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Outline

• Spatial scales and modeling frameworks

• Results from simple (SI) and SIR epidemics

• R0 from spatial epidemics

• Thoughts on heterogeneity and estimation
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Grass in distress
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Patchy epidemics

• Spatial scales of epidemics: from foci to pandemics

• Explore within-field epidemics, where spatial heterogeneity

is endogenous (although host population may be patchy)

• Multiple foci: caused by spore showers, long-tailed dispersal

kernels, multiple dispersal modes

• Wind/splash/soil-dispersed disease, typically fungal

pathogens
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Focal epidemics

• Wave speed of isolated disease focus: generalizes Fisher

equation (etc.): van den Bosch, Zadoks, Zawolek 1988-1994

• Flexible dispersal kernel, latent period, infectious period

• Experimental results: van den Bosch & Zadoks, Minogue &

Fry, Gilligan

• Shortcomings: invasion phase only, single-focus
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Spatial ecology: models
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Simple epidemic models

Model for short-term, within-field epidemics (static host

population):

• contact rate β: combined rate of spore production,

infection probability

• spore dispersal kernel K(r): probability of a spore travelling

a distance r from an infected to a healthy plant

7



β

K

8



Point-process equations

λ(x) = β

Ni∑
j=1

U(|x − yj|) = β

∫
Ω

U(|x − y|)I(y) dy

Overall infection rate:

Λ =
Ns∑
j=1

λ(sj) =
∫

Ω

λ(x)S(x) dx,
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Neighborhood density & spatial covariance

Local or neighborhood densities drive the epidemic.

Quadrat sampling gives means, variances, covariance: n + s2

n

estimates the n.d. of plants near other plants.

Neighbourhood density of infected plants around uninfected

plants = Ī + cSI
S .

Neighbourhood densities are dynamic.
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Moment equations

• Define spatial covariance

• Using stochastic equation for rates (from simulator)

– Mean: derive expected change in population density

– Covariance: derive expected change in spatial covariance

– Close moments

• Analyze spatial population dynamics
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Spatial covariance

cij(|x − y|) = 〈(ni(x) − n̄i) · (nj(y) − n̄j)〉

• Standard spatial/geostatistical measure

• Estimable from data

• Connection with analytic models
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Moment equations

Describe the change in the densities of infected (I) and

uninfected (susceptible, S) plants in terms of the spatial

covariances:

İ = infection rate = β(SI + c̄SI)

= βS
(
I +

c̄SI

S

)
= βS[neighbourhood density of I|S]

(1)

where c̄SI is the average covariance,
∫
K(r)cSI(r) dr.
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Moment closure

What about higher moments? Closure rules

• non-spatial/independent:

pabc = papbpc

• power-1: pabc = (papbc +
pbpac + pcpab − 2papbpc

• power-2:

pabc =
(

pabpac
pa

+ . . .
)

/3
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Closure rules, cont.

÷

+ + −2

÷

power−1

power−2a

power−3

17



Moment equations: covariance equations

∂cSI(r)
∂t

= β
[
S̄(U ∗ cSI)(r) + ĪcSS(r)

− ĪcSI(r) − S̄(U ∗ cII)(r) − S̄ĪU(r)
]

∂cII(r)
∂t

= 2β
[
ĪcSI(r) + S̄(U ∗ cII)(r) + S̄ĪU(r)

]
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Density dynamics

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

Time

D
en

si
ty

non−spatial

moment eq.

simulation

19



Deviation from mean-field
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Covariance dynamics (Poisson hosts)
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Epidemic trajectories (Poisson hosts)
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Patchy host distributions

• Realistic complication:

– plant demography (local dispersal)

– environmental heterogeneity

– distribution of susceptible hosts (small-scale pop.

genetics)

– result of previous epidemics

• Model as a Poisson cluster process

23



A familiar result

Host heterogeneity initially accelerates epidemic, proportional

to 1 +
variance

mean2
= 1+(coeff. of variation)2 (before buildup of

covariance etc.)
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Simple epidemic (clustered hosts)
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Covariance dynamics (clustered hosts)
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Conclusion so far

Infective patchiness (cII) builds up over time; this patchiness,

and associated spatial association/segregation between

susceptibles and infectives (cSI), initially accelerates but then

decelerates the epidemic (“burn-out” of clusters).
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Epidemic trajectories (clustered hosts)
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SIR models

• (Standard) Susceptible/Infective/Removed: allow for

recovery or death

• Allows much larger effects of space (even in random-hosts

case) than the simple epidemic
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Final sizes
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Post-epidemic patterns
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Reality? (Burdon and Chilvers exp.)
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Results on R0 (David Brown)

• Change closure rule to power-2 asymmetric (accounts for

I-S-I structure)

• Analytic simplicity decreases (but wasn’t great to begin

with)

• Quasi-equilibrium state exists — can estimate eigenvectors

numerically
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R0, simulation vs moment equations
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R0 (m. eq.) dependence on scales
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R0 for clustered hosts (Ah = 20)
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Effects of kernel shape
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Effects of kernel shape: 2
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Heterogeneity and estimation

• Introduce heterogeneity (in recovery, susceptibility,

infectivity)

• Classical pattern vs. process problem

• Separate by deconvolution
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Ingredients for correlation estimation

• Methods for estimating correlations/spatial power spectra

(e.g. spatial ARMA)

• Equations for expected spectra:

– Via moment equations

– Via stochastic PDEs (Lande, Saether, Engen)

• Equate equilibria or changes in correlation with

observations: e.g. Ñ = Ẽ
m+D̃

in logistic case
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What are moment equations good for?

• Simple descriptions of spatial dynamics, especially including

multiple scales/shapes (cf. pair approximations)

• Replacement for stochastic simulations (with fancier

closures: Filipe)

• Linking spatial (non-grid) data with spatial models
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Open questions

• Formal framework missing (Barton, Etheridge, & DePaulis)

• Modeling: analysis vs. flexibility vs. realism

• Simple models can focus on only one aspect at a time

(invasion phase, wave edge, etc.)

• Extensions of moment equations: more species, etc.

(requires biological foundations)

• Connections between different frameworks:
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