

Security policies define rules for access control, authentication, or
authorization of entities in a system. With the increase in interest in
web based e-commerce, the amount of business that is transacted on-
line and the explosion in the amount of services available, the ability
to handle security and privacy is a must. Also, as computationally
enabled devices (laptops, phones, PDAs, and even household
appliances) become more commonplace and short range wireless
connectivity improves; there is an increased need for more automated
security in the resulting pervasive environments. Policy-based
security is often used in such environments to provide access control
to resources from a large number of requesting entities that may be
unknown to the former, provide security without necessarily
authenticating requesters completely, provide flexibility in specifying
security requirements and give every entity a certain amount of
autonomy in making their own security decisions. Also, it makes
possible to modify how different entities act without modifying their
internal mechanism. We have put this idea of using policies to handle
security and privacy into practice by using security policies
expressed in a higher level policy language to provide a secure
infrastructure for mobile devices [7]. We are also making use of
policy based approaches for enhancing World Wide Web
Consortium’s Platform for Privacy Preferences (P3P) privacy
architecture [8].

This growing importance of policy-based security underlines the
need for usable interface for creating policies and providing support
for policy debugging, policy validation and policy engineering.
Motivated by this need, we are developing an Integrated
Development Environment (IDE) for security policies by extending
the plug-in architecture of IBM’s Eclipse Platform [3]. The policies
are specified in Rei [1], a policy language with general specifications
for policies as well as mechanisms for policy verification. It includes
few constructs based on deontic logic that allow policies to be
described in terms of rights, obligations, dispensations, and
prohibitions. It has a semantic interface for describing policies in
semantic languages. The use of a semantic language enhances their
interoperability and extensibility. Associated with the language is a
policy engine that can be used within the application domain to
interpret and reason over policies, help resolve in case of conflicts
between policies, answer queries related to policy making and aid
security and privacy governance by means of policy enforcement.

Editing facilities for Policy Creation
The IDE consists of a N3 Editor. N3 [2] is the XML syntax for RDF
[5] and makes policies easier to understand and more readable.
Policies written in N3 can be easily translated into semantic web
languages like RDF-S and OWL [6]. The editor provides such
features as Policy Templates, Content Assistance, Syntax
Highlighting, and display of appropriate Context Information to
facilitate policy creation. N3 uses the concept of namespaces. To
make the process of including namespaces easier we have the
concept of policy templates that include all the standard namespaces
Rei policy developers would need. They can also add more
namespaces to those existing in the templates and create new policy
templates. In the editor window, based on the position of the cursor
and the grammar of N3, content assistance is provided to the user.
For example, on a blank position with no ':' before it, the user will get

a list of namespaces to choose from. After selecting a namespace,
prefix will be put in the cursor position with a ':' following it. At this
point, based on whether the last delimiter was a ';' or a '.', the user is
either shown a list of classes/instances in the chosen namespace (if
'.') or a list of attributes of the object currently being described (if ';').
Also, based on the information in the namespaces about the
classes/instances used, appropriate context information is displayed
about that particular class/instance. For example, the properties of
those classes, their domains and ranges etc. Apart from this text
interface, we also plan to provide a graphical interface for creating
simple policies through wizard extensions. This would give policy
developers a choice between using a friendlier graphical interface for
simple policies or the text interface for creating complex policies.

Policy Debugging and Validation
Once created, policies are parsed using the Jena API [4] to check for
syntax errors and suggest corrections, if required. The IDE provides
an interface to the Rei policy engine for developers to verify their
policies and execute queries over them. We plan to offer provision
for developing use-cases that include certain facts and queries.
Policies along with the use-cases can be fed to the policy engine and
answers to the use-cases can be used to verify if they are consistent
with the intended purpose of the policies.

Policy Engineering
This is the support we plan to offer for consistency maintenance
between different policies within a given domain or policies across
domains. A policy domain could have several policies defined on the
entities it contains. If creation of a policy or modification of an
existing policy leaves any of the other policies in the domain
inconsistent, then the user should either be warned or not allowed to
do so. For example, a university domain may consist of some general
policies that hold for all the departments within the university. In
addition, each department may have policies defined specifically for
the entities in that department. A user could make a change to an
existing policy or create a policy that is inconsistent with the general
policies. This also holds true for policies across domains.
Consistency maintenance for policies across domains is required
when several domain ontologies are merged together and policies are
being created on entities within these domains.

References
[1] Kagal L., Finin T., Joshi A., A Policy Based Approach to Security for the
Semantic Web, InProceedings, 2nd International Semantic Web Conference
(ISWC2003), September 2003.
[2] Berners-Lee, T., Primer: Getting into RDF and Semantic Web using N3,
http://www.w3.org/2000/10/swap/Primer (2003).
[3] Eclipse on line help [http://dev.eclipse.org/help21/index.jsp]
[4] McBride B., An Introduction to RDF and the Jena RDF API,
http://jena.sourceforge.net/tutorial/RDF_API/
[5] Brickley, D. and R. Guha, Resource Description Framework (RDF)
Schema Specification 1.0 - W3C Recommendation,
http://www.w3.org/TR/2000/CR-rdfschema-20000327 (2000).
[6] Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider and L. A. Stein, OWL Web Ontology
Language, http://www.w3.org/TR/owl-ref (2003).
[7] Patwardhan A., Korolev V., Kagal L., Joshi A., Enforcing Policies in
Pervasive Environments, TechReport, University of Maryland, Baltimore
County, March 2004.
[8] Kolari P., Trust, Policy and the Semantic Web, Enabling Intelligent User
Agents for Web Privacy,
http://www.csee.umbc.edu/~kolari1/semanticp3p.html

Policy Development Software for Security Policies

Anjali Shah, Lalana Kagal, Tim Finin, and Anupam Joshi
Department of Computer Science and Electrical Engineering, UMBC, Baltimore, MD 21250

{anjali1, lkagal1, finin, joshi}@cs.umbc.edu

