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Outline

e Spatial scales and modeling frameworks
e Results from simple (SI) and SIR epidemics
e Ry from spatial epidemics

e Thoughts on heterogeneity and estimation



Grass in distress




Patchy epidemics

e Spatial scales of epidemics: from foci to pandemics

e Explore within-field epidemics, where spatial heterogeneity
is endogenous (although host population may be patchy)

e Multiple foci: caused by spore showers, long-tailed dispersal
kernels, multiple dispersal modes

e Wind/splash/soil-dispersed disease, typically fungal
pathogens



Focal epidemics

e \Wave speed of isolated disease focus: generalizes Fisher
equation (etc.): van den Bosch, Zadoks, Zawolek 1988-1994

e Flexible dispersal kernel, latent period, infectious period

e Experimental results: van den Bosch & Zadoks, Minogue &
Fry, Gilligan

e Shortcomings: invasion phase only, single-focus



Spatial ecology: models
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Simple epidemic models

Model for short-term, within-field epidemics (static host
population):

e contact rate (3: combined rate of spore production,
infection probability

e spore dispersal kernel K(r): probability of a spore travelling
a distance r from an infected to a healthy plant






Point-process equations

N

\x) = 8Y_Ulix—y3) = 5 [ Ullx - y)I(v)dy

g=1

Overall infection rate:

A= i)\(Sj) = /Q)\(X)S(X) dx,
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Neighborhood density & spatial covariance

Local or neighborhood densities drive the epidemic.

. . . . 2
Quadrat sampling gives means, variances, covariance: n + -
estimates the n.d. of plants near other plants.

Neighbourhood density of infected plants around uninfected
plants = I + <L

Neighbourhood densities are dynamic.
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Moment equations

e Define spatial covariance

e Using stochastic equation for rates (from simulator)

— Mean: derive expected change in population density
— Covariance: derive expected change in spatial covariance
— Close moments

e Analyze spatial population dynamics
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Spatial covariance

cij(|x = yl) = ((ni(x) = 74) - (n5(y)
e Standard spatial /geostatistical measure

e Estimable from data

e Connection with analytic models

— 1))
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Moment equations

Describe the change in the densities of infected (/) and
uninfected (susceptible, S) plants in terms of the spatial
covariances:

I = infection rate = B(SI + ¢sy)

=88 (1+ C—?) (1)

= (3S[neighbourhood density of I|S]

where Cgy is the average covariance, [ KC(r)csy(r) dr.

15



Moment closure

What about higher moments? Closure rules

e non-spatial /independent:
Pabe = PaPbPc
a
o power-1: pabe = (PaPbc + QP NO§

PbPac + PePab — 2DaPbPe >

b
Pabc
e power-2: * * %
pabc:(%_l_"')/g @
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Closure rules, cont.

Q/. o7 ©:© +©.b 2 0.0 power-1

d’ o— ~ © power—2a

d‘ .b o - Q.O power—3
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Moment equations: covariance equations

8658;( 7) —5{ (U * csr)(r) + Iegs(r)
— Iesi(r) = S(U x ern)(r) = STU(r)]
(9(3[](7“)

e 20 [I_CSI(T) + S(U * crr)(r) + SI_U(T)}
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Density
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Deviation from mean-field
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Covariance dynamics (Poisson hosts)
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Epidemic trajectories (Poisson hosts)

Elapsed time

20

15

10

o
\
\
\
\
\
\
\ © . .
! \ -©- Simulation
. ,
° \ o Moment equation
o
. :
\ L —— Non-spatial
\ o o
o \\ e
.\ o %
N So. = Co,
O\ ° .‘.'o""O"—o..-.o..-.o -0 ASZOAl 7-1
o .
o _ 5
© = o..'-'O'"—~Q..-.o O .Y 0. - ‘.‘SZOCIS ©
° T 0 -o -0 —-—0-:‘w-o o o o o e o © o ©- =2 GS:OC9 ©
| | | |
1 10 100 1000

Effective # of neighbors

22



Patchy host distributions

e Realistic complication:

— plant demography (local dispersal)

— environmental heterogeneity

— distribution of susceptible hosts (small-scale pop.
genetics)

— result of previous epidemics

e Model as a Poisson cluster process
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A familiar result

Host heterogeneity initially accelerates epidemic, proportional

to 1+ varlancze — 1+(coeff. of variation)? (before buildup of
mean

covariance etc.)
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Infective density

Simple epidemic (clustered hosts)
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Covariance dynamics (clustered hosts)

S-I| covariance density
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Conclusion so far

Infective patchiness (c;yy) builds up over time; this patchiness,
and associated spatial association/segregation between
susceptibles and infectives (cgy), initially accelerates but then
decelerates the epidemic ( “burn-out” of clusters).
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Epidemic trajectories (clustered hosts)
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SIR models

e (Standard) Susceptible/Infective/Removed: allow for
recovery or death

e Allows much larger effects of space (even in random-hosts
case) than the simple epidemic
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Post-epidemic patterns
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Reality? (Burdon and Chilvers exp.)

The Influence of Planting Pattern on Disease Rates

Proportion (x) seedlings diseased

o8 - Fi
a /
O-.
f
A - 6 =
0% ';"‘
-
> ! ~
U4 - :___,.‘u \5#‘
mﬂﬂ
/ 3 -2
‘. B 3
-"' .D
5'2 g ?: '_.'.
|
B 1 ¥
2 4 ] [ 0 F

Time (days)

10

32



Results on Ry (David Brown)

e Change closure rule to power-2 asymmetric (accounts for
I-S-1 structure)

e Analytic simplicity decreases (but wasn't great to begin
with)

e Quasi-equilibrium state exists — can estimate eigenvectors
numerically
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Ry, simulation vs moment equations
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Ry (m. eq.) dependence on scales
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Transm ssion threshol d

Ry for clustered hosts (A, = 20)
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Transm ssi on threshol d
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Heterogeneity and estimation

e Introduce heterogeneity (in recovery, susceptibility,
infectivity)

e Classical pattern vs. process problem

e Separate by deconvolution
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Ingredients for correlation estimation

e Methods for estimating correlations/spatial power spectra
(e.g. spatial ARMA)

e Equations for expected spectra:

— Via moment equations
— Via stochastic PDEs (Lande, Saether, Engen)

e Equate equilibria or changes in correlation with

observations: e.g. N = —£— in logistic case
m-+D
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What are moment equations good for?

e Simple descriptions of spatial dynamics, especially including
multiple scales/shapes (cf. pair approximations)

e Replacement for stochastic simulations (with fancier
closures: Filipe)

e Linking spatial (non-grid) data with spatial models
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Open questions

e Formal framework missing (Barton, Etheridge, & DePaulis)

e Modeling: analysis vs. flexibility vs. realism

e Simple models can focus on only one aspect at a time
(invasion phase, wave edge, etc.)

e Extensions of moment equations: more species, etc.
(requires biological foundations)

e Connections between different frameworks:
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