharir-Shor Ex(ababab, N

Ex(abababab, n

Ex(ababababa, n

v Ex(ababababab, n

)
)
)
)
Ex(abababa, n) | n exp
)
)
)
)

Klazar —— Ex(o, n

Seth Pettie

Two-Letter Forbidden Subsequences

[Adamec-Klazar-Valtr]
Ex(abbaab,n) = O(n)

The Two-Letter Theorem:
For any o € {a,b}’
Ex(o,n) = w(n) ifand only if ababa Co

(i.e., there is only one “cause” of superlinearity over two symbols)

Seth Pettie

The Three-Letter Theorem

® [Klazar-Valtr]
For o € {ab,c}
Ex(o,n) = O(n)
unless. ..
ababa C o or «— non-linear
abcacbcCo or _

. status still open
/ abcbcac C o

or their reversals

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(a',n) = O(n)

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(a',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

uw and v have
disjoint alphabets

Ex(uvw,n) = O(n)

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n) disjoint alphabets
Ex(uab'wab’) = O(n)

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(a',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n) disjoint alphabets
Ex(uab'wab’) = O(n)

dddd

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(a',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n) disjoint alphabets
Ex(uab'wab’) = O(n)

aabbaabbb

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n) disjoint alphabets
Ex(uab'wab’) = O(n)

aabbaabcccccbbcc

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n) disjoint alphabets
Ex(uab'wab’) = O(n)

aabbaabcdddccccbbcecdd

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n> disjoint alphabets
Ex(uab'wab’) = O(n)

aabbaabcdddccccbbccdd
ee

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n> disjoint alphabets
Ex(uab'wab’) = O(n)

aabbaabcdddccccbbccdd
effef

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n> disjoint alphabets
Ex(uab'wab’) = O(n)

aabbaabcdddccccbbccdd
efgfefg

Seth Pettie

Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n> disjoint alphabets
Ex(uab'wab’) = O(n)

aabbaabcdddcefgfefgcccbbecdd
efgfefg

Seth Pettie

More than one cause of non-linearity

® [Klazar]
» 0 is a sequence without repetitions
> (x,y) is in G(0o) iff xyyx C o or yxyx C o

» If G(o) is strongly connected then
Ex(o,n) = Q(na(n))

Seth Pettie

» 0 is a sequence without repetitions
(x,y) is in G(o) iff xyyx C o or yxyx C o

'If G(o) is strongly connected then
Ex(o,n) = Q(na(n))
a b

. b . only two
= e examples

G(ababa) known

C d
G(abcbadadbcd)

Seth Pettie

» 0 is a sequence without repetitions

*(x,y) is in G'(0) iff xyyx C 0 or yxyx-&=T~

It G'(0) is strongly connected then
Ex(o,n) QLnec('nTT Q(n2an)

/ only two
x4 “lexamples

known

G’ (ababab)

f'O'
G’(abcbadadbecfcfedef) Seth Pettie

® Defn. @ = minimal non-linear forbidden segs.

® What we know about &:
ababa e ®
- |®|>2 (the other a subseq of abcbadadbcd)

Seth Pettie

® Defn. @ = minimal non-linear forbidden segs.

® What we know about &:
ababa e ®
- |®|>2 (the other a subseq of abcbadadbcd)

® Q: Is |®| infinite?
® A: Still Open. But we have a candidate!

Seth Pettie

® Defn. @ = minimal non-linear forbidden segs.

® What we know about &:
ababa e ®
- |®|>2 (the other a subseq of abcbadadbcd)

® Q: Is |®| infinite?

® A: Still Open. But we have a candidate!
® Q: How big is it ®?

® A: New result: |®|>5

Seth Pettie

® T(1,j) : a binary tree with height j+1
j distinct letters at each leaf

abc def ghi jK mno pgr stu vwx

Seth Pettie

® T(1,j) : a bin. tree w/height j+1, | letters at each leaf
e i |etter at a leaf added to label of i ancestor

abc def ghi jK mno pgr stu vwx

Seth Pettie

® T(1,j) : a bin. tree w/height j+1, | letters at each leaf
e i |etter at a leaf added to label of i ancestor

be

ad

abc def ghi jK mno pgr stu vwx

Seth Pettie

® T(1,j) : a bin. tree w/height j+1, | letters at each leaf
e i |etter at a leaf added to label of i ancestor

beh

ad e

abc def ghi jK mno pgr stu vwx

Seth Pettie

® T(1,j) : a bin. tree w/height j+1, | letters at each leaf
e i |etter at a leaf added to label of i ancestor

cfil

beh

ad gj

abc def ghi jK mno pgr stu vwx

Seth Pettie

O-nodes —»

O-nodes —»

O-nodes —=

l-nodes —*

Seth Pettie

(k-1)-nodes -

(k-1)-nodes >

T(k,j) : composition of
j T(k-1,) trees,
j distinct letters

(k-1)-nodes —»

at each leaf.

(k-1)-nodes ———»

k-nodes ——»

Seth Pettie

the ith |etter at a

leaf is assigned to
the ith (k-1)-node
ancestor of the leaf

T(k,j) : composition of
j T(k-1,) trees,
j distinct letters

bf,

at each leaf.

abed efgh
Seth Pettie

the ith |etter at a y

leaf is assigned to

the it" (k-1)-node g
ancestor of the leaf C;c
2nd the T, 7 T(k,j) : composition of
~ y - j T(k-1,) trees,
. . Bf,
trees are deflned in i distinct letters
terms of their leaf at each leaf.

labels. .. @

abed efgh
Seth Pettie

Constructing Sec

®v,,V,,...,V, : hodes

uences

isted in postorder

® | (v) : the label of v in reverse order

® The final sequence:

The sequence for T(1,4) :

2 = L(vq),L(vy),...,L(Vv,)

cba fed da ihg lkj jg kheb

xurolifx ...

onm rgp pm uts Xwv vs wign

cfilorux

behk ngtw

ad gj mp sV

abc def ghi jkI mno pgr stu vwx ...

Seth Pettie

=

=

]

——————————--p

e N . st

0-node

Y
first 1-node

Y
first (k-2)-node

|

first (k-1)-node

first k-node

Seth Pettie

Forbidden subseq: ababa

® X is (ababa)-free:

VAV

=

=

]

——————————--p

e N . st

0-node

Y
first 1-node

Y
first (k-2)-node

|

first (k-1)-node

first k-node

Seth Pettie

Forbidden subseq

® X is (ababa)-free:

e d
t b
Y
a i-node

- ababa

=

=

]

——————————--p

e N . st

0-node

Y
first 1-node

Y
first (k-2)-node

|

first (k-1)-node

first k-node

Seth Pettie

Forbidden subseq: ababa

these are in the
wrong order!

Y-a f
b v

first (k-2)-node

|

first (k-1)-node

® X is (ababa)-free: ae 0-node
ﬂ+ ﬁrS: 1-node

=

>
S
S
e e . bttt

]

first k-node

Seth Pettie

Forbidden subseq: abcacchc

® X is (abcacchc)-free:

necessarily a

common >
ancestor /[\
a b \c

Seth Pettie

Forbidden subseq: abcacchc

® X is (abcaccbhc)-free:

' C

tb

Y

o ———>1 C first i-node
necessarily l
different e

nodes e C first j-node

Seth Pettie

Forbidden subseq: abcacchc

® X is (abcaccbhc)-free:

C

tb

Y

w T Cb first i-node
necessarily l
different \

nodes 7 Cb first j-node

aAc

Seth Pettie

abcaccbhc

“a” does not appear in the final contradiction

(an implied occurrence of bcbebc)

Why is it necessary?

t C

b

Y

- — ch firsti-node
necessarily l
different e

nodes * Cb first j-node

Rthe “binder”
a 1b \c

Seth Pettie

Forbidden subseq: abcdeaebdce

® X is (abcdeaebdce)-free:

necessarily
different [

nodes

v d

¢t eb

a

Y
first i-node

aAe

Seth Pettie

Forbidden subseq: abcdeaebdce

® X is (abcdeaebdce)-free:

necessarily
different [

nodes

v d

¢ edch

Y
first i-node

aAe

Seth Pettie

Forbidden subseq: abcdeaebdce

® X is (abcdeaebdce)-free:

/"

trapper”
©

*C
“trapped elements”

necessarily

different [@ “guard”

nodes
ﬂ]der”
a b dc dd e

Seth Pettie

Forbidden subseq: abcdeaebdce
o Succmct Encoding: V¢ AAd

» ¥ : a=binder
© @ :b=guard “trapper”
B cCc = 1st trapped @
> & : d=2nd trapped
o oo e = trapper 1¢
“trapped elements”
w | d
necessarily
different T “guard”
nodes @ ?
“binder”

Seth Pettie

All of these encodings make sense & work:
VoAAS
CVAAL
VAIAS
These don’t:
® AAV S «—— the binder doesn’t bind (but this can be fixed!)

VAA O — the guard doesn’t guard
Vd A «~ this doesn’t make any sense

Seth Pettie

Forbidden subseq: abcdeafefbdcf
° Encodmg K OAAVSH

* : a = half-binder

> & :b=guard @ rappet

© & :c = 1sttrapped

> & :d=2nd trapped 1C

. ¥ :e=binder “trapped elements”
» o f = trapper ¢d

.ﬂdc@ “guard”

“half-binder”

Seth Pettie

Forbidden subseq: abcdeafegfhgihjijbdcj

Half-binders can be
“daisy-chained”

Seth Pettie

Seventeen legal encodings

VA(*AN) *AV(OA)N VA(OA)N
* oAV el VA ®XAAVS
* AV (O AL) X AVAL Voaas

* OAAVSH VASAS * OAVASL
CVAAL *AOAVS *A(OA)V

*AOVAL *AVOAL

Seth Pettie

® Some open problems

» Are there infinitely many “causes” of non-linearity?
» Are there any more linear seqs. to be discovered?

' For each ¢, is there an (ababa)-free o such that:

Ex(o,n) = n exp(ac(n))

Seth Pettie

