

Thu D. Nguyen
Department of Computer Science

Collaborators: Ricardo Bianchini, Inigo Goiri, Md. Haque, William Katsak, Kien Le

Motivation

- Datacenters consume massive amounts of energy (electricity)
- Vast majority currently due to small and medium scale datacenters

2000 2005 2010

Electricity consumption of US DCs [JK'11]

Electricity consumption of WW DCs [JK'11]

Motivation

Electricity comes mostly from burning fossil fuels

Electricity sources in US & WW [DOE'10]

CO₂ of world-wide DCs [Mankoff'08]

Can we use renewables to reduce this footprint?

Reducing electricity costs would be nice too

Outline

- Motivation: DC energy usage and carbon footprint
- Reducing carbon footprint & cost with renewables
- Our target and research challenges
- Parasol: our solar-powered micro-datacenter
- GreenSwitch: managing power sources
- Previous, current, and related work
- Conclusions

Greening Datacenters

- Power purchase agreement, off-site generation
 - Renewable energy produced at the best location
 - Requires transmission
 - Construction of transmission lines
 - Energy losses: ~15% [IEC'07]
 - Variability challenging for grid operators
 - Example: Google buys wind power from NextEra
- Self-generation, co-location
 - Lower peak power, energy costs with self-generation
 - Location may not be ideal for DC or renewable plant
 - Examples:
 - Microsoft placed DC near a hydro plant in OR
 - Apple built a 40MW solar array in NC
- No approach is perfect

Self-Generation Example: Apple NC

Outline

- DC energy usage and carbon footprint
- Reducing carbon footprint & cost with renewables
- Our target and research challenges
- Parasol: our solar-powered micro-datacenter
- GreenSwitch: managing power sources
- Previous, current, and related work
- Conclusions

Our Research Target

Self-generation or co-location with solar and/or wind

Pros: Clean and available

Cons: Space and cost

Solar and Wind Are Clean

Solar and Wind Are Clean

Solar More Available In US

Solar PV Efficiencies Are Increasing

Solar PV Capacity Factors Today

Cost of Solar PV Energy Decreasing

Grid electricity prices have been increasing: 30%+ since 1998 [EIA'12]

Cost of Solar PV Energy Decreasing

Cost of Solar PV Energy Decreasing

With incentives, the installed price can go down by another 40-60%

Solar Space and Cost: Present and Future

Space as a factor of rack area	Present	Future (2020-2030)
Density per rack		
8kW (200W 1U servers)	~47x	~24x
2kW (25W 0.5U servers)	~12x	~6x

Assuming 30% server utilization, 50% solar energy, NJ capacity factor, and 1 row of panels

Solar space and cost: Present and future

Space as a factor of rack area	Present	Future (2020-2030)
Density per rack		
8kW (200W 1U servers)	~47x	~24x
2kW (25W 0.5U servers)	~12x	~6x

Assuming 30% server utilization, 50% solar energy, NJ capacity factor, and 1 row of panels

Cost per AC Watt	Present	Future (2020-2030)
	~\$2.30	< \$1.20

Assuming self-generation and federal + state incentives

Time to amortize cost	Present	Future (2020-2030)
	~12 years	< 6 years

Assuming above costs, NJ capacity factor, and NJ grid energy prices

Solar space and cost: Present and future

Space as a factor of rack area	Present	Future (2020-2030)
Density per rack		
8kW (200W 1U servers)	~47x	~24x
2kW (25W 0.5U servers)	~12x	~6x

Assuming 30% server utilization, 50% solar energy, NJ capacity factor, and 1 row of panels

Cost per AC Watt	Present	Future (2020-2030)
	~\$2.30	< \$1.20

Assuming self-generation and federal + state incentives

Time to amortize cost	Present	Future (2020-2030)
	~12 years	< 6 years

Assuming above costs, NJ capacity factor, and NJ grid energy prices

Wind takes ~12x less space and is ~3x cheaper

Main Challenge: Power Supply is Variable

- Power generation is variable
 - Unlikely to match workload
- Match power demand and supply

Main Challenge: Power Supply is Variable

- Many research questions:
 - What kinds of DC workloads are amenable?
 - What kinds of techniques can we apply?
 - How well can we predict solar energy availability?
 - If batteries are available, how should we manage them?
 - Can we leverage geographical distribution?
- Building hardware & software to answer questions

Outline

- DC energy usage and carbon footprint
- Reducing carbon footprint & cost with renewables
- Our target and research challenges
- Parasol: our solar-powered micro-datacenter
- GreenSwitch: managing power sources
- Previous, current, and related work
- Conclusions

The Rutgers Parasol Project

Parasol: Our Hardware Prototype

- Unique research platform
 - Solar-powered computing
 - Remote DC deployments
 - Software to exploit renewables within and across DCs
 - Tradeoff between renewables, batteries, and grid energy
 - Free cooling, wimpy servers, solid-state drives

Parasol: Our Hardware Prototype

Parasol Details

Steel structure on the roof

- 16 solar panels: 3.2 kW peak
- Container hosts 2 racks of IT

Backup power

- Batteries: 32kWh
- Grid

IT equipment

- 64 Atom servers (so far): 1.9 kW
- 2 switches

Cooling

- Free cooling: 10 400 W
- Air conditioning: 2 kW

Electrical infrastructure

Outline

- DC energy usage and carbon footprint
- Reducing carbon footprint & cost with renewables
- Our target and research challenges
- Parasol: our solar-powered micro-datacenter
- GreenSwitch: managing power sources
- Previous, current, and related work
- Conclusions

Example Energy Source Management

Example Energy Source Management

Example Energy Source Management

Possible Energy Source Management

GreenSwitch

- Minimize brown electricity cost
 - Brown energy
 - Peak brown power
 - Battery lifetime constraint
- Manage energy sources
 - Use solar/net metering
 - Charge/discharge battery
 - Limit brown peak power
- Manage workload
 - Turn servers on/off
 - Delay deferrable jobs

GreenSwitch Architecture

Experimental Environment

- Evaluation on 64 Parasol nodes
 - 12 one-day experiments
 - Deferrable vs. non-deferrable workloads
 - Baseline datacenter (no solar, no batteries, no delays)
- New Jersey brown electricity pricing
 - On/off-peak energy, peak power, net metering
- GreenSwitch for Hadoop (configurer)

Experimental Environment

SWIM: Facebook based workload [MASCOTS'11]

Parasol Without GreenSwitch

66% cost savings → Solar amortized in 7 years

GreenSwitch: Non-Deferrable Workload

75% cost savings → Batteries cannot be amortized

GreenSwitch: Deferrable Workload

96% cost savings → Solar + batteries amortized in 7.6 years

Parasol: A Real System

- Real software running on real hardware
- Power losses
- Overhead of energy source switching
- System limitations
 - Net metering vs. battery charging
 - Use grid vs. net metering
 - Green battery charging vs. use grid

Outline

- DC energy usage and carbon footprint
- Reducing carbon footprint & cost with renewables
- Our target and research challenges
- Parasol: our solar-powered micro-datacenter
- GreenSwitch: managing power sources
- Previous, current, and related work
- Conclusions

Other Works on Green DC Software

- Follow the renewables [HotPower'09, IGCC'10]
- Delay batch jobs while respecting deadlines [SC'11, Eurosys'12]
- Power source management [SustainIT'12, ASPLOS'13]
- Green SLAs in HPC clouds [IGCC'13]

Current Works

- Temperature- and variation-aware management of free-cooled datacenters
- DC placement world-wide for cost-effective followthe-renewables
- Matching power demand to power supply for nondeferrable workloads
 - Trading-off response time and durability for interactive workloads (GreenCassandra)

Related Work

- Blink, UMass, Amherst
- Algorithms for Sustainable IT, Caltech
- Sustainable datacenters, HP Labs
- Ren et al., MASCOTS 2012
- Li et al., ISCA 2012

Conclusions

- Greening datacenters
 - Challenges & opportunities
 - Hardware/software solution
- GreenSwitch benefits
 - Delaying load and solar gives the best results
 - Reduces amortization time by 1.8-2x
 - Flexibility: no batteries, workloads, wind ...

Rutgers University

45

http://parasol.cs.rutgers.edu