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Biologists understand evolutionary processes well enough to have a fair idea
of what they want from supertree methods to estimate and synthesize evo-
lutionary relationships. They recognize that it would be useful to character-
ize or design supertree methods in terms of their properties or axioms, yet
the educational systems are such that biologists may not have acquired the
mathematical skills necessary to undertake such axiomatic analyses. Mathe-
maticians can help: they like to view such problems in terms of formal models
and axioms, yet the educational systems are such that their familiarity with
the biological underpinnings of supertree research may be sketchy and/or
simplistic. If biologists and mathematicians wish to collaborate on supertree
problems, they might begin with the premise that many relevant properties
are so inadequately defined, and their interrelationships so poorly understood,
that usually it is impossible to obtain interesting nontrivial formal results. To
address this problem, I will describe a basic framework in which agreement,
consensus and supertree problems can be formulated, and in which some of
the more important supertree concepts might be given precise specifications.
If biologists and mathematicians find this approach relevant, we might discuss
later how to extend or refine it to meet the needs of individual researchers.
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I started to prepare this talk after reading a manuscript written

by Mark Wilkinson and his colleagues.

I’ve incorporated some ideas on aggregation models developed

by Buck McMorris and me.

I have been strongly influenced by the Steel–Dress–Böcker paper,

which is written for biologists and which (to my knowledge) is

the only paper yet published on supertrees from an axiomatic

viewpoint.
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Working Assumptions

Biologists

say too much, imprecisely.

Mathematicians

say too little, but very precisely.
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Strive to occupy the middle ground: say just enough, and with

reasonable precision.
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The Really, Really Important
Scientific Problems of Our Time

1. What is a supertree?

2. What is a supertree problem?

3. What properties do supertree problems have?
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Concerning the first problem, the biologists in this room surely

understand biological supertrees and their uses as estimates of

evolutionary history. As for the mathematicians, they probably

don’t want to know any more about supertrees than is required

to construct appropriate models. So I will emphasize problems

2 and 3.
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Why Axiomatize? (1)

“The axiomatic method is, strictly speaking, nothing

but this art of drawing up texts whose formalization

is straightforward in principle. As such it is not a new

invention; but its systematic use as an instrument of

discovery is one of the original features of contempo-

rary mathematics.” — Nicholas Bourbaki (1968)
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In support of the axiomatic approach, I offer these inspirational

readings.

. . .

Bourbaki was an amateur mathematician who found his vocation

serving as a general in Napoleon’s army. His name is used here

pseudonymously.
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Why Axiomatize? (2)

“The change to an articulate mathematical symbol-

ism well adapted to the material brought benefits of

a kind and scale which . . . could not have been fore-

seen. Its first fruits were a series of articles in the

journals, some of them dealing with fundamental as-

pects of the theory of committees. By axiomatizing

the theory Arrow’s work had blown a sudden energy

into the subject.” — Duncan Black (1991).
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Black’s paper is a critique of Arrow’s contributions to social

choice theory. Written in 1972, the year Arrow received his

Nobel Prize, it was published after Black’s death in 1991.
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What to Axiomatize?
Properties of Supertree Problems

Accuracy: assessable, co-Pareto, independence,

order invariance, Pareto, positionless,

shapeless, sizeless, weightable

Model constraints: generality, plenary, uniqueness

Practicality: space, time
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These properties are from Mark’s manuscript and his DIMACS

talk.

I will say nothing about practicality: the evaluation of time and

space complexities has been well studied by computer scientists.

Some requirements can be incorporated directly in the model’s

specification, and so need not appear as axioms of the model.

I am primarily interested in axioms of the first type which, if

satisfied by an aggregation rule, may increase our confidence in

the relevance of that rule’s results.
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Consensus Models

X = generic set of objects to be aggregated

X k = set of all k-tuples or profiles of X
X∗ =

⋃

k≥1
X k

Consensus: C : X k −→ X
Multiconsensus: C : X k −→ 2X \ {Ø}

Complete consensus: C : X∗ −→ X
Complete multiconsensus: C : X∗ −→ 2X \ {Ø}
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Since the early 1980s there has been a continuing interest in

developing consensus rules for biological applications. Although

inappropriate for investigating supertrees, consensus rules are a

useful point of reference.

Invariably there is a set of voters. Each voter votes by specifying

an object. The consensus rule accepts a profile of these objects

and returns a unique consensus object that in some sense best

represents the profile.

The basic consensus model can be varied by changing its domain

and/or codomain.
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Components of Consensus Models

1. Set K of indices to name the voters.

2. Set S of labels, e.g., species names, with which to

describe the objects.

3. Set X of objects, e.g., hierarchies or phylogenies.

4. A reduction (restriction, contraction) function to

exhibit the constituent parts of objects.

5. Encoding functions to characterize objects in

meaningful ways.
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Consensus models are usually specified by five components.

Invariably there is a set of voters; to name them we will use a

finite set K of indices. As for the objects in X , usually there is

a natural set S of labels in terms of which each object can be

described. Index, label and object are the initial concepts.

If we view an object as a complex entity specified in terms of

labels, then we may wish to apply a reduction function to isolate

parts of that object for study.

An object may have different types of relevant features, such as

clusters, triads, quartets or components. Each encoding function

characterizes objects in terms of such a feature.
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Analyzing Aggregation

1. Begin with concepts of index, label & object.

2. Define a model of synthesis. Specify axioms, use

them to prove things.

3. Add a concept of reduction. Specify axioms, . . .

4. Add a concept of encoding. Specify axioms, . . .

5. Add a concept of ? . Specify axioms, . . .

6. Repeat 2–5 for other models of aggregation.
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We might hope that such components will occur in any aggre-

gation model that synthesizes small objects into a single large

object. Here is a plausible strategy for designing such models.

18 min 9-1



Initial Concepts

K = {1, . . . , k}, a set of things called indices

S = {s1, . . . , sn}, a set of things called labels

(∀X ⊆ S)(XX = a set of things called objects, each

defined in terms of each and every label of X)

(∀X ⊆ S)(X[X] =
⋃

Y ⊆X
XY )

X = HS, i.e., hierarchies with exactly n leaf labels

X = H[S], i.e., hierarchies with at most n leaf labels
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To begin the design process, here are the three basic components

for specifying models of aggregation.

There is an important distinction between XX and X[X], the two

basic sets of objects: an object of XX must have the label set X,

while an object of X[X] may have any label set that is a subset

of X. Clearly XX ⊆ X[X].
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Models of Aggregation

For C a partial function,

Agreement: C : X k
S −→ X[S]

Consensus: C : X k
S −→ XS

Synthesis: C : X k
[S] −→ XS

Multisynthesis: C : X k
[S] −→ 2XS \ {Ø}

Complete synthesis: C : X∗
[S] −→ XS

Complete multisynthesis: C : X∗
[S] −→ 2XS \ {Ø}
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With the three basic concepts we can specify three basic types

of aggregation model: agreement, consensus and synthesis.

Just as consensus models had four variants, so do synthesis mod-

els; but today I will only discuss the basic synthesis model.
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Conventions

(∀ functions f, g), fgT means f(g(T )).

(∀P = (T1, . . . , Tk) ∈ X k
[S]), P is called a profile.

(∀T ∈ X[S]), (T )k = (T1, . . . , Tk) = (T, . . . , T ) ∈ X k
[S]

is a constant profile.

� : X[S] −→ 2S displays an object’s labels:

(∀T ∈ X[S])(�T = the set of labels for T )
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Several conventions make the following developments easier to

grasp.
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Collective Rationality (ColRat)

(∀P ∈ X k
[S])(CP is well-defined)
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Our first axiom, collective rationality, requires that the synthesis

rule be well-defined, i.e., that it return for each profile a unique

object as that profile’s synthesized result.

Although collective rationality is usually assumed for consensus

rules, it may be undesirable for synthesis rules. For example,

if for a given profile there is no significant overlap among the

objects, then how could any synthesis rule return a meaningful

synthesized result?
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Index Concept

σ : K −→ K permutes elements of K = {1, . . . , k}

σ : X k
[S] −→ X k

[S] permutes object indices in profiles:

(∀P = (T1, . . . , Tk) ∈ X k
[S])[σP = (Tσ1, . . . , Tσk)]

Index Symmetry (I-Sym)

(∀P ∈ X k
[S])(∀K-permutations σ)(CP = CσP )

i.e., (∀K-permutations σ)(C = Cσ)
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Our second axiom concerns the index concept. σ is a permu-

tation function on K, i.e., it is a bijection and so is one-one

and onto. It is straightforward to use σ to permute objects in a

profile by permuting the object indices. Although both functions

are named σ, context always shows which σ is intended.

The index symmetry axiom requires that a synthesized result be

invariant under every permutation of the objects in every profile.
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Label Concept

φ : S −→ S permutes labels in S

φ : X[S] −→ X[S] permutes labels of objects:

(∀T ∈ XS)(φT = object obtained

by using φ to permute the labels of T )

φ : X k
[S] −→ X k

[S] permutes labels of profile objects:

(∀P ∈ X k
[S])[φP = (φT1, . . . , φTk)]
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Our third axiom concerns the label concept. φ is a permutation

function on S, i.e., it is a bijection and so is one-one and onto.

It is straightforward to use φ to permute labels in a single object,

and by extension to permute labels in every object in a profile.

Although all three functions are named φ, context always shows

which φ is intended.
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Label Consistency (L-Cons)

(∀P ∈ X k
[S])(∀S-permutations φ)(CφP = φCP )

i.e., (∀S-permutations φ)(Cφ = φC)
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The label consistency axiom requires that a synthesized result

be invariant under every permutation of the object labels.

For each profile P and S-permutation φ: if we use φ to relabel P

and then apply C to that modified profile, the synthesized result

is equal to the result of applying C to P , but with its labels then

permuted by φ.

“If we rename all the species, and then apply the method to the

new input trees, the output tree is simply the old output tree,

but with the species renamed accordingly.”

— Steel et al. (2000, p. 364)
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Object Pareto (O-Par)

(∀T ∈ XS)(∀P ∈ X k
[S])

[(∀i ∈ K)(T = Ti) =⇒ T = CP ]

Object Autonomy (O-Aut)

(∀T ∈ XS)(∃P ∈ X k
[S])(T = CP )
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Four axioms concern objects.

The first is a form of optimality: for each object having S as

its set of labels and for each profile, if that object is at every

position of the profile, then the synthesis rule must return that

object as the synthesized result.

The second is a form of autonomy: every object of the synthesis

rule’s codomain must be in its range. That is, for each object

having S as its set of labels, a profile must exist for which that

object is the synthesized result.
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Object Dictatorship (O-Dict)

(∃j ∈ K)(∀P ∈ X k
[S])(Tj = CP )

Object Co-Pareto (O-CoP)

(∀P ∈ X k
[S])(�CP ⊆

⋃

i∈K
�Ti)
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The third specifies the behavior of an object dictator. There

exists an index j such that, for every profile, the object at that

profile’s jth position must be returned as the synthesized result.

Object dictators are impossible if index symmetry holds.

The fourth specifies a criterion of parsimony. Every label of a

synthesized result must be in at least one of the objects in any

profile yielding that synthesized result.

Surely every reasonable supertree rule is object Co-Pareto.
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Reduction Concept

(∀X ⊆ S), ξX : X[S] −→ X[X] reduces objects on S

to objects on X: (∀T ∈ X[S]), ξX(T ) is obtained by

suppressing in T the structure associated with S \ X.

(∀X ⊆ S), ξX : X k
[S] −→ X k

[X] reduces profiles on sub-

sets of S to profiles on subsets of X:

(∀P ∈ X k
[S])[ξXP = (ξXT1, . . . , ξXTk)]

(∀P, P ′ ∈ X k
[S])[P = P ′ ⇐⇒ (∀i ∈ K)(Ti = T ′

i)]
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Reduction is like an X-ray machine that penetrates the surfaces

of objects to reveal their hidden structure.

For any subset X of S, and for any object T on S, the reduction

function ξX enables us to study a corresponding object on X.

Thus if the original object is a graph G with vertex set S, then

the reduction function for X might return the subgraph of G that

is induced by X.

It is easy to extend the reduction function so that it operates on

profiles of objects, rather than single objects.

Two profiles are called equal if the corresponding objects at every

index position are equal.
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Reduction Commutativity (R-Com)

(∀P ∈ X k
[S])(∀X, Y ⊆ S)(ξXξY P = ξY ξXP )

i.e., (∀X, Y ⊆ S)(ξXξY = ξY ξX)
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What makes a reasonable reduction function?

Suppose we have a large tree T with labeled leaves, and we wish

to reduce T to a smaller tree by pruning the three leaves labeled

x, y and z. We expect the result to be insensitive to the order

in which those leaves are pruned.

Reduction commutativity ensures that the result of applying sev-

eral reductions is independent of the order in which they are

applied.

This axiom is unusual: it does not mention the synthesis rule.
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Reduction Independence (R-Inde)

(∀P, P ′ ∈ X k
[S])(∀X ⊆ S)

(ξXP = ξXP ′ =⇒ ξXCP = ξXCP ′)

Reduction Consistency (R-Cons)

(∀P ∈ X k
[S])(∀X ⊆ S)(CξXP = ξXCP )

i.e., (∀X ⊆ S)(CξX = ξXC)
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Reduction independence is the concept of Arrovian indepen-

dence. Consider any two profiles of objects, and consider any

subset X of S. If we reduce the profiles to X and find that the

reduced profiles are equal, then Arrovian independence requires

that the corresponding synthesized objects, when reduced to X,

must also be equal.

Reduction consistency concerns whether the order in which we

apply the reduction and synthesis functions is critical. Consider

any profile P of objects, and consider any subset X of S. Reduc-

tion consistency requires that the reduction to X of an object

synthesized from P be equal to the object synthesized from P

after it has been reduced to X.
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Reduction Confusion

R-Inde = R-Cons (!)

“Borrowing Arrow’s terminology we shall say that in

the kind of cases described above the minimax regret

solution is ‘dependent upon irrelevant alternatives.’”

— Radner & Marschak (1954)

“Arrow (1951, pp. 26–27) surrounds his definition of

[R-Inde] with two examples of [R-Cons] and one of

[R-Inde].” — McLean (1995)
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In the 1950s confusion arose on the meaning of independence

because the concepts of reduction independence and reduction

consistency were confounded.

For me there is only one generic concept of independence, and it

is Arrow’s. If another concept does not look and feel like Arrovian

independence, it should not be called independence. Accept no

substitutes: for independence, Arrow’s is the only game in town!
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Display

(∀T1, T2 ∈ X[S])

[T1 displays T2 if (X = �T2 and ξXT1 = T2)]

(∀T ∈ X[S])(∀P ∈ X k
[S])

[T displays P if (∀i ∈ K)(T displays Ti)]

Reduction Display (R-Disp)

(∀P ∈ X k
[S])

[(∃T ∈ X[S])(T displays P ) =⇒ (CP displays P )]
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The display concept extends the reduction function so that it

applies to a profile of objects.

“Display” is a convenient synonym for “reduce to:” for all ob-

jects T1 and T2, T1 displays T2 if and only if T1 reduces to T2.

For each profile P , an object T displays P if T displays every Ti in

P . Notice that phylogenetic trees in a profile P are compatible

if and only if some tree displays P .

Reduction display requires, for every profile P , that the synthe-

sized object display P if some object displays P .
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Encoding Concept

ES = a set of atoms defined by the labels in S.

Examples of atoms: clusters, triads, quartets.

e : X[S] −→ 2ES encodes objects by sets of atoms:

(∀T ∈ X[S])(eT is a set of atoms characterizing T )
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Each object has had associated with it only a set of labels. Now

we will use an encoding scheme to characterize each object in

terms of a set of elementary atomic structures.

This is a natural step since hierarchies or rooted phylogenetic

trees can each be characterized by a set of clusters or by a set

of triads, and phylogenies or unrooted phylogenetic trees can

each be characterized by a set of quartets.

More than one encoding might be relevant to any given synthesis

problem.
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Encoding Pareto (E-Par)

(∀x ∈ ES)(∀P ∈ X k
[S])[(∀i ∈ K)(x ∈ eTi) =⇒ x ∈ eCP ]

Encoding Autonomy (E-Aut)

(∀x ∈ ES)(∃P ∈ X k
[S])(x ∈ eCP )
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Four axioms concern objects encoded in this way. The axioms

are strictly analogous to those we discussed previously.

These two are analogous to object Pareto and object autonomy.
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Encoding Dictatorship (E-Dict)

(∃j ∈ K)(∀P ∈ X k
[S])(eTj ⊆ eCP )

Encoding Co-Pareto (E-CoP)

(∀P ∈ X k
[S])(eCP ⊆

⋃

i∈K
eTi)
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These two are analogous to object dictatorship and object Co-

Pareto.
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Concepts & their Axioms

Slide Concept Axiom Axiom
13 — ColRat
14 Index •� I-Sym
16 Label •� L-Cons
17 Object O-Par O-Aut
18 Object O-Dict O-CoP
20 Reduction R-Com
21 Reduction ◦ R-Inde � R-Cons
23 Reduction • R-Disp
25 Encoding •◦� E-Par E-Aut
26 Encoding ◦ E-Dict � E-CoP

◦ Arrovian. • Steel et al. (2000). � Wilkinson et al.
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This table of contents shows where the axioms are defined. It

reminds us that this study is based on and driven by five basic

concepts. It flags several axioms that have been used by other in-

vestigators. Notice that the three investigators mentioned chose

to focus on three distinct, important aspects of the reduction

concept.

We have a long way to go on the quest to specify and inves-

tigate axioms of the types mentioned by Mark Wilkinson and

his colleagues. The approach I have outlined has limitations;

the project to formalize properties relevant to biologists may be

infeasible.
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Complete Multisynthesis Model

C : X∗
[S] −→ 2XS \ {Ø}

For studying complete multisynthesis median rules.

Problems

0. Do the axioms and results for complete multi-

consensus median rules generalize to this model?
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Here are six problems of varying degrees of relevance or signifi-

cance. To motivate this one, recall that for the consensus model

a great deal is now known concerning multiconsensus median

rules.

0. I hope so. Why hasn’t someone already done this?
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More Problems

1. How to combat terminological confusion?

2. Where was the biology in this talk?

3. Are Arrovian impossibility results possible in the

synthesis model?

4. How to accommodate sizeless, shapeless, etc., in

the synthesis model?

5. How to formulate synthesis models from a lattice-

theoretic point of view?
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1. Has this talk helped? Or is it part of the problem?

2. In the undefined terms such as object, reduction, encoding.

3. I hope so. Why hasn’t someone already done this?

4. Even defining such concepts may be problematic. For each

such concept, is there a particular encoding that provides a nat-

ural setting in which the concept can be studied?

5. This may require a substantial change in point of view, one

that biologists may find difficult to make.
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