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Recommender Systems



Netflix Prize

• One million big ones!

• Given 100 million ratings on a scale of 1 to 5, predict 3 
million ratings to highest accuracy

• 17770 total movies x 480189 total users
• Over 8 billion total ratings

• How to fill in the blanks?



Abstract Setup: Matrix Completion

• How do you fill in the missing data?

Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X =

X L
R*

k x r r x nk x n

kn entries r(k+n) entries

=



Low-rank Matrix Completion

• How do you fill in the missing data?

Xij known for black cells
Xij unknown for white cells

X =
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Affine Rank Minimization

• PROBLEM: Find the matrix of lowest rank that 
satisfies/approximates the underdetermined linear 
system

• NP-HARD:
– Reduce to finding solutions to polynomial systems
– Hard to approximate
– Exact algorithms are awful



Proposed Heuristic

• Proposed by Fazel (2002).
• Nuclear norm is the “numerical rank” in numerical 

analysis
• The “trace heuristic” from controls if X is p.s.d.

Convex Relaxation:

Affine Rank Minimization:



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

Parsimonious Models

atomsmodel weights

rank



• 2x2 matrices
• plotted in 3d

rank 1
x2 + z2 + 2y2 = 1

Convex hull:



• 2x2 matrices
• plotted in 3d

• Projection onto x-z
plane is l1 ball



w1

w2

A(X)=b



So how do we compute it? And when does it work?

• 2x2 matrices
• plotted in 3d

• Not polyhedral…



Equivalent Formulations

• Semidefinite embedding:

• Low rank parametrization:



Computationally: Gradient Descent!

• “Method of multipliers”
• Schedule for 

 

controls the noise in the data
• Same global minimum as nuclear norm
• Dual certificate for the optimal solution

• When will this fail and when it might succeed?



First theory result

• If m > c0 r(k+n-r)log(kn), the heuristic succeeds for 
most A

• Number of measurements c0 r(k+n-r) log(kn)

• Approach: Show that a random A

 

is nearly an isometry 
on the manifold of low-rank matrices.

• Stable to noise in measurement vector b and returns as 
good an answer as a truncated SVD of the true X.

constant intrinsic 
dimension

ambient 
dimension

Recht, Fazel, and Parrilo. 2007.



Low-rank Matrix Completion

• How do you fill in the missing data?

Xij known for black cells
Xij unknown for white cells

X =



Which matrices?

• Any subset of entries 
that misses the (1,1) 
component tells you 
nothing!

• Still need to see the 
entire first row

• Want each entry to 
provide nearly the same 
amount of information

X =

X =



Incoherence

• Let U be a subspace of Rn of dimension r and PU be the 
orthogonal projection onto U.  Then the coherence of U 
(with respect to the standard basis ei ) is defined to be

• (U) ≥

 

1
– e.g., span of r columns of the Fourier transform

• (U) ≤

 

n/r
– e.g., any subspace that contains a standard basis element

• (U) = O(1)
– sampled from the uniform distribution with r > log n



Matrix Completion

• Suppose X is k x n (k≤

 

n) has rank r and has row and 
column spaces with incoherence bounded above by . 
Then the nuclear norm heuristic recovers X from most 
subsets of entries 

 

with cardinality at least

• If, in addition, r ≤

 

-1 n1/5, 

then entries suffice. 

Candès and Recht. 2008



Proof Tools

• Convex Analysis
– KKT Conditions: Find dual certificate proving minimum 

nuclear norm solution is the hidden low rank matrix
– Compressed Sensing: Use ansatz for multiplier and bound 

its norm

• Probability on Banach Spaces
– Moment bounds for norms of matrix valued random 

variables [Rudelson]
– Decoupling [Bourgain-Tzafiri, de la Pena et al]: Indicators 

variables can be treated as independent
– Non-commutative Khintchine Inequality [Lust-Piquard]: 

Tightly bound the operator norm in terms of the largest 
entry.



… … … …Gradient descent 
on low-rank 
nuclear norm

parameterization

Mixture of 
hundreds of 

models, including 
nuclear norm



Parsimonious Modeling: A road map

• Open Problems in rank minimization: optimal 
bounds, noise performance, faster algorithms, more 
mining of connections with compressed sensing

• Expanding the parsimony catalog: dynamical 
systems, nonlinear models, tensors, completely positive 
matrices, Jordan Algebras, and beyond

• Automatic parsimonious programming: 
computational complexity of norms. algorithm and proof 
generation

• Broad applied impact: data mining time series in 
biology, medicine, social networks, and human 
computer interfaces
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