
Towards scalable divide-and-conquer methods for
computing concepts and implications

Petko Valtchev1 and Vincent Duquenne2

Abstract
Formal concept analysis (FCA) studies the partially ordered structure induced by the Galois connection of a binary relation between

two sets (usually called objects and attributes), which is known as the concept lattice or the Galois lattice. Lattices and FCA constitute
an appropriate framework for data mining, in particular for association rule mining, as many studies have practically shown. However,
the task of constructing the lattice, a key step in FCA, is known to be computationally expensive, due to the inherent complexity of the
structure. As a possible remedy to the higher cost of manipulating lattices, recent work has laid the foundation of a divide-and-conquer
approach to lattice construction whereby the key step is a merge of factor lattices drawn from data fragments. In this paper, we propose
a novel approach for lattice assembly that brings in the implication rules and canonical bases. To that end, we devised a procedure that
interweaves implication and concept constructions. The core of our method is the efficient discarding of invalid elements of the direct
product of factor lattices and a set of heuristics has been designed for that. The method applies invariably to both complete lattices and
iceberg lattices. In its most efficient realization, the approach largely outperforms the classical FCA algorithmNEXTCLOSURE.

1 Introduction

Formal concept analysis (FCA) studies the partially ordered structure induced by the Galois connection of a binary relation between two sets
(usually called objects and attributes), which is known as the concept lattice or the Galois lattice. Galois/concept lattices and FCA in general
constitute an appropriate framework for data mining, in particular for association rule mining, as many studies have practically shown. The
specific benefit of using this framework amount in a reduced output size (closed vs. plain itemsets, and maximally informative rule bases versus
sets of conventional rules). However, to thoroughly benefit from the strengths of the FCA paradigm, the mining tools need to construct the
lattice (or a substructure of it), a task that is known to be computationally demanding, due to the inherent complexity of the lattice structure.
The problem is particularly acute with large datasets as in modern data warehouses or on the Web. A natural approach to the processing of
large volumes of data is to split them into fragments to be dealt with separately and further aggregate the partial results into a global one. In
this paper, we tackle the problem of constructing the lattice of a data table from factor lattices, i.e., lattices built on top of a complete set of
fragments from the initial table.

But the merge operation may bring more than performance gains. On the one hand, it is a natural way of underlying the links between
factor concepts and those from the global lattice. In many cases, this information is precious for the understanding of interactions between
two (semantically defined) groups of attributes (see [13] for motivation rooted at some software engineering problems). On the other hand,
we show in the sequel that the merge methods apply to icebergs, i.e., an iceberg of the global lattice can be constructed from the respective
icebergs of the factors. In this case, merge may not only be more efficient, but also more natural than starting from scratch, i.e., considering
the entire dataset.

The paper is organized as follows. Section 2 gives a background on Galois/concept lattices and construction methods. Section 3 recalls
the basics of nested line diagrams and summarizes previous work on lattice merge. In Section 4, the theoretical basis for our approach are
presented, linking concepts and implication bases from factor lattices to their global counterparts. The following Section 5 describes the
algorithmic approach in a generic manner and provides further information about its efficient implementation and their practical performances.
The next steps and the future research avenues following from this work are discussed in Section 6.

2 Background on FCA, lattices and implications

Formal concept analysis(FCA) [6] is a discipline that studies the hierarchical structures induced by a binary relation between a pair of sets.
The structure, made up of the closed subsets (see below) ordered by set-theoretical inclusion, satisfies the properties of a complete lattice and
has been first mentioned in the work ofÖre [12] and Birkhoff (see [2]). Later on, it has been the subject of an extensive study [1] under the
name ofGalois lattice. The termconcept latticeand formal concept analysis (FCA) are due to Wille [18].

1 DIRO, Universit́e de Montŕeal, CP 6128, Succ. Centre-Ville, Montréal Qúebec H3C 3J7
2 CNRS - UMR 7090 - ECP6, Paris, France

2.1 FCA basics

FCA considers a binary relationI (incidence) over a pair of setsO (objects) andA (attributes). The attributes considered represent binary
features, i.e., with only two possible values,presentor absent.

The binary relation is given by the matrix of its incidence relationI (oIa means that objecto has the attributea). This is calledformal
contextor simplycontext(see Figure 1 for an example). For convenience reasons, we shall denote objects by numbers and attribute by lower-
case letters, whereas separators will be skipped in set notations (e.g.,127will stand for{1, 2, 7}, andabdf for {a, b, d, f}).

a b c d e f g h i
1 x x x
2 x x x x
3 x x x x x
4 x x x x x
5 x x x x
6 x x x x x
7 x x x x
8 x x x x

Table 1. A sample context borrowed from [6].

Two set-valued functions,f andg, summarize the links established by the context:

• f : P(O)→ P(A), f(X) = {a ∈ A|∀o ∈ X, oIa}
• g : P(A)→ P(O), g(Y) = {o ∈ O|∀a ∈ Y, oIa}

Following standard FCA notations, both functions will be denoted by′. For example, w.r.t. the context in Table 1,678′ = acd andabgh′ = 23.
Both functions induce aGalois connection[1] betweenP(O) andP(A). Furthermore, the composite operators′′, map the setsP(O) and
P(A) respectively into themselves (e.g.,567′′ = 5678). These are actuallyclosure operatorsand therefore each of them induces a family of
closedsubsets over the respective power-set, with the initial operators as bijective mappings between both families. A pair(X, Y), of mutually
corresponding subsets, i.e.,X = Y ′ andY = X ′, is called a(formal) conceptin [18] wherebyX is referred to as the conceptextentandY as
the conceptintent. For example (see Figure 1), the pairc = (678, acd) is a concept.

Figure 1. The lattice of the context in Table 1

The set of all concepts of the contextK = (O, A, I), CK, is partially ordered by the order induced by intent/extent set theoretic inclusion:

(X1, Y1) ≤K (X2, Y2)⇔ X1 ⊆ X2(Y2 ⊆ Y1).

In fact, set inclusion induces acomplete latticeover each closed family and both lattices are isomorphic to each other with′ operators as dual
isomorphisms. Both lattices are thus merged into a unique structure called theGalois lattice[1] or the (formal) concept latticeof the context
K [6].

Property 1 The partial orderL = 〈CK,≤K〉 is a complete lattice with LUB and GLB as follows:

•
Wk

i=1(Xi, Yi) = ((
Sk

i=1 Xi)
′′,

Tk
i=1 Yi),

•
Vk

i=1(Xi, Yi) = (
Tk

i=1 Xi, (
Sk

i=1 Yi)
′′).

Figure 1 shows the concept lattice of the context in Table 1. For example, given the conceptsc1 = (36, abc) andc2 = (56, abdf), their join
and meet are(36, abc) ∨ (56, abdf) = (12356, ab) and(36, abc) ∧ (56, abdf) = (6, abcdf), respectively.

2.2 Implications

Dependencies among attributes in the dataset constitute important information and may be the goal of separate analysis process for a context.
Indeed, a fact like “the attributea is met in an object each time the attributesd andf are met” may convey a deep knowledge about the
regularities that exist in the domain where the data comes from.

FCA offers a compact representation mode for this type of knowledge, theimplication rules. An implication rule follows the same pattern
as its logical counterpart, the implication operator, with two attribute sets, premise and conclusion,X → Y (X, Y ⊆ A). Such a rule is
interpreted as all objects that have the attributes ofX have also those inY .

An implication is valid in a context if none of the contexts objects violates it, i.e., has all the premise attributes but misses at least one of the
conclusion ones. For example, the rulecg → h is a valid one in the context of Table 1, whereascd→ f is not. The set of all implications that
are valid in a contextK is denoted here byΣK. Clearly, a ruleX → Y is valid iff Y ⊆ X ′′. Moreover, a rule isinformativeif its premise is
minimal and its consequence maximal for set inclusion. For example, the ruleae → cd is a valid but non informative rule wherease → acd
is informative.

The size ofΣK is, in general, huge, even for small contexts. Even the number of informative rules may be much higher than the number of
concepts inCK. Fortunately, many of the information conveyed by the rules in these sets is redundant in the sense that it could be retrieved from
smaller sets of rules by means of inference mechanisms (with a deduction-like operator denoted|=). The most popular system of inference
rules is the one due to Armstrong, called also the Armstrong axioms [9]. The tree axioms may be summarized as follows:

• ∅ |= Y → Y ;
• Y → Z, U → V |= Y ∪ U → Z ∪ V ;
• Y → Z, U → V , U ⊆ Z |= Y → V .

Given a contextK, several compact representations, or bases, may be defined for the rules inΣK, using the above axioms. The canonical
basis defined by Guigues and Duquenne [8] is known to be minimal in the number of rules. It relies on a particular sort of attribute sets, called
pseudo-closed. We recall that a setY is pseudo-closed if it is not closed and for any other pseudo-closedZ, Z ⊂ Y entailsZ′′ ⊂ Y [6]. The
canonical basis ofK, denotedBK, is made up of all the rulesY → Y ′′ whereY is pseudo-closed. The entire setΣK may be obtained as the
implicational hullof BK. Inversely,BK is said to be acoverof ΣK. For example, the canonical basis for our running example is:

adg → bcefhi acg → h ah→ g → a
acdef → bghi abd→ f ae→ cd af → d
abcghi→ def ai→ cgh

Implication rules are close relatives to functional dependancies, known in the database field since the early works on the relational model. They
made their way to data mining, where approximative functional dependancies inspired the association rule mining sub-field.

2.3 Lattice construction

A variety of efficient algorithms exist for constructing the concept lattice of a binary table [5, 3, 7, 11]. A classical distinction between them is
made on two axes. The first one focuses on the way the initial data is acquired, it divides the methods on batch and incremental ones, the latter
proceeding by gradual incorporation of new context elements. The second axis distinguishes algorithms that construct the entire lattice, i.e.,
set of concepts and order (precedence) relation, from algorithms that only focus on concept set.

Early algorithms to solve the above concept formation problem (under different name) may be found in [4, 10]. The algorithm NEXTCLO-
SUREdesigned by Ganter [5] is undoubedly the most sophisticated one as it uses a deeper insight in the structure of the concepts to speed-up
the computation. Actually, in order to avoid the most expensive part of the concept generation, i.e., the lookup for redundant generations, the
algorithm uses a specific order on the concept sets calledlectic. The concepts are generated according to the lectic order which is total and
therefore, each concept is computed only once. The main drawback of the approach, as in the two previous cases, remains the lack of structure
over the concept set.

Batch algorithms for the extended lattice construction problem, i.e., concepts plus order, have been proposed first by Bordat [3] and later on
by Nourine and Raynaud [11]. The Bordat algorithm relies on structural properties of the precedence relation inL to generate the concepts in
an appropriate order. Thus, from each concept the algorithm generates its upper covers which means that a concept will be generated a number
of times that corresponds to the number of its lower covers. Recently, Nourine and Raynaud suggested an efficient procedure for constructing
a family of open sets3 and showed it may be used to construct the lattice. The key result of the work is a fast mechanism for the computation
of the precedence relation between members of the family that explores the closeness property of the family.

3 i.e., the dual to a family of closed sets as in the lattice

On-line or incremental algorithms construct the lattice by successive maintenance steps upon the insertion of a new object/attribute into
the context. In other words, an (extended) incremental method can construct the latticeL starting from a single objecto1 and gradually
incorporating any new objectoi (on its arrival) into the latticeLi−1 (over a contextK = ({o1, ..., oi−1}, A, I)), each time carrying out a set
of structural updates [14].

Godinet al. [7] suggested an incremental procedure which locally modifies the lattice structure (insertion of new concepts, completion of
existing ones, deletion of redundant links, etc.) while keeping large parts of the lattice untouched. The basic approach follows a fundamental
property of theGalois connectionestablished by the′ operators on(P(O), P(A)): both familiesCo andCa are closed under intersection [1].
Thus, the whole insertion process is aimed at the integration intoLi−1 of all concepts (callednew) whose intents correspond to intersections
of {oi}′ with intents fromCa

i−1, which are not themselves inCa
i−1.

A refinement of the approach of Godinet al. is presented in [15], whereas a principally different method has been proposed in [16] taking
advantage of a complete study on the lattice substructures related to incremental adds of columns/rows of the context.

A recent study proposed a novel paradigm for lattice construction that may be seen as a generalization of the incremental one [17]. In fact,
the suggested methods construct the final result in a divide-and-conquer mode, by splitting recursively the initial context and then merging the
lattices resulting from the processing of sub-contexts at various levels.

In this paper, we follow this third approach to lattice algorithmics. Our goal is to put the paradigm on practical ground by proposing more
efficient algorithms that potentially scale over large datasets and therefore could support real-world applications to data mining. In the next
section, we recall the basic results from the lattice merge framework.

3 Table splits and lattice merges

FCA has already an established framework dealing with the relations between lattices and possible factors, based on splits of a data table on
its object/attribute dimensions and the reverse subposition/apposition of tables.

3.1 Apposition of contexts

Apposition is the horizontal concatenation of contexts sharing the same set of objects [6].

Definition 1 Let K1 = (O, A1, I1) and K2 = (O, A2, I2) be two contexts with the same set of objectsO. Then the contextK3 =
(O, A1∪̇A2, I1∪̇I2) is called the apposition ofK1 andK2: K3 = K1|K2.

(6,abcd)

(56,abd) (678,acd)(36,abc)

(12356,ab) (34678,ac) (5678,ad)

(12345678,a)#1

#2
#3

#4

#5

#6

#7

#8

(,efghi)Ø

(4,ghi)

(234,gh)

(1234,g)

(568,f)(7,e)

(12345678,)Ø#1

#4

#3#2
#5

#6

#7

Figure 2. Partial latticesL1 andL2 constructed from a vertical decomposition of the context in Table 1.

For example, with aglobal contextK = (O, A, I) as given in Table 1, whereO = {1, 2, 3, 4, 5, 6, 7, 8} andA = {a, b, c, d, e, f, g, h, i},
let A1 = {a, b, c, d} andA2 = {e, f, g, h, i}. The lattices corresponding toK1 andK2, sayL1 andL2, will further be referred to asfactor
lattices. The latticesL1 andL2 of our example are given in Figure 2.

Subposition, or vertical assembly of contexts upon a common attribute set, is dual to apposition. Both operations easily generalize ton-splits
of a context.

3.2 Semi-product of factor lattices

The latticesL1 andL2 are related to the latticeL3 of the apposition context in very specific way. Actually, in the extreme case,L3 will be
isomorphic to the direct product ofL1 andL2, L1 × L2 (denoted shortlyL1,2 in the sequel). However, in the general case,L3 is only a join

sub-semi-lattice ofL1,2. The lattice operator that sends couples of lattices of “apposed” contexts into the lattice of the resulting context is
called thesemi-productin [6].

Furthermore, two mappings link the factor lattices to the semi-product andvice versa. The composition of two concepts from the factors is
based on the fact that the object dimension in both remains steady and thus the semi-product may be seen as the merge of two Moore families
on O. Therefore, each pair of concepts(c1, c2) from L1,2 is sent to the conceptc from L such that the extent ofc is the intersection of the
extents ofc1 andc2. For example, the couple(c#5, c#3) (see Figure 2) is sent into the concept(56, abdf) since56 is the intersection of the
respective extents. The resulting function fromL1,2 toL3 is a surjective order morphism that preserves lattice joins (see [17] for details).

Conversely,L3 is surjectively projected on each each factor by the simple projection of the concept intent on the respective subset ofA. In
other words, the projections of a closed attribute set (intent) fromL3 both onA1 andA2 are themselves closed inK1 andK2, respectively.
For example, the concept(34, acgh) is projected to the node(c#3, c#5).

The effective transition from a given pair of latticesL1, L2 to their semi-product, sayL3 has been extensively studied in [17]. The key
features of the resulting algorithmic approach are summarized in the following paragraphs, starting with the visualization framework for
lattices called nested line diagrams which strongly relies on apposition and semi-product.

3.3 Nested line diagrams

Nested line diagrams(NLD) [6] constitute a visualization mode for large lattices in which semi-product and direct product of a set of lattices
are combined. More precisely, given a latticeL of a contextK = (O, A, I), which is to be drawn, instead of presenting the entire graph of
L on the screen, one may chose to decompose the task into a set of sub-tasks corresponding to factor lattices. Thus,K = (O, A, I) is split
into several contextsKi = (O, Ai, I ∩Ai ×O) whit their respective latticesLi. The direct product×Li is then used as a outer framework in
whichL, i.e., the semi-product of the latticesLi is drawn as embedded. To that end, the combination of the embeddings ofL to each factor is
used.

Visually, the direct product is seen as a multi-level structure corresponding to a particular ordering among factors. The outer most level
is simply the diagram of the first latticeL1, while the structuring of each leveli + 1 amounts to copying the diagram of the latticeLi+1 at
each node of the diagram ofLi. This recursive procedure results in a multi-diagram where only the nodes of inner most level represent valid
combinations of factor concepts, i.e., nodes in×Li, that may or may not correspond to concepts ofL (see Figure 3).

Figure 3. NLD of the lattice in Figure 1 embedded inL1 × L2.

To distinguish between both sorts of nodes, those which belong to the image ofL are drawn differently, typically filled as opposed to unfilled
nodes in the remaining part of×Li. For example, the node(c#3, c#1) (see the numbering in Figure 2) of the product lattice is located within
the NLD in Figure 3 at the top of the inner lattice within the outer node labelled byc.

Moreover, the links of all level but the inner most one are multi-links as they represent a set of links. Roughly speaking, a link between two
nodes of a diagram at levelk represents all the links between nodes representing the same concept in the respective copies ofk +1 level lattice
diagram. Thus, it is easy to check that the substructure induced by the black nodes in Figure 3 is isomorphic to the lattice shown in Figure 1.

In the sequel, we shall use and think of the NLD as a whole, however, the real visualization value of such a diagram comes from the
possibility to focus on a single diagram at a particular level.

3.4 Merge of factor lattices

In [17], the theoretical results about semi-product and apposition were enhanced to a complete framework for lattice merge with a set of
effective methods that further combine to a novel divide-and-conquer lattice construction paradigm.

The suggested merge approach considers the direct product of the factor lattices whereby the core task amounts to filtering the product nodes
that belong to the join sub-semi-lattice isomorphic to the semi-product lattice. The characterization of those nodes that enables effective filtering
regards them as canonical representative of particular equivalence classes. The underlying equivalence relation arises through intersection of
extents in the factor concepts. In fact, a global concept(X, Y) is projected into a pair of concepts((X1, Y1), (X2, Y2)) where:

X = X1 ∩X2 ; Y = Y1 ∪ Y2.

As the function that maps concept pairs from the direct productL1,2 to concepts fromL by preserving extent intersection is not injective, a
further property states that the pair((X1, Y1), (X2, Y2)), whereY = Y1 ∪ Y2 is canonical representative for its intersection class. In fact, it is
the minimal node of the direct product among all those which satisfyX = X1 ∩X2.

The above facts together with further properties characterizing the order inLwith respect to that inL1,2 underlie a straightforward algorithm
for lattice merges. The algorithm performs a bottom-up traversal of all combinations of factor concepts inL1,2 with successive canonicity tests
for each combination. An overview of the method is provided by the following Algorithm 1.

1: procedure MERGE(In: L1, L2 lattices; Out: L a lattice)
2:
3: L ← ∅
4: SORT(C1); SORT(C2) {Increasing order }
5: for all (ci, cj) in L1 × L2 do
6: E ← Extent(ci) ∩ Extent(cj)
7: if CANONICAL((ci, cj), E) then
8: c← NEW-CONCEPT(E, Intent(ci) ∪ Intent(cj))
9: UPDATE-ORDER(c, L)

10: L ← L ∪ {c}

Algorithm 1: Assembling the global Galois lattice from a pair of partial ones.

It is noteworthy that the canonicity test in the initial MERGE method is based on a comparison of extent intersection on a node(ci, cj)
(variableE) to the intersection on node’s immediate predecessors inL1,2. Moreover, the computation of the lattice order inL (procedure
UPDATE-ORDER) also compares(ci, cj) to its immediate predecessors, or, more precisely, to the canonical nodes in the respective equivalence
classes. For example, the node(c#5, c#3) is canonical for its class since the extent intersection of both factor concepts,56, is strictly greater
than the intersection on immediate predecessors(c#5, c#7) and(c#8, c#3) in L1,2 (6 and∅, respectively).

Algorithm 1 is completed to a first-class lattice construction procedure of adivide-and-conquertype. The resulting method performs recur-
sive context splits until the basic case of a single column is reached, followed by the reverse merges that end up by computing the lattice of the
entire context.

3.5 Practical performances of the method

The study of practical performances of the divide-and-conquer method reported in [17] indicates that it can successfully compete with con-
ventional lattice construction methods whenever the dataset is the result of preliminary scaling (i.e., with lots of mutually exclusive attributes).
However, in the general case, the method may score much worse than competing techniques. More dramatically, detailed analysis of cost
distribution has shown that the overwhelming part of the computational effort goes to the merge of the higher most level factors.

This is a clear indication that an efficient merge operation is the key for any substantial improvement in the performances of the entire
divide-and-conquer approach. In the following paragraphs we present a different manner to tackle the problem of merging the concept sets of
two apposable contexts.

4 Merge of concept sets and implication bases

The design of such an efficient lattice merge method is the main motivation for our present study, however it is not the only one.

4.1 Motivation

On the one hand, we feel that the lattice merge, otherwise strongly connected to lattice visualization, has a large potential for supporting
practical applications. Indeed, in many cases descriptive attributes in data may be easily split into groups according to some semantic criteria.
Thus, factor lattices may have their own justification and their links to the global lattice, in particular, the correlations between pairs of factor
concepts, which are made explicit by the merge procedure, may convey important regularities. On the other hand, we extend the scope of the
merge problem to the equivalent representation of the concept family, that is the implication system associated to the lattice. Thus, we not only
look for concepts of the global lattice as pairs of factor concepts, but also study the rules of the global canonical basis as a result of the “merge”
of rules from both factor bases. As a matter of fact, both representations may be interwoven during the merge procedure so that advances on

the one side could benefit on the other side andvice versa. Finally, we put even stronger emphasis on efficiency since we look for procedures
that successfully extend to iceberg lattices (i.e., truncated versions of concept lattices that only contain large concepts) that are preferred in
association rule mining for their reduced size.

4.2 Key ideas

A major conclusion drawn from the initial study on lattice merge was that the traversal of factor product with subsequent canonicity test is by
far the most expensive step of the entire merge process. A partial hint about why this happens is that canonicity was tested on concept extents,
which, unlike intents, do not shrink along table splits along the attribute set. This fact suggests that a winning strategy may be the one that
puts canonicity computation on intent manipulation basis. Thus, to check whether a particular pair of factor concepts((X1, Y1), (X2, Y2))
represents a valid combination and hence a concept ofL, we shall no more look at the would-be extent of the pairX = X1 ∩X2, but rather
test the joint intentY = Y1 ∪ Y2 for closeness inL. The test relies on the alternative definition of closed attribute set, i.e., the inclusion of the
closure for each subset, or equivalently, satisfaction of all valid implications in the context.

Property 2 Given a contextK = (O, A, I), a setY = Y ′′ iff ∀r ∈ ΣK, r = (Z1 → Z2), Z1 ⊆ Y impliesZ2 ⊆ Y .

Using the compact representation provided by the canonical basis, the above definition may be restated as follows.

Property 3 Given a contextK = (O, A, I), a setY = Y ′′ iff ∀r ∈ BK, r = (Z → Z′′), Z ⊆ Y impliesZ′′ ⊆ Y .

Obviously, the second definition is, at least theoretically, less expensive since fewer implications are to be checked. However, in its current
form the definition still requires the complete knowledge ofBK, which is, of course, not realistic. A possible solution could be to constructL3

andB3 simultaneously in such a way that whenever a would-be intentY = Y1∪Y2 is examined, all the relevant implications inB3 are already
discovered. The relevant subset ofB3 with respect to an attribute setY is made up of implicationsr = (Z → Z′′) whereZ ⊆ Y . Clearly, in
order to insure the availability of this set for anyY , a necessary condition is to construct both the latticeL3 and the basisB3 top-down, i.e.,
starting from smaller sets. Moreover, just like in the reference study, a bread-first search will be necessary to ensure each predecessor inL1,2

of the node((X1, Y1), (X2, Y2)) with Y = Y1 ∪ Y2, has been already processed.
The above general procedure requires the gradual and synchronous computation of the basisB3, a task that may prove too much an overhead

with respect to the initial goal of computing the concept set ofL3. In fact, while the intents ofK3 may only be two-unions of factor intents,
pseudo-closed attribute sets could be any set and this widens the search space substantially. Recall that the bid is that invalid product nodes
will be easily detected, i.e., within the first few rules there will be one that is violated by the would-be concept.

The above observations hint at the use of implication construct that is easier to obtain thanB3 while still not too much bigger than it so that
the closure tests remain efficient. A complete strategy based on a specific trade off between size and maintenance cost of the implication set is
presented in the next paragraph.

4.3 Structural results

Recall that initial data of the target method include both factor latticesL1,L2, in the form of a concept set, as well as both canonical basesB1,
B2. The intended output is the latticeL3 of the apposition context together with its basisB3.

4.3.1 Hybrid implications

As the computation ofB3 in run time can be expensive, it is delayed till the end of the construction ofL3, i.e., it is carried out as a post-
processing step. Instead, another implication set is used during the construction process. The key idea behind this set is to stick to a form for
implications that stays within the search space for closed attribute sets. Thus, we define the basisB3/1,2 which, although possibly larger than
B3 stays close in size, while, when combined withB1 andB2 conveys the same information. The premisses of all the rules inB3/1,2∪B1∪B2

are attribute sets that represent the union of one closed fromB1 and one other closed fromB2. In fact the rules fromB1 andB2 already satisfy
the constraint whileB3/1,2 is defined correspondingly, as shown in the rest of this section.

For example, in the factors of our running example, the basesB1 andB2 are as follows:

B1 B2

→ a i→ gh h→ g fg → ehi
eg → fhi ef → ghi

The definition of the implication setB3/1,2 starts with the trivial observation that wheneverL3 is isomorphic toL1,2, i.e., all combinations
of factor concepts are valid, the canonical basisB3/1,2 equals the union of both factor bases,B1 ∪ B2.

When now a particular combination((X1, Y1), (X2, Y2)) is invalid, this means that an implication ruleY1 ∪ Y2 → (Y1 ∪ Y2)
33 is valid

in K3, i.e., belongs to the implicational hull ofB3. For example, the node(c#3, c#3) is invalid, thus the implicationacf → acdf where the
closureacdf corresponds to the node(c#7, c#3). Let us denote the set of all such rules byI3/1,2.

4.3.2 Implication cover

First step of the process leading to the definition ofB3/1,2 is to observe thatI3/1,2 ∪ B1 ∪ B2 is a cover for the implications inΣ3. First, in
both sets of conceptsL1 andL2, particular subsets of intents will remain intents inL3. These sets form upper-sets in both lattices and as such,
induce corresponding subsets ofB1 andB2, respectively, which are made up of exactly those factor implications that remain valid in the global
context. In fact, it can easily be proved that both the involvedi-pseudo-closed and thei-closed sets preserve their respective status inK3. In
our running example, the only rule inB3 that comes from the factor bases is→ a.

The rest of the implications inB1 andB2, remain valid since the conclusion is still a part of the closure of the premise. However, such a rule
is no more informative since the conclusion part is no more a closed set. Moreover, the premise of the rule, which is ai-pseudo-closed, needs
not to be a pseudo-closed inK3 (but might well be in some particular case). For example, the2-pseudo-closedfg is no more a pseudo-closed
in K3. More dramatically,fg is not even a part of a3-pseudo-closed set.

We can now formulate the cover property for the set of implications in factor bases augmented by implications associated to “holes” in the
semi-product.

Property 4 I3/1,2 ∪ B1 ∪ B2 is a cover forΣ3.

To prove Property 4, one needs only to show that for each3-pseudo-closedY , the ruleY → Y 33 may be derived from the referred set of
implications.

Let Y ∩ Ai = Yi, (i = 1, 2). We know thatYi → Y ii
i is a valid implication inKi and thus inK3. As such,Yi → Y ii

i can be derived from
Bi. Applying the Armstrong axioms results in the implicationY → Y 11

1 ∪ Y 22
2 . The implication is not only derivable from our initial set but

it is also valid inK3. Hence,Y 11
1 ∪ Y 22

2 is at least a subset of the closure ofY in K3:

Y 11
1 ∪ Y 22

2 ⊆ Y 33.

If this set is itself closed, i.e.,Y 11
1 ∪ Y 22

2 = (Y 11
1 ∪ Y 22

2)33, then the target implicationY → Y 33 is proven (asY ⊆ Y 11
1 ∪ Y 22

2 and hence
Y 33 ⊆ Y 11

1 ∪ Y 22
2).

Otherwise, i.e., ifY 11
1 ∪ Y 22

2 is not closed, we only haveY 11
1 ∪ Y 22

2 ⊂ Y 33. Consequently, asY ⊆ Y 11
1 ∪ Y 22

2 , one may assert that both
have the same closure, that is(Y 11

1 ∪ Y 22
2)33 = Y 33. Observe now thatY 11

1 ∪ Y 22
2 corresponds to the node((Y 1

1 , Y 11
1), (Y 2

2 , Y 22
2)) of the

productL1,2. Hence, there is an implicationY 11
1 ∪ Y 22

2 → (Y 11
1 ∪ Y 22

2)33 in I3/1,2. By the transitivity axiom,Y → Y 33 belongs to the
implication hull ofI3/1,2 ∪ B1 ∪ B2.

To sum up, any implication of the basisB3 can be derived fromI3/1,2 ∪ B1 ∪ B2. This clearly means that the latter set is a cover.

4.3.3 Hybrid basis

The above cover set is much too extensive to be manageable for a critical process like the canonicity tests. Therefore, we extract a basis from
its main component, the set of “missing” closures inL1,2, that isI3/1,2.

The new basis, further called “hybrid”, follows the same principle as the canonical basis, namely aggregating premisses of rules with the
same closed consequence (by following the rule combination axiom). Thus in a spirit similar to Guigues and Duquenne’s pseudo-closed,
we define the pseudo-closed for the rule setI3/1,2, denoted3/1, 2-pseudo-closed. This notion is relative to the “closure” defined via the
implications inI3/1,2. Let us observe that the3/1, 2-closed, i.e., sets that with any premise of a rule contain also its closure, are actually
3-closed (by definition ofI3/1,2). This is not the case for3/1, 2-pseudo-closed defined as follows.

Definition 2 A setY ⊆ A is 3/1, 2-pseudo-closed if:(i) Y 6= Y 33, (ii) ∀Z ⊂ Y , Z33 ⊂ Y 33 impliesZ33 ⊂ Y , and(iii) ∀V ⊂ Y , V
3/1, 2-pseudo-closed impliesV 33 ⊂ Y .

For example, the setacg corresponding to the node(c#3, c#4) is 3/1, 2-pseudo-closed. In fact, all its upper covers inL1,2 are valid nodes,
i.e., their respective intent unions are3-closed. Thus,acg cannot violate a rule fromI3/1,2 (hence fromB3/1,2).

Correspondingly, we define the basisB3/1,2 that is made up of all rules whose premise is a3/1, 2-pseudo-closed:B3/1,2 = {Y →
Y 33|Y is3/1, 2− pseudo− closed}.

Technically, it remains to be shown thatB3/1,2 is a valid basis.

Property 5 B3/1,2 is a cover forI3/1,2.

In other words, given a node((X1, Y1), (X2, Y2)) such thatY = Y1 ∪ Y2 is not3-closed, it is to be shown that the implicationY → Y 33

– which is a part ofI3/1,2 – is derivable fromB3/1,2.
TakeY = Y1 ∪ Y2 which can be a3/1, 2-pseudo-closed set. In this case, the implicationY → Y 33 is in B3/1,2 (by definition) and the

proof is terminated. In caseY is not3/1, 2-pseudo-closed, we consider the implicationY → Y and apply the transitivity axiom. Technically
speaking, for each ruleZ → Z33 from B3/1,2 such thatZ ⊂ Y , the closureZ33 is cumulated toY (in the conclusion part). After no more
extensions of the conclusion can be realized through transitivity, the resulting setỸ is closed for3/1, 2-saturation, which means̃Y could be
either3-closed or3/1, 2-pseudo-closed. In the first case, the proof is complete whereas in the second one a final step of transitivity is necessary,
using the fact that̃Y → Ỹ 33 is a rule fromB3/1,2.

The above results are used in an efficient canonicity check for elements of the productL1,2.

Property 6 Given a node((X1, Y1), (X2, Y2)) in L1,2, the setY = Y1 ∪ Y2 is closed for3/1, 2-saturation whenever for all rulesZ → Z33

fromB3/1,2, Z ⊆ Y impliesZ33 ⊆ Y .

The test is embedded in a top-down traversal of product elements so that before a node is met, all its predecessors are already processed.
This means in particular that all the3/1, 2-pseudo-closed included in a setY = Y1∪Y2 whereYi arei-closed (i = 1, 2) are already discovered
before the node((X1, Y1), (X2, Y2)) is examined. Therefore, the complete knowledge ofB3/1,2 beforehand is not necessary and thus the basis
could be computed simultaneously withL3.

Unfortunately, the above test is not powerful enough to distinguish3/1, 2-pseudo-closed from3-closed. The operation could be easily
performed if factor extents are available, which of course entails some extra costs. Nevertheless, being forced to compute with extents on
3-closed and3/1, 2-pseudo-closed as opposed to using the same operation on each node ofL1,2 is quite a reasonable cost to pay.

5 Algoritmic issues

The global algorithmic method that computes concepts fromL3 and rules fromB3/1,2 follows a scheme that is similar to the reference
procedure (see Algorithm 1).

5.1 Algorithmic scheme

The work of the algorithm is organized along a top-down traversal of the product latticeL1,2. At each node((X1, Y1), (X2, Y2)), the canonicity
test is performed on the setY = Y1 ∪ Y2 by means of the known part of the basisB3/1,2 ∪ B1 ∪ B2.

The nodes that “survive” the test are further considered for closeness ofY . The filtering of closed sets is necessarily made on the object
side, i.e., with some expensive returns to the data table or, equivalently, to the factor extents. The aim is to establish whether the new candidate
intent is closed and this requires a jump over the Galois connection. However, the total number of costly closure tests is reduced to the number
of concepts and pseudo-closed sets of attributes in the global lattice. Further on, closedY generate global concepts while non-closed become
premises of a rule while their3-closures constitute the conclusion. At the end of the traversal, the basisB3/1,2 ∪B1 ∪B2 is reduced to the real
canonical basisB3.

The above general scheme is illustrated by Algorithm 2.

1: procedure MERGE-BIS(In: L1, L2 lattices; B1, B2 implication sets; Out: L3 a lattice; B3 an implication set)
2:
3: L3 ← ∅
4: Bw ← B1 ∪ B2

5: SORT(C1); SORT(C2) {Decreasing order }
6: for all (ci, cj) in C1 × C2 do
7: Y ← Intent(ci) ∪ Intent(cj)
8: r← FIND-INVALID-RULE(Bw, Y)
9: if r = NULL then

10: Yc ← CLOSURE(Y)
11: if Y = Yc then
12: c← NEW-CONCEPT(Extent(ci) ∩ Extent(cj), Y)
13: UPDATE-ORDER(c, L)
14: L ← L ∪ {c}
15: else
16: rn ← NEW-RULE(Y , Yc)
17: Bw ← Bw ∪ {rn}
18: B3 ← REDUCE(Bw)

Algorithm 2: Merge of factor lattices and canonical implication bases.

It is noteworthy that the global basis is obtained at a post-processing step, through a reduction process that follows standard recipe from the
functional dependency theory. The process is computationally inexpensive since both sets already share a large subset of their implications.

5.2 Optimization techniques

A key stake in the above scheme is the rapid elimination of a void node. Intuitively, this could be achieved by pushing the potential ”killer”
implications towards the head of the implication listBw that is examined at a node.

A first idea is to structure the search space in a way that eases transfer of successful invalidating implications downwards in the lattice. This
becomes feasible whenever the order of the traversal is compatible with the lattice order inL1,2. More advanced techniques involve an explicit
structuring of the previously examined part of the product, e.g., in a tree, so that an “inheritance” among neighbour nodes could be realized.

An alternative, but not exclusive technique consists in maintaining a short list of recent invalidation cases (“smoking gun” list), i.e., list
of implications where the premise is not a pseudo-closed but just an invalidated node inL1,2 whereas the conclusion is the result of the
invalidation. This list is a refinement of our hypothesis that some continuity may be observed in the behaviour of product nodes. Moreover, the
size of the list becomes an additional parameter of the method.

5.3 Performance tests

We have implemented a number of variants of the basic algorithmic scheme described above. Each of them features a specific combination of
speed-up heuristics. These have been compared to a set of variation on the basic NEXTCLOSURE algorithm. The latter has been chosen for
its highly valuable properties of reduced additional space requirements and relatively high efficiency. Moreover, both schemes, the reference
one and ours, benefit from the same implicit tree structures that “organize” the memory of past computations in a way that helps carry out the
current test more rapidly. The comparison has been made on several synthetic datasets. An average case of the still on-going study is described
as follows. The dataset is made up of 200 objects described by 26 attributes. The contexts generates 21550 concepts, with 2169 pseudo-closed
and 20693/1, 2-pseudo-closed.

The current implementations of the various merge methods use the environment provided by the GLAD system. Thus, the implementation
language is FORTRAN. The tests have been run on a Windows platform, with a Pentium I, 166 MHz. Among the versions of highest level of
optimization, the one that produces only concepts takes0.77s while the most rapid method for both concepts and implications takes2.36s.

The next step of the process is the implementation of a complete set of concrete methods that realize the above scheme by means of a
portable programming language (e.g., Java, C#, etc.). This will enable large-scope performance studies on realistic datasets.

5.4 Scalability

The above algorithmic family is not only suitable for computation of implication rules from complete lattices. It also fits some practical tasks
such as the calculation of all frequent closed itemsets of a transaction database given a frequency or support threshold. Indeed, as the overall
procedure follows a top-down traversal of the lattice, it is easy to halt whenever the discovered closures are not frequent enough in the date.
In other terms, an iceberg of a particular frequency could be easily substituted to the complete lattice. More interestingly, the factors can be
themselves icebergs with the same or lower threshold. The above reasoning still fully applies to such a reduced framework and this significantly
increases the scope of our method.

6 Discussion

We presented a new algorithmic study on lattice merge that also considered merging of implication bases. Bases are used, in a slightly modified
form, to efficiently filter the nodes of the product of the initial lattices. The methods that were designed within the study implement the same
generic scheme but diverge on heuristics used to speed-up node elimination. Performance tests on various datasets indicated that these are more
efficient than the classical NEXTCLOSURE, even when advanced variations of the latter were used. These results are even more encouraging
since the basic framework adapts easily to iceberg lattices that enjoy a large popularity among FCA practitioners, especially in the data mining
field.

REFERENCES
[1] M. Barbut and B. Monjardet.Ordre et Classification: Alg̀ebre et combinatoire. Hachette, 1970.
[2] G. Birkhoff. Lattice Theory, volume XXV of AMS Colloquium Publications. AMS, 3rd edition, 1967.
[3] J.-P. Bordat. Calcul pratique du treillis de Galois d’une correspondance.Mathématiques et Sciences Humaines, 96:31–47, 1986.
[4] M. Chein. Algorithme de recherche des sous-matrices premières d’une matrice.Bull. Math. de la soc. Sci. de la R.S. de Roumanie, 13, 1969.
[5] B. Ganter. Two basic algorithms in concept analysis. preprint 831, Technische Hochschule, Darmstadt, 1984.
[6] B. Ganter and R. Wille.Formal Concept Analysis, Mathematical Foundations. Springer-Verlag, 1999.
[7] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms based on galois (concept) lattices.Computational Intelligence,

11(2):246–267, 1995.
[8] J.L. Guigues and V. Duquenne. Familles minimales d’implications informatives résultant d’un tableau de données binaires.Mathématiques et Sciences

Sociales, 95:5–18, 1986.
[9] D. Maier. The theory of Relational Databases. Computer Science Press, 1983.

[10] E. M. Norris. An algorithm for computing the maximal rectangles in a binary relation.Revue Roumaine de Mathématiques Pures et Appliquées,
23(2):243–250, 1978.

[11] L. Nourine and O. Raynaud. A Fast Algorithm for Building Lattices.Information Processing Letters, 71:199–204, 1999.
[12] O. Öre. Galois connections.Transactions of the American Mathematical Society, 55:493–513, 1944.
[13] G. Snelting and F. Tip. Semantics-based composition of class hierarchies. InProceedings of the 16th European Conference on Object-Oriented Program-

ming (ECOOP 2002), Malaga, Spain, June 2002.
[14] P. Valtchev. An algorithm for minimal insertion in a type lattice.Computational Intelligence, 15(1):63–78, 1999.
[15] P. Valtchev and R. Missaoui. Building concept (Galois) lattices from parts: generalizing the incremental methods. In H. Delugach and G. Stumme, editors,

Proceedings of the ICCS’01, volume 2120 ofLecture Notes in Computer Science, pages 290–303, 2001.
[16] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji. Generating Frequent Itemsets Incrementally: Two Novel Approaches Based On Galois Lattice Theory.

Journal of Experimental & Theoretical Artificial Intelligence, 14(2-3):115–142, 2002.
[17] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards building Galois (concept) lattices.Discrete Mathematics, 256(3):801–829,

2002.
[18] R. Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In I. Rival, editor,Ordered sets, pages 445–470, Dordrecht-Boston,

1982. Reidel.

