Sensitivity of PCA for Traffic Anomaly Detection

Evaluating the robustness of current best practices

> Haakon Ringberg¹, Augustin Soule², Jennifer Rexford¹, Christophe Diot² ¹Princeton University, ²Thomson Research

Outline

Context

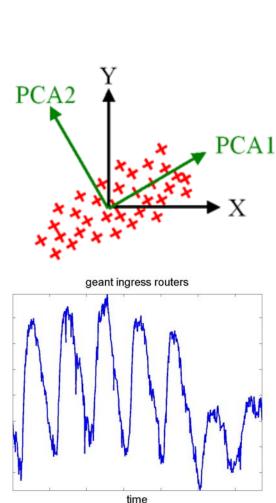
- Background and motivation
- Bigger picture
- PCA (subspace method) in one slide
- Challenges with current PCA methodology
- Conclusion & future directions

Background

- Promising applications of PCA to AD
 - [Lakhina et al, SIGCOMM 04 & 05]
- But we weren't nearly as successful applying technique to a new data set
 - Same source code
- What were we doing wrong?
 - Unable to tune the technique

Bigger Picture

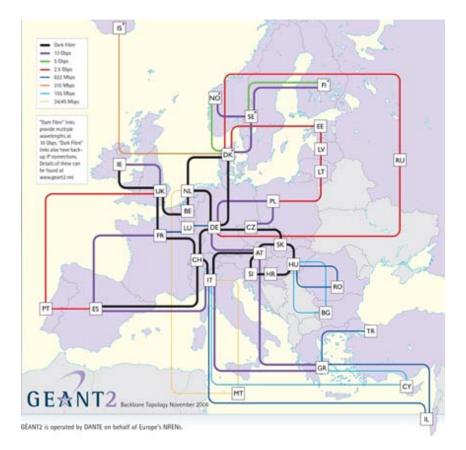
- Many statistical techniques evaluated for AD
 - e.g., Wavelets, PCA, Kalman filters
 - Promising early results
- But questions about performance remain
 - What did the researchers have to do in order to achieve presented results?


5

Questions about techniques

- "Tunability" of technique
 - Number of parameters
 - Sensitivity to parameters
 - Interpretability of parameters
- Other aspects of robustness
 - Sensitivity to drift in underlying data
 - Sensitivity to sampling
- Assumptions about the underlying data

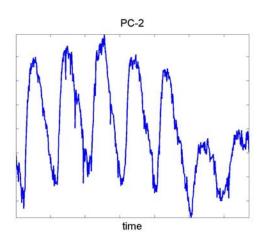
Principal Components Analysis (PCA)

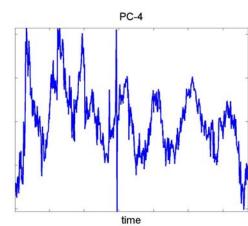

- PCA transforms data into new coordinate system
- Principal components (new bases) ordered by captured variance
- The first k (top_k) tend to capture periodic trends
 - normal subspace
 - vs. anomalous subspace

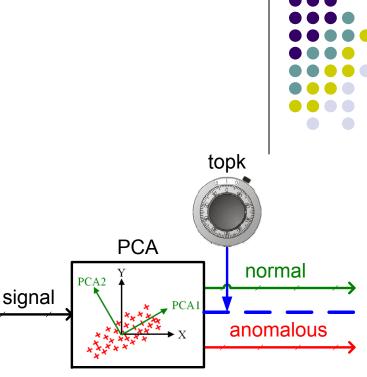
Data used

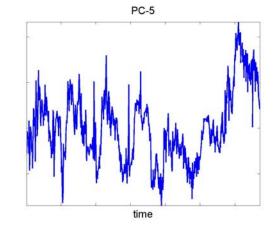
- Géant and Abilene networks
- IP flow traces
- 21/11 through 28/11 2005
- Detected anomalies were manually inspected

Outline

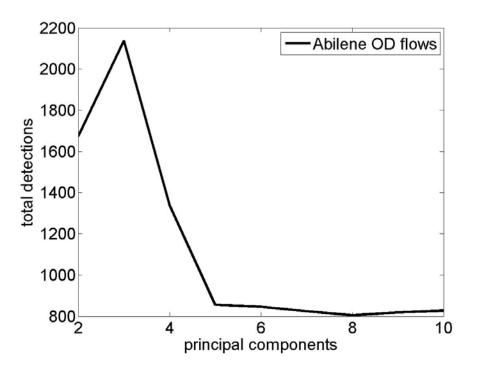


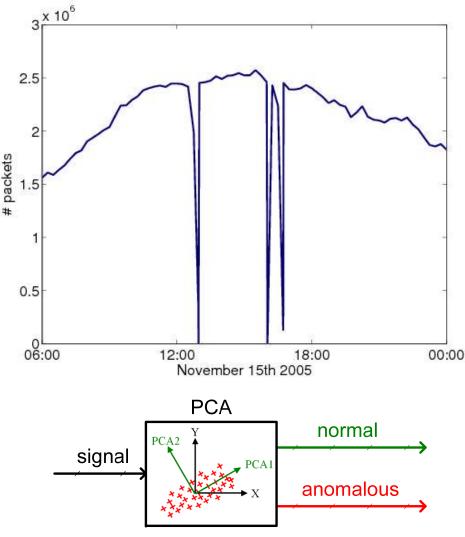

• Context


- Challenges with current PCA methodology
 - Sensitivity to its parameters
 - Contamination of normalcy
 - Identifying the location of detected anomalies
- Conclusion & future directions


Sensitivity to top_k

- Where is the line drawn between normal and anomalous?
- What is too anomalous?




Sensitivity to top_k

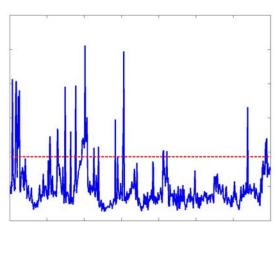
- Very sensitive to top_k
 - Total detections and FP
- Not an issue if top_k were tunable
- Tried many methods
 - 3σ deviation heuristic
 - Cattell's Scree Test
 - Humphrey-Ilgen
 - Kaiser's Criterion
- None are reliable

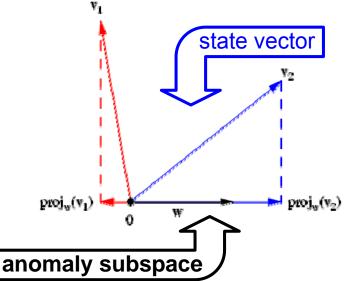
Contamination of normalcy

- Large anomalies may be included among top_k
- Invalidates assumption that top PCs are periodic
- Pollutes definition of normal
- In our study, the outage to the left affected 75/77 links
 - Only detected on a handful!

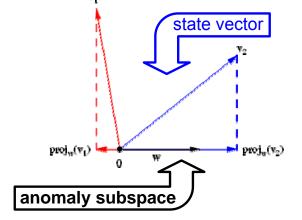
Conclusion & future directions

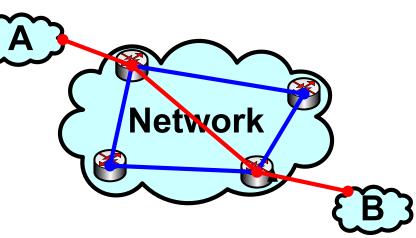
- PCA (subspace method) methodology issues
 - Sensitivity to top_k parameter
 - Contamination of normal subspace
 - Identifying the location of detected anomalies
- Generally: room for rigorous evaluation of statistical techniques applied to AD
 - Tunability, robustness
- Assumptions about underlying data
 - Under what conditions does method excel?


Thanks! Questions?


Haakon Ringberg Princeton University Computer Science http://www.cs.princeton.edu/~hlarsen/

Identifying anomaly locations


- Spikes when state vector projected on anomaly subspace
 - But network operators don't care about this
 - They want to know where it happened!
- How do we find the original location of the anomaly?



Identifying anomaly locations

- Previous work used a simple heuristic
 - Associate detected spike with *k* flows with the largest contribution to the state vector v
- No clear a priori reason for this association

