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1. Introduction

Modelling
We consider stochastic epidemic models with
parameters 6.

Parameters typically govern
infection mechanism;
infectious period;
vaccination status;
population heterogeneity;
etc...

Data

Typical data, X, are
final outcome data;
incomplete temporal data.

Data may include covariates,
eg age, location, etc.

Objective
Inference about 6 given data X.



In a Bayesian framework the objective requires
calculation of the posterior density

w(X1[0)w(0)

m(01X) = Jo m(X|0)7(6)d6’

I.e.

posterior « likelihood x prior.

Problem:
The normalising integral is typically intractable.

Solution:

If we can generate random samples from the
posterior distribution, then the distribution (or
any summary statistics) can be estimated.

We shall use Markov Chain Monte Carlo (MCMCQC)
to generate approximate samples from = (0| X).



What is MCMC?

Aim is to simulate samples from a density =«
which we only know up to proportionality.

MCMC works by defining a Markov Chain with
7 as its stationary distribution; then run chain
for a long time, and take samples.

Two common methods are:

(i) Gibbs sampling : Target is n(x1,...,2N),
method works by updating each component x;
according to its marginal conditional
distribution:

T(Zi|T1, s i1, Ty, TN

(ii) Metropolis Hastings : If the chain is at z,
propose a new position y according to q(y|x),
then accept with probability

r()a(zly)
r(@alyle)




Why MCMC?

Flexibility - existing methods often rely on
using unrealistic simplifying model assumptions

Good for missing data problems

Implementation - can be straightforward (but
not always)

Naturally allows Bayesian framework



2. Temporal data: NLV outbreak
(+ PJ Marks, Public Health, Nottingham)

Background
Outbreak of gastroenteritis in summer 2001
at a school in Derbyshire, England.

A single strain of Norwalk-like virus (NLV)
was found to be the causative agent.

Believed to be person-to-person spread.
Of 492 children, 186 showed symptoms.

School has 15 classrooms; each child is
based in one.

Data

Absence records plus questionnaires.
Include age, period of illness, times of
vomitting episodes in classrooms.

Objective
Explore the role of vomiting in infection spread.



Example: Classroom 10

Here, three children vomited in class on day
10.

Ten children were absent/ill the next day (11),
and a further two on day 12.

Six children were already absent/ill before the
vomiting episode.

General There were 15 children in total
involved in vomiting episodes.

Per-classroom attack rates (ignoring temporal
data) are higher in vomit-episode classes.



Modelling assumptions

For each day during the outbreak,
each of the 492 pupils is classified as one of

absent
susceptible
infectious
returning
vomiter

using the available data and extra modelling
assumptions.

E.g.

first absent on day t (data)

implies

infectious on day ¢t — 1 (assumption).



Stochastic transmission model

A susceptible on weekday t remains so on day
t + 1 provided they avoid infection from:

each classroom infective with probability qc;
each school infective with probability gs;
each classroom vomiter with probability qy.

Independence between each susceptible-infective
pair is assumed.

A susceptible on weekend-day t remains soO on
day t + 1 if they avoid infection from each
infective with probability q.



For classroom 3, 3 =1,...,15, and day ¢, let

S{ denote number of susceptibles;
zg' denote number of infectives;
V;j denote number of vomiters;
R{ denote number of returners,

15
Se= > S, etc.
j=1

Then for t = Tuesday to Saturday,

. J J : :
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while if ¢t is a Sunday or Monday,
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where
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Role of vomiters
We consider two models:

My has parameters (g, gs, qu, q)
Mo has parameters (g, gs, gv = qc, q)

i.e. My is full model,
Mo classes vomiters as infectives.

Question:
Which model is more likely given the data?

SO we are interested in

P(M;| data).



MCMC using one model

A simple Metropolis-Hastings algorithm is
defined as follows.

Let 8 = (qe¢, gs, qu, Q).

Propose a new value 6* with density

g(0%10)

and accept 6* with probability

r(data|6*) w(6%) g(6]6") , |
©(datal@) =(8) ¢(6*0)

This can be done one parameter at a time, or
all together.



Reversible Jump MCMC

Can extend standard MCMC to allow parameter-
dimension changing moves (Green, 1995).

Within model i (i = 1,2), jump with probability
Ds-

Consider a ‘dummy’ variable u:
(a0, a) + (a2, )
Mo — Mji:
Sample u from N(0, o2), with density ¢(u).
Propose q; = qcz; q% = qc2 + wu.

Accept with probability

(gt ql)p1 1 N
m(g2) poP(u)

1.

Reverse jump is similar, but « is non-random.



Results
Full model only

dc gs qu q

Mean | 0.9976 0.9984 0.9836 0.9995
S.dev. | 0.00127 0.000156 0.0108 0.000082

Two-model set-up

P(M,|data) = 0.04

So data do not suggest that gy, # qc.
Artificial data

An artificial dataset was created in which all
new infections in classroom 10 occurred 1 day
after the (three-child) vomitting incident. We
would therefore expect to see more posterior
support for model 1.

Results
P(Mq|data) = 0.18



Comments

Work is preliminary

Data quality is less than ideal

Model assumptions could be altered

Methodology appears flexible

Callibration issues - what can be detected?



3. Non-temporal:
Two-level mixing models
(+ N Demiris, Nottingham)

Consider a population of size N, split into groups
(eg households).

Assume S-I-R model.

In a two-level mixing household model, each
infectious individual with infectious period T7
can:

- infect household members with probability
1 —exp(=ApTy);
- infect any individual with probability
1 —exp(—AgT7/N).

Given final numbers x ultimately infected in
a population of households, the posterior of
interest is

7T(>‘L7 )\G|$) X 7T(2E|)\L, )‘G)T‘-()‘La )‘G)



Problem

The likelihood 7w(x|Ar, Ag) is computationally
intractable for all but small population sizes.

A solution

Find a latent variable Y such that
w(x|Ar, Ag, Y)
and
m(Y|AL, Aa)

are both tractable.

Then we can work with the augmented
posterior density

7T(>‘La AG7 Y|$) X 7T($|>‘L7 AGa Y)W(Y|>‘L7 AG)W(AIn )‘G)



Y is final severity

The final severity of an epidemic is

Roo

Too = > Ty,
i=1
where R~ is the final number infected.

If N is large then

(i) Given T, the fates of different households
are approximately independent (Ball et al, 1997).
Thus

7T(wp‘ln>‘G7CZ—1OO)

can be calculated easily.

Specifically, each individual independently avoids
global infection with probability

eXD(—AgTOO/N).

Conditioning on the number infected globally,
it is then straightforward to find the
distribution of the total number infected in a
household.



(ii) If the epidemic takes off, the quantity

vm (T% — pu(Ar, AG)) :

where m denotes the number of groups,
converges in distribution to a Gaussian random
variable with mean 0 and variance o2(A1, \g).

Here, n(Ar, A\g) and o2(Ar, A\g) are both known
quantities.

Threshold Parameter

where v is the mean size of a group outbreak,
initiated by a randomly chosen individual, in
which only local infections are permitted.



Application to influenza data

Combined data on influenza outbreaks in
Tecumseh, Michigan.

Susceptibles per household
No. infected 1 2 3 4 5

O 110 149 72 60 13
1 23 27 23 20 9
2 13 6 16 5
3 4 3 2
4 2 1
5 1
Total 133 189 108 106 31

Data are a 10% sample from the population.

Notation: o« = 0.1 is proportion observed.



Posterior density plots for R«, assuming
a=1,0.1 and 107°>.
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Scatterplot of Ay, and A\g assuming a« = 1,0.1
and 10>, respectively, from top to bottom.
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Investigating the approximation:
one-level mixing model

Suppose now that all households are size 1.

Now Ay, is irrelevant and the model is of
homogeneous S-I-R type.

Given T, the approximation pseudolikelihood
is Binomial(N,p), where

p=1— eXD(—AgTOO/N).
Thus

P(Roo=2) = (| )p" (1= p)¥

However, for this model the final size
distribution can be evaluated exactly using a
(standard) set of recursive equations.



Results
E.g. N =120, observe £ = 30 cases.

Exact:
E(Ag|zr) = 0.296, var(A\g|x) = 0.00435

Approximation:
E(Ag|x) = 0.302, var(Ag|x) = 0.000937

Approximation overestimates, and has less
posterior variance.

Probable reason: approximation neglects
the probability that epidemic might not take
ofF.

Likelihood comparison

Can also compare exact final size probabilities
with those obtained from

P(Roo=2) = (| )p"(1 - )V,

p=1— eXD(—AgTOO/N).

Can (i) simulate Too values; or (ii) more crudely
set Too/N = pu, its (approximate) mean.



Likelihood comparison for exact, simulated, and
mean severity values.
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Comments

Approximation works best away from Ry« =1

Could refine by allowing T, to take small
values corresponding to minor epidemics

Other auxilliary variable methods



The Future

Model choice methodology

Inference for complex models and datasets



