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Isomorphism and Subsequences

® Political Isomorphism
» BUSH is isomorphic to GORE
» C is isomorphic to A
» THOMAS is isomorphic to SOUTER -
» CIA,NSA,DOD is not isomorphic to NSF ,EPA ,NITH

® Happiness via Subsequences

*WITH WHOM WOULD I RATHER HAVE A BEER?
TH_ WHO LD R VE ?

TARJAN FOR PR EZ ?
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Definitions

® xCy : x is isomorphic to a subsequence of y

® Ex(o,n) = max |S] :
Se{l,...,n}
oS

S is |o|-regular (technical condition)

® How fast does Ex(o,n) grow as a function of n¢
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(1 ) Give each object (line segment, quadratic, etc.) A symbol
(2) Map the lower envelope to a sequence |S|
(3) Show |S| < Ex(o,n) for some forbidden subseq. o

‘ab c b d b d ‘cece d a 'f' a 'f' d 'f'e'

R‘this sequence does not contain ababa
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(1 ) Give each object (line segment, quadratic, etc.) A symbol
(2) Map the lower envelope to a sequence |S|
(3) Show |S| < Ex(o,n) for some forbidden subseq. o

standard case: o = ababab...a /length k+2

“order k Davenport-Schinzel sequence”
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® Amortized analysis:

don't know how

NOrmally an for tOpayf?{tl;lese __________

Py

time consuming ops
with a reduction in
potential
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New kind of amortized analysis:

Label nodes that cannot give them a label

. indicating thatthey -___, @&
be paid for by other hava't been paid for
means HAURN

Transcribe the labels
as a sequence S:

S| < Ex(o,n) a

In [SODA’08] o = abaabba or abababa
Thm. n deque operations take O(na’(n)) time
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Splay trees and Davenport-Schinzel sequences

® New kind of amortized analysis:

® [abel nodes that cannot give them a label
. indicating thatthey -___, @
be paid for by other hava't been paid for

means

® Transcribe the labels
as a sequence S:
S| < Ex(o,n)

A much better way to end the proof:
... where Ex(o,n) = O(n)
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Standard Davenport-Schinzel segs.

®a=o(n) «isthe inverse-Ackermann function

Ex(aba, n) | n
trivial — ( )

> Ex(abab, n)|2n-1
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trivial — Ex(aba, n) | n
i
Ex(abab, n) | 2n-1
Hart-Sharir — Ex(ababa, n) | ©(ha)
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trivial <: Ex(aba, n) n
Ex(abab, n) | 2n-1
Hart-Sharir —» Ex(ababa, n) | ©(ha)
Agarwal-Sharir-Shor (ababab n)| A(n2%)
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o <: Ex(aba, n)|n
Ex(abab, n) | 2n-1
Hart-Sharir — Ex(ababa, n) | ©(ha)
Agarwal-Sharir-Shor Ex(ababab, n)| ©(n2%)
Ex(abababa, n) | n exp(O(alog a))
Ex(abababab, n)| n exp(©(a?))
Ex(ababababa, n) | n exp(O(a?log o))
v Ex(ababababab, n) | n exp(®(a?))
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trivial <: Eelesy
Ex(abab, n

Hart-Sharir —» Ex(ababa, n

Agarwal-Sharir-Shor Ex(ababab, N

Ex(abababab, n

Ex(ababababa, n

v Ex(ababababab, n

)
)
)
)
Ex(abababa, n) | n exp
)
)
)
)

Klazar —— Ex(o, n

Seth Pettie



Two-Letter Forbidden Subsequences

[Adamec-Klazar-Valtr]
Ex(abbaab,n) = O(n)

The Two-Letter Theorem:
For any o € {a,b}’
Ex(o,n) = w(n) ifand only if ababa Co

(i.e., there is only one “cause” of superlinearity over two symbols)
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The Three-Letter Theorem

® [Klazar-Valtr]
For o € {ab,c}
Ex(o,n) = O(n)
unless. ..
ababa C o or «— non-linear
abcacbcCo or _

. status still open
/ abcbcac C o

or their reversals
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Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(a',n) = O(n)
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Recipe for linear forbidden sequences

[Klazar-Valtr]
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(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

uw and v have
disjoint alphabets

Ex(uvw,n) = O(n)
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Recipe for linear forbidden sequences
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Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(a',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n) disjoint alphabets
Ex(uab'wab’) = O(n)

dddd
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Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
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Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
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Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)
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(3) |f EX(ana,n) — O(n> disjoint alphabets
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Recipe for linear forbidden sequences
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(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have
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Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n> disjoint alphabets
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Recipe for linear forbidden sequences

[Klazar-Valtr]
(1) Ex(@@',n) = O(n)
(2) If Ex(uw,n) = O(n) and Ex(v,n) = O(n)

Ex(uvw,n) = O(n) uw and v have

(3) |f EX(ana,n) — O(n> disjoint alphabets
Ex(uab'wab’) = O(n)

aabbaabcdddcefgfefgcccbbecdd
efgfefg
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More than one cause of non-linearity

® [Klazar]
» 0 is a sequence without repetitions
> (x,y) is in G(0o) iff xyyx C o or yxyx C o

» If G(o) is strongly connected then
Ex(o,n) = Q(na(n))
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» 0 is a sequence without repetitions
(x,y) is in G(o) iff xyyx C o or yxyx C o

'If G(o) is strongly connected then
Ex(o,n) = Q(na(n))
a b

. b . only two
= e examples

G(ababa) known

C d
G(abcbadadbcd)

Seth Pettie



» 0 is a sequence without repetitions

*(x,y) is in G'(0) iff xyyx C 0 or yxyx-&=T~

It G'(0) is strongly connected then
Ex(o,n) QLnec('nTT Q(n2an)

/ only two
x4 “lexamples

known

G’ (ababab)

f'O'
G’(abcbadadbecfcfedef) Seth Pettie



® Defn. @ = minimal non-linear forbidden segs.

® What we know about &:
ababa e ®
- |®|>2 (the other a subseq of abcbadadbcd)
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® Defn. @ = minimal non-linear forbidden segs.

® What we know about &:
ababa e ®
- |®|>2 (the other a subseq of abcbadadbcd)

® Q: Is |®| infinite?
® A: Still Open. But we have a candidate!
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® Defn. @ = minimal non-linear forbidden segs.

® What we know about &:
ababa e ®
- |®|>2 (the other a subseq of abcbadadbcd)

® Q: Is |®| infinite?

® A: Still Open. But we have a candidate!
® Q: How big is it ®?

® A: New result: |®|>5
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® T(1,j) : a binary tree with height j+1
j distinct letters at each leaf

abc def ghi jK mno pgr stu vwx
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® T(1,j) : a bin. tree w/height j+1, | letters at each leaf
e i |etter at a leaf added to label of i ancestor

abc def ghi jK mno pgr stu vwx
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® T(1,j) : a bin. tree w/height j+1, | letters at each leaf
e i |etter at a leaf added to label of i ancestor

be

ad

abc def ghi jK mno pgr stu vwx
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® T(1,j) : a bin. tree w/height j+1, | letters at each leaf
e i |etter at a leaf added to label of i ancestor

beh
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® T(1,j) : a bin. tree w/height j+1, | letters at each leaf
e i |etter at a leaf added to label of i ancestor

cfil

beh

ad gj

abc def ghi jK mno pgr stu vwx
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O-nodes —»

O-nodes —»

O-nodes —=

l-nodes —*
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(k-1)-nodes -

(k-1)-nodes >

T(k,j) : composition of
j T(k-1, ) trees,
j distinct letters

(k-1)-nodes —»

at each leaf.

(k-1)-nodes ———»

k-nodes ——»
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the ith |etter at a

leaf is assigned to
the ith (k-1)-node
ancestor of the leaf

T(k,j) : composition of
j T(k-1, ) trees,
j distinct letters

bf,

at each leaf.

abed efgh
Seth Pettie



the ith |etter at a y

leaf is assigned to

the it" (k-1)-node g
ancestor of the leaf C;c
2nd the T, 7 T(k,j) : composition of
~ y - j T(k-1, ) trees,
. . Bf,
trees are deflned in i distinct letters
terms of their leaf at each leaf.

labels. .. @

abed efgh
Seth Pettie



Constructing Sec

®v,,V,,...,V, : hodes

uences

isted in postorder

® | (v) : the label of v in reverse order

® The final sequence:

The sequence for T(1,4) :

2 = L(vq),L(vy),...,L(Vv,)

cba fed da ihg lkj jg kheb

xurolifx ...

onm rgp pm uts Xwv vs wign

cfilorux

behk ngtw

ad gj mp sV

abc def ghi jkI mno pgr stu vwx ...
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=

=

]

——————————--p

e N . st

0-node

Y
first 1-node

Y
first (k-2)-node

|

first (k-1)-node

first k-node
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Forbidden subseq: ababa

® X is (ababa)-free:

VAV

=

=

]

——————————--p

e N . st

0-node

Y
first 1-node

Y
first (k-2)-node

|

first (k-1)-node

first k-node
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Forbidden subseq

® X is (ababa)-free:

e d
t b
Y
a i-node

- ababa

=

=

]

——————————--p

e N . st

0-node

Y
first 1-node

Y
first (k-2)-node

|

first (k-1)-node

first k-node
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Forbidden subseq: ababa

these are in the
wrong order!

Y-a f
b v

first (k-2)-node

|

first (k-1)-node

® X is (ababa)-free: ae 0-node
ﬂ+ ﬁrS: 1-node

=

>
S
S
e e . bttt

]

first k-node
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Forbidden subseq: abcacchc

® X is (abcacchc)-free:

necessarily a

common >
ancestor /[\
a b \c
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Forbidden subseq: abcacchc

® X is (abcaccbhc)-free:

' C

tb

Y

o ———>1 C first i-node
necessarily l
different e

nodes e C first j-node

Seth Pettie



Forbidden subseq: abcacchc

® X is (abcaccbhc)-free:

C

tb

Y

w T Cb first i-node
necessarily l
different \

nodes 7 Cb first j-node

aAc
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abcaccbhc

“a” does not appear in the final contradiction

(an implied occurrence of bcbebc)

Why is it necessary?

t C

b

Y

- — ch  firsti-node
necessarily l
different e

nodes * Cb first j-node

Rthe “binder”
a 1b \c
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Forbidden subseq: abcdeaebdce

® X is (abcdeaebdce)-free:

necessarily
different [

nodes

v d

¢t eb

a

Y
first i-node

aAe
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Forbidden subseq: abcdeaebdce

® X is (abcdeaebdce)-free:

necessarily
different [

nodes

v d

¢ edch

Y
first i-node

aAe

Seth Pettie



Forbidden subseq: abcdeaebdce

® X is (abcdeaebdce)-free:

/"

trapper”
©

*C
“trapped elements”

necessarily

different [ @ “guard”

nodes
ﬂ]der”
a b dc dd e
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Forbidden subseq: abcdeaebdce
o Succmct Encoding: V¢ AAd

» ¥ : a=binder
© @ :b=guard “trapper”
B cCc = 1st trapped @
> & : d=2nd trapped
o oo e = trapper 1¢
“trapped elements”
w | d
necessarily
different T “guard”
nodes @ ?
“binder”
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All of these encodings make sense & work:
VoAAS
CVAAL
VAIAS
These don’t:
® AAV S «—— the binder doesn’t bind (but this can be fixed!)

VAA O — the guard doesn’t guard
Vd A «~ this doesn’t make any sense
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Forbidden subseq: abcdeafefbdcf
° Encodmg K OAAVSH

* : a = half-binder

> & :b=guard @ rappet

© & :c = 1sttrapped

> & :d=2nd trapped 1C

. ¥ :e=binder “trapped elements”
» o f = trapper ¢d

.ﬂdc@ “guard”

“half-binder”
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Forbidden subseq: abcdeafegfhgihjijbdcj

Half-binders can be
“daisy-chained”
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Seventeen legal encodings

VA(*AN) *AV(OA)N VA(OA)N
* oAV el VA ®XAAVS
* AV (O AL) X AVAL Voaas

* OAAVSH VASAS * OAVASL
CVAAL *AOAVS *A(OA)V

*AOVAL *AVOAL
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® Some open problems

» Are there infinitely many “causes” of non-linearity?
» Are there any more linear seqs. to be discovered?

' For each ¢, is there an (ababa)-free o such that:

Ex(o,n) = n exp(ac(n))
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