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ABSTRACT
Auctions provide eÆcient and distributed ways of allocating
goods and tasks among agents. In this paper we study op-

timal strategies for computationally limited agents, where
agents must use their limited resources in order to com-
pute valuations for (bundles of) the items being auctioned.
Agents are free to compute on any valuation problems in-
cluding their opponents'. The deliberation actions are in-

corporated into the agents' strategies and di�erent auction
settings (both single{item and combinatorial) are analyzed
in order to determine equilibrium strategies. We show that
is some auction mechanisms, but not others, in equilibrium
the bidders compute on others' problems as well. It is shown
that under our model of bounded rationality, the generalized

Vickrey auction (GVA) looses its dominant strategy prop-
erty. The model of bounded rationality impacts the agents'
equilibrium strategies and so must be considered when de-
signing mechanisms for computationally limited agents.

1. INTRODUCTION
Auctions provide eÆcient and distributed ways of allocat-
ing goods and tasks among agents and are becoming preva-
lent as electronic marketplaces on the Internet. In general,
Internet auctions are aimed at two groups. Auction sites
such as eBay, and Yahoo! Auctions host auctions where
most participants are individual consumers. Whether bid-

ding on baseball cards or digital cameras, the individual
consumers' valuations for the items are often idiosyncratic.
The items have some internal value for the bidder which may
be diÆcult for others to determine. Auction sites such as
AltraNet.com instead focus on business to business (B2B)
transactions. Whether buying electricity or bidding on de-

livery jobs, the bidders' valuations of the items can often be
determined in an objective manner. The items have some
concrete use to the buyer. They will become part of sup-
ply chains or incorporated into schedules. Local plans and
schedules can be computed, thus determining the worth of

an item to a business.

Lately there has been interest in designing software agents
that represent users when bidding in online auctions. A cus-
tomer in a consumer{to{consumer auction can tell his agent

his valuations. The agent can then visit the auction site and
represent the customer, bidding optimally given the auction
type and the speci�ed valuations. In a B2B auction, com-
putation often must be performed in order to determine the
valuations of the items up for auction. The customer bid-
ding in such an auction, can specify its current constraints

to a software agent which computes in order to determine
the valuation for an item, and then places a bid in the auc-
tion. However, the valuation determination problem will
possibly involve computing on such NP{complete problems
as scheduling and determining delivery routes. Optimal so-
lutions may not be possible to determine. Instead, anytime

algorithms, such as iterative improvement algorithms (see,
for example, [Kirkpatrick et al., 1983]), can be used where
at any point in time the algorithms can return a solution,
but as more time is spent on computing the solution to the
problem, the solution quality increases. In auctions there
are inherent deadlines. For example, a participant must

submit a bid before the auction closes, possibly before com-
puting a �nal solution to its optimization problem. These
deadlines force software agents to make tradeo�s between
solution quality and computing time.

Game theory is a useful tool to help in the design of bidding

agents for auctions. There is a vast literature describing
rational agents' optimal bidding strategies in di�erent types
of auctions [Milgrom, 1989]. However, economic models for
bounded rational agents have often been more descriptive
rather than prescriptive [Simon, 1955; Rubinstein, 1998].

We study settings where agents have to compute in order to
determine their valuations for (bundles of) the items being
auctioned. However, they have limitations on their compu-
tation. They may have to bid before they know their true
valuation for the item, or may have to use items won in

the auction, before the \best" value for the items can be
determined. Therefore, what an agent bids will depend on
what valuation it has computed for the item, as well as what
valuations the other agents may have computed.

In the next two sections we give a brief overview of di�erent

auction mechanisms and provide a description of our model
of bounded rationality and a fully normative deliberation
control method. We formally de�ne an agent's strategy, in-
corporating both deliberation actions and bidding actions



and introduce the concept of strategic computation. We

then analyze di�erent auction settings, determining when
strategic computation would or would not occur in equilib-
rium. We conclude by noting that agents' optimal strategies
depend on the model of bounded rationality.

2. AUCTIONS
Auctions can be characterized based on whether there is
one item being auctioned or multiple items. We discuss
the setting where the items are desirable (goods, resources,
services, etc.). In this setting the seller wants to maximize
the revenue she gets while each bidder tries to minimize
what he has to pay for the item(s). All of our results apply

to the setting where the items are undesirable (e.g., tasks),
the seller wants to minimize cost and the bidders want to
maximize.

In this paper we investigate inherently private value auctions
with risk neutral agents. This means that the value of an

item depends only on an agent's own preferences.

2.1 Sale of a Single Item
There are many di�erent auction mechanisms, but we shall
discuss the standard ones.

In an English auction each bidder is free to raise its bid.
When no bidder is willing to increase the bid further, the
auction ends with the item being allocated to the agent with
the highest bid. That agent pays the amount of its bid. For
rational agents there is a dominant bidding strategy. Agents
keep bidding some small amount � more than the previous

high bid until they reach their valuation. They stop bidding
at that point.

In a �rst{price sealed{bid auction each agent submits one
bid without knowing the other agents' bids. The highest
bidder wins the item and pays the amount of her bid. There

is no dominant bidding strategy for rational agents. An opti-
mal strategy depends on the bids of the other agents. There
is a symmetric Nash equilibrium for N risk{neutral bidders,
if the valuation, vi, for the bidders are drawn independently
from a uniform distribution.

In a Dutch auction the auctioneer lowers the price until some
bidder takes the item at the current price. Again, there is
no dominant bidding strategy. In fact, the Dutch auction is
strategically equivalent to the �rst{price sealed{bid auction.

The fourth commonly discussed auction type is the Vickrey
auction or second{price sealed{bid auction. Each bidder
submits one bid without knowing what the others' bid. The
highest bidder wins the item but pays the amount of the
second highest bid. For rational agents there is a dominant
strategy which is for each agent to bid its true valuation.

2.2 Sale of Multiple Items
In auctions where multiple distinguishable items are sold,
bidding strategies for agents can become much more com-
plicated. A bidder's valuation for a combination of items
might not be the sum of the individual items' valuations. It

may be greater, smaller, or the same.

In traditional auction formats where items are auctioned

separately, in order to decide how much to bid on an item,
an agent needs to estimate which other items it will receive
in the other auctions. This can lead to ineÆcient allocations
where bidders do not get the combinations they want or else
get combinations that they do not want [Sandholm, 2000].

Combinatorial auctions can be used to overcome these de-
�ciencies. In a combinatorial auction, bidders may submit
bids on combinations of items which allows the bidders to
express complementarities between items. Based on the bids
on the combinations of items, or bundles, the goods are allo-
cated to the agents. Let X = fx1; : : : ; xng be a set of items.

A bundle is a subset of the items, e.g., fx1g or fx1; xng.
An allocation of items among A agents is Y = (y1; : : : ; yA)
where yi � X, [Ai=1yi = X and yi \ yj = ; for i 6= j.
The generalized Vickrey auction (GVA) is a type of combi-
natorial auction where the payments are structured so as to
motivate bidders to bid truthfully and has been suggested

as a useful protocol for electronic auctions [Varian, 1995].

2.2.1 The GVA Protocol
Let the variable Y denote an allocation of goods. The GVA
works in the following manner.

1. Each agent declares a valuation function. So vi(Y ) is

agent i's valuation for allocation Y .

2. The GVA chooses an optimal allocation Y � that max-
imizes the sum of all the agents' declared valuations.

3. The GVA announces the winners and their payment
pi:

pi =
X

j 6=i

vj(Y
�
�i)�

X

j 6=i

vj(Y
�
)

where Y �
�i is the allocation that maximizes the sum

of all agents' valuations assuming that agent i did not
participate.

Under the usual assumption that each agent has quasilinear
preferences ui(Y ) = vi(Y )� pi, the utility of bidder i in the
GVA is

ui(Y
�
)� pi = vi(Y

�
) +
X

j 6=i

vj(Y
�
)�
X

j 6=i

vj(Y
�
�i):

The GVA has several nice properties for rational agents.
First, if the agents have quasilinear preferences, the GVA
is incentive compatible. The dominant strategy for rational
agents is to bid their true valuations for the bundles of items.

Second, the GVA is Pareto eÆcient. There is no other way
to allocate the items (and compute payments) that would
make some agent better o� without making some other agent
worse o�. Finally, it is individually rational for agents to
participate. An agent's utility obtained from participating

in the GVA is never lower than if it had not participated
(i.e., the agent will never end up paying more for its bundle
of items than its true valuation for the bundle).

2.2.2 Example
We now provide an example to illustrate how the GVA

works. Let there be two agents, agent 1 and agent 2, and let



there be two items, g1 and g2. Agents can bid on either item

or on the bundle fg1; g2g. An agent's bid is represented by
a tuple: (a bid for g1, a bid for g2, a bid for fg1; g2g where
the bids are XOR'ed together). Suppose the agents bid as
follows

� Agent 1's bid: (20, 5, 25)

� Agent 2's bid: (10, 15, 30)

The GVA allocates g1 to agent 1 and g2 to agent 2 since
this allocation maximizes the sum of the agents' valuations.
The amount that each agent pays is computed as follows. If
agent 1 did not bid, then fg1; g2g would have been allocated
to agent 2 whose valuation for this bundle is 30. When g1
is allocated to agent 1, agent 2's valuation is only 15 since

it receives g2. Therefore, agent 1's payment is calculated
as 30 � 15 = 15 and its utility is 20 � 15 = 5. Agent 2's
payment is 25� 20 = 5 and its utility is 15� 5 = 10.

3. COMPUTATIONALLY LIMITED AGENTS
To participate in an auction, agents need to determine valu-
ations for the items being auctioned. The question becomes:
how are these valuations derived? In this paper we focus on
situations where agents do not simply know their own val-
uations. Rather, they have to allocate their computational
resources in order to compute the valuations. We present

two models where agents use computation to determine their
valuations.

3.1 Models of Computation
3.1.1 Model 1: Computation improves the valuations
In our �rst model, computation increases the agents' valua-
tions. As the agent computes longer, the agent �nds better
and better ways of using the items. Therefore, the agent
may be willing to place a better bid.

An example is a procurement auction where agents are car-

rier companies bidding on a delivery task which consists of
delivering a parcel from one location to another. The agent
who submits the lowest bid wins and its utility is the bid
amount, bi, that it gets paid minus its cost, ci, of perform-
ing the delivery. As the agent computes on the problem of
how to deliver the parcel, it can obtain better (less costly)

vehicle routing solutions. It might then want to modify its
bid, decreasing the bid so as to increase the likelihood of
winning the auction.

This model takes the viewpoint that the agent has to have

a solution ready for how to use the items by some time. For
example, it may be that the trucks have to be dispatched
right after the auction closes, so there is no time remaining
to compute a better vehicle routing solution.

3.1.2 Model 2: Computation refines the agent’s be-
liefs

Alternatively, computation can re�ne an agent's valuation,
(see, for example [Sandholm, 1993]). The agent can main-
tain a distribution or bounds on the valuation. Additional
computation can then re�ne the agent's beliefs, causing the

distribution of the value to shift up or down. The support

of the distribution can also shrink. This model takes the

viewpoint that the agent can compute the actual solution of
how it will use the items after winning the auction.

3.2 The Role of Deadlines
If agents have in�nite computational resources (and com-
plete algorithms) then they would be able to compute their
true valuations and execute the equilibrium bidding strate-
gies for rational agents. However, in real systems, this is

not the case. Agents have limitations on their deliberation
resources. We consider the setting where each agent has
some �xed amount of time to compute and a computer of
�nite speed. Let agent i's deadline of when it has to stop
computing be di. It can allocate its computation in any way

it sees �t, either computing on some or all of its own valua-
tion problems (one for each bundle), or using its resources to
compute on other agents' problems in order to better tailor
its own bids for the auction.

The second deadline in the model is the time, T , when the

auction closes. Agents' personal deadlines, di, may occur
before, after, or at time T .

3.3 Normative Control of Deliberation
Agents must decide how to allocate their limited deliber-
ation resources. In single{item settings they must decide
whether to compute only on their own valuation problem in

order to obtain the best valuation possible, or whether to
use some of their resources to compute on the other agents'
valuation problems. In combinatorial auctions the agents'
decisions become much more complex. Agents must de-
cide whether to devote any computation to their opponents'
problems. However, they also have multiple valuation prob-

lems of their own (possibly 2m � 1 if there are m items) on
which they have to decide how to allocate their resources.

The agents have statistical performance pro�les that de-
scribe how computation changes the valuations. Each agent
uses this information to decide how to allocate its computa-

tion at every step in the process, based on the results of its
computation so far.

There has been much work on performance pro�le based de-
liberation control [Zilberstein and Russell, 1996; Boddy and
Dean, 1994; Horvitz, 1987; Hansen and Zilberstein, 2001].

To represent the performance pro�les we use a tree struc-
ture [Larson and Sandholm, 2000]. The advantage of this
approach is that it allows optimal conditioning on results of
execution so far, and can condition on the actual problem
instance.

We index the problem by i and g where i is an agent and g is
an item (or bundle of items) in the auction. For each g and
i there is a performance pro�le tree, T g

i , representing the
fact that the agent can use di�erent algorithms on di�erent
problems as well as the fact that the performance pro�les

may be conditioned on (features of) the problem instance.
Figure 1 exempli�es one such tree. We assume that all per-
formance pro�le trees are common knowledge. Agent i can
compute on agent j's valuation for item g, using the perfor-
mance pro�le T g

j to guide its computation. However, this
computation would not change agent i's valuation for good

g. The most practical model is the special case where the
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Figure 1: One agent's performance pro�le tree for

one valuation problem.

agents' have the same performance pro�les, i.e., T g
i = T g

j

for all agents i and j. This models a real world setting where
the agents have been solving similar problems in the past,
and have been improving their algorithms for those prob-
lems resulting in comparable algorithms among the agents.

Each depth of the tree corresponds to an amount of time t
spent on running the algorithm on that valuation problem.
Each node at depth t of the tree represents a possible val-
uation quality, vgi (t), obtained by running t time steps on

agent i's valuation problem for item g. There may be several
nodes at a depth since the computation may result in dif-
ferent valuations depending on the problem instance or, in
the case of stochastic algorithms, also on random numbers.

Each edge in the tree is associated with the probability that

the child is reached in the next computation step given that
the parent has been reached. This allows one to compute
the probability of reaching any particular future node in a
tree given any node, by multiplying the probabilities on the
path between nodes. If there is no path, the probability is
0.

We denote by time(n) the depth of the node n in the perfor-
mance pro�le tree. In other words, time(n) is the number
of computational steps used to reach node n. We denote by
V (n) the value of node n.

In practice it is unlikely that an agent knows the valuation
for every time allocation without actually doing the compu-
tation. Rather, there is uncertainty about how the valuation
improves over time. A performance pro�le tree allows one to
capture this uncertainty. The tree can be used to determine

P (v
g
i jt) denoting the probability that running the algorithm

for t time steps produces a solution of value v
g
i .

We classify trees as either being deterministic or stochas-
tic. In deterministic trees there is no uncertainty as to what
value will be obtained after computing for t time steps. De-

terministic trees are branches. For stochastic trees, as illus-
trated in Figure 1, there is uncertainty as to what value will
be obtained after computing for t time steps.

The performance pro�le tree supports conditioning on the
path of valuation quality so far. The performance pro�le

tree that applies given a path of computation so far is simply

the subtree rooted at the current node n. This subtree is

denoted by T (n). If an agent is at a node n with value
v, then when estimating how much additional deliberation
would increase the valuation, the agent need only consider
paths that emanate from node n. The probability, Pn(n

0),
of reaching a particular future node n0 in T (n) is simply the
product of the probabilities on the path from n to n0. The

expected valuation after allocating t more time steps to the
problem, if the current node is n, is

X
Pn(n

0
) � V (n0)

where the sum is over the set fn0jn0 is a node in T (n) with
depth tg. This is specially useful for an agent, i, whose
deadline, di is after the bidding deadline. It may want to
estimate its �nal valuation and use this information in its
bid formation.

Agents store the results of their deliberation actions at each
time step in a state of deliberation.

Definition 1. The state of deliberation of agent i at
time t is

�i(t) = hngj i
g2G
j2A

where A is the set of agents participating in the auction, G
is the set of bundles being auctioned, and

P
g;j

time(ngj ) = t.

Note that if there areM items then there are 2M�1 bundles.

4. BIDDING STRATEGIES AND STRATE-
GIC COMPUTATION

A strategy for an agent in our model is composed of two

interrelated components { the deliberation strategy and the
bidding strategy. Let A be the set of agents participating in
the auction and G be the set of bundles. Let Act(A;G) be
the set of deliberation actions where actgi 2 Act(A;G) is the
action of taking one computation step on agent i's problem

for bundle g.

Definition 2. A deliberation strategy for agent i with
deadline di is

S
D
i = (�i(t))

di
t=0

where

�i(t) : �i(t)! Act(G;A):

That is, at each time step, the deliberation strategy speci�es
which valuation problem should be computed on.

Bidding strategies depend on the auction mechanism.

Definition 3. A bidding strategy for agent i in a single{
shot auction which closes at time T is

S
B
i : �i(T )! <2

M�1

where M is the number of items being auctioned. A bidding
strategy for agent i in a sequential auction which closes at
time T is

S
B
i = (si(t))

T
t=0



where

si(t) : �i(t)�Bi(t)! <2
M�1

:

The set, Bi(t), contains all bids that agent i has observed up
to time t.

Finally, it is possible to formally de�ne a strategy.

Definition 4. A strategy for agent i is

Si = (S
D
i ; S

B
i ):

4.1 Roles of Deliberation
Deliberation plays several strategic roles in auction settings.
Agents can use their computational resources in di�erent
ways. First, agents can deliberate on their own valuation
problems in order to obtain better valuations. In a single
item setting, where each agent has only one valuation prob-

lem for the single good being auctioned, this can be quite
straightforward. However, in multi{item auctions, each agent
can have several valuation problems and must decide how
to spread its computational resources among the problems.
Second, agents can also deliberate on their opponents' prob-
lems in an attempt to gather information about the bids the

opponents will submit. This information can be used by the
agent in its bid formation and in allocating its computa-
tional resources.

We make a distinction between these two types of delibera-
tion. The �rst we simply call deliberation. The second we

call strategic deliberation.

Definition 5. If an agent i uses part of its deliberation
resources to compute on another agent's valuation problems,
then agent i is performing strong strategic deliberation.

Definition 6. If an agent i does not actually use its de-
liberation resources to compute on another agent's valuation
problems, but does use information from the opponents per-

formance pro�le to aid in counterspeculation, then agent i
is performing weak strategic deliberation.

In strong strategic deliberation the agent actually uses its
own deliberation resources to compute on an opponent's
problem, thus having less resources for its own valuation
problems. In weak strategic deliberation, an agent does

not actually use its computational resources to compute on
an opponent's valuation problem, but instead will form its
deliberation (and thus bidding) strategies based on infor-
mation it obtains by just examining the opponent's per-
formance pro�les. Ideally, neither form of strategic delib-
eration would be present in an auction. However, strong

strategic deliberation is the least desirable since agents not
only counterspeculate on other agents strategies, but actu-
ally use their own limited resources in the process, leading
to less computation time (and therefore worse valuations)
on the actual problems that will end up as part of the so-
lution that is executed. In economic terms, strong strategic

deliberation generally decreases Pareto eÆciency.

5. RESULTS
We divide the results into two sections. The �rst section dis-
cusses single{item auctions and the second section discusses
multi{item auctions. All the results hold for both models of
deliberation (computing to increase the valuations and com-
puting to remove uncertainty from valuations) unless other-

wise speci�ed.

5.1 Single–Item Auctions
For single{item auctions, the four common auction types

(�rst{price sealed{bid, English, Dutch, and Vickrey) sepa-
rate into two groups based on whether in equilibrium agents
will perform strong strategic computation, or whether no
strategic computation, strong or weak, will occur.

We get the following two theorems about the possibility of
strong strategic computation.

Theorem 1. If agents have free but limited computational
resources, in Nash equilibrium strong strategic computation
can occur in �rst{price sealed{bid auctions.

Theorem 2. If agents have free but limited computational
resources, in Nash equilibrium strong strategic computation
can occur in Dutch auctions.

The proofs are omitted due to space constraints.

On the other extreme, there are auction mechanisms where
no strategic computation of any form occurs in equilibrium.

Theorem 3. If agents have free but limited computational
resources, agents have dominant strategies with no strategic
computation (weak or strong) for English auctions.

Theorem 4. If agents have free but limited computational
resources, agents have dominant strategies with no strategic
computation (weak or strong) for Vickrey auctions.

The proofs are omitted due to space constraints.

In auction mechanisms where there were dominant bidding

strategies for rational agents (English and Vickrey auctions)
there is no strategic computation of any form. However, in
equilibrium strong strategic computation occurs in auctions
where there were no dominant strategies for rational agents
(�rst{price sealed{bid and Dutch auctions). It is tempt-
ing to conclude that in auctions where there are dominant

strategies for rational agents, no strategic computation oc-
curs in equilibrium for bounded rational agents. However,
that conclusion is premature, as will be illustrated in the
next section.

5.2 Combinatorial Auctions
In combinatorial auctions, agents have a complicated deci-
sion task. They have several possible valuation problems
of their own, across which they have to decide how to split

their computational resources on. Ideally, the agents could



simply ignore the other bidders and focus solely on their

own valuation problems. However, we show that agents can
gain both by counterspeculating their opponents and even
by computing on some of their opponents' valuation prob-
lems.

Theorem 5. Assume that the agents have free but lim-
ited computational resources and the performance pro�les
are stochastic. In a generalized Vickrey auction, an agent
may or may not have a dominant strategy. Even if the agent
has a dominant strategy, that strategy can involve strong

strategic deliberation.

Proof: By example. Let there be two agents, � and �, and
three items, g1, g2, and g3. The performance pro�les for

the agents' valuation problems are in Figure 2. Valuation
problems that remain zero no matter how much computation
is allocated to them are not shown.

Agent β

{g2}

0.0

α Agent 

{g1}

0.25 1.0

0.0 1.0 4.0

0.0 2.0 9.0 10.0

4.5

1.25

{g2, g3}

{g3}

0.0 2.0 7.0

0.0

0.5

0.5

0.0 2.0

1.0

7.5

3.0

22.020.0

{g2, g3}

Figure 2: Performance pro�les for agents � and �.

There is uncertainty in agent �'s valuation for bundle

fg3g.

Assume that both agents' deadlines, d� and d� , occur at

t = 3. Assume, also, that the auction closes at T = 3.
Agent � has a dominant strategy. In the �rst time step it
computes on the valuation for fg3g. If vg3� (1) = 1:0 then it

computes two more time step on fg3g to obtain a valuation

of 22.0. At time T it would bid its true valuation for all
bundles. If v

g3

� (1) = 0:0 then it performs two computational

steps on fg2; g3g and obtains a valuation v
fg2;g3g
� (2) = 7:0.

At time T it would bid its true valuation.

Agent �'s best response is to compute the �rst time step on
agent �'s valuation problem for fg3g (i.e. perform strong

strategic computation). If after one time step, agent � de-

termines that v
fg3g
� (1) = 1:0 then agent � computes two

time steps on its own valuation problem for fg1g. Other-
wise it computes two steps on its own valuation problem for
fg2; g3g.

Agent � realizes that if after one computation step, v
fg3g
� (1) =

1:0 then agent � will continue computing on the problem,
obtain a valuation of 22.0, and include it in its bid. Since in
any optimal allocation, the item g3 will be awarded to agent
�, agent � could never be awarded any bundle that contains

g3. Therefore it is better o� computing on the valuation

problem for fg1g and bidding its true valuation. However,

if v
fg3g
� (1) = 0:0 then agent � knows that it can win the

bundle fg2; g3g and so computes two steps on the valuation

problem.

The expected utility for each agent can be determined:

u� =
1

2
(1:0� 0:0) +

1

2
(9:0� 7:0) = 1:5

u� =
1

2
(22:0 � 0:0) +

1

2
(0) = 11:0

2

Theorem 6. Assume that the agents have free but limited
computational resources and the performance pro�les are all
deterministic (each performance pro�le tree is a branch). In

a generalized Vickrey auction an agent may or may not have
a dominant strategy. Only weak strategic computation can
occur in Nash equilibrium.

Proof:

If a performance pro�le for agent i's valuation problem of
bundle g is deterministic, there is no need for other agents

to use their computational resources on the problem (i.e.,
strongly strategically compute). They need merely to check
the performance pro�le itself to see the value for each time
allocation, and then use this information to counterspeculate
agent i.

Bundles Agent �'s Valuations Agent �'s Valuations

fg1g 4 0

fg2g 1 0

fg3g 0 0

fg1; g2g 0 0

fg1; g3g 6 0

fg2; g3g 0.5 12

fg1; g2; g3g 2 0

Table 1: Values obtained if one step of computation

is spent on each valuation problem for agents � and

�.

Weak strategic computation can occur. Assume there are
two agents, � and �, and three goods, g1, g2, and g3. Each
agent is allowed only one computation step and then they
must bid, i.e., d�, d�, T = 1. Initially the valuations for
both agents for all bundles is zero. The valuations obtained

after one computation step is allocated to each problem are
listed in Table 1.

The agents must decide how to use their single computa-
tion step. Agent �'s dominant strategy is to compute on
fg2; g3g and to bid its true valuation. If agent � did not

perform weak strategic computation, and thus did not coun-
terspeculate agent �, it would want to compute one step on
bundle fg1; g3g and bid its true valuation. However, agent
� would not be awarded fg1; g3g since it shares item g3
with the bundle fg2; g3g which will be allocated to agent �.
Therefore agent �'s utility would be 0 and its single com-

putation step wasted. If agent � performs weak strategic



computation then its best response is to compute one step

on the valuation problem for fg1g and bid its true valuation.
Agent �'s utility is 4 and agent �'s utility is 12. 2

Theorems 5 and 6 show that the generalized Vickrey auc-
tion loses its dominant strategy property when agents are
computationally limited.

6. OTHER MODELS OF BOUNDED RATIO-
NALITY

In this paper we use a model of bounded rationality where
agents have free but limited deliberation resources. This
model is key to the results. If a di�erent model is used then
the results may change. For example, under a model where

there is unlimited computation but each computation step
costs the agent some amount c, Theorem 4 no longer holds.
Instead, Sandholm showed the following:

Theorem 7. Let computation actions be costly. Then,

in a single{item Vickrey auction with uncertainty about an
agent's valuation, a risk neutral agent's best deliberation ac-
tion can depend on the other agents (i.e. weak strategic com-
putation may occur) [Sandholm, 2000].

In fact, even the English auction loses its dominant strategy
property. In recent work the following has been shown:

Theorem 8. Let computation actions be costly. Then,
in an English auction, if more than one bidding agent has a

stochastic performance pro�le for its valuation problem, then
strong strategic deliberation can occur in Nash equilibrium
[Larson and Sandholm, 2001].

This has repercussions for mechanism design for bounded

rational agents in general. How the agents rationality is
bounded should be incorporated into mechanism design in
order to guarantee desirable properties.

7. RELATED RESEARCH
In this section we give a brief overview of some related re-
search. Game theory is a useful tool to help in the design
of bidding agents for auctions. There is a vast literature

describing rational agents' optimal bidding strategies in dif-
ferent types of auctions [Milgrom, 1989]. However, economic
models for bounded rational agents have often been more de-
scriptive rather than prescriptive [Simon, 1955; Rubinstein,
1998]. In order to provide a prescriptive model, Larson and

Sandholm proposed incorporating deliberation actions into
agents' strategies in order to analyze, game theoretically,
bounded rational agents in a 2{agent bargaining game [Lar-
son and Sandholm, 2000].

In auctions there has been work on both bounded ratio-

nal bidding agents and mechanisms. For bounded ratio-
nal bidding agents, Sandholm noted that under a model
of costly computation, the dominant strategy property of
Vickrey auctions fails to hold [Sandholm, 2000]. Instead,
an agent's best deliberation action can depend on the other
agents. In recent work auction settings where agents have

hard valuation problems have been studied [Parkes, 1999].

Auction design is presented as a way to simplify the meta{

deliberation problems of the agents', providing incentives for
the \right" agents to deliberate for the \right" amount of
time. A costly computation model where agents compute
to re�ne their valuations is used. However, situations where
agents' may compute on each others' problems in order to
re�ne their bids are not considered, nor are combinatorial

auctions, where agents' have to select which of their own
valuation problems and which of their opponents' valuation
problems to compute on, studied.

There has also been recent work on computationally limited
mechanisms. In particular research has focused on the gen-

eralized Vickrey auction and investigates ways of introduc-
ing approximate algorithms to compute outcomes without
loosing the incentive compatibility property [Nisan and Ro-
nen, 2000; K�r-Dahav et al., 2000; Lehmann et al., 1999].
These methods still require that the bidding agents compute
and submit their valuations.

8. CONCLUSION
Auctions provide eÆcient and distributed ways of allocating

goods and tasks among agents, and have become a preva-
lent form of electronic marketplaces online. For rational
agents, bidding strategies for auctions have been well stud-
ied in the game theory literature. However, software agents
participating in auctions are rarely fully rational. Instead

they may have computational limitations which curtail their
ability to compute valuations for the items (and bundles) be-
ing auctioned. This adds another dimension to the agents'
strategies as they have to determine not only the best bid
to submit, but how to use their computational resources in
order to determine their valuations and also to gain informa-

tion about the valuations of the other agents participating
in the auction.

We introduced the concepts strong and weak strategic de-
liberation. In strong strategic deliberation agents use part
of their deliberation resources to compute on other agents'

valuation problems. In weak strategic deliberation agents
do not actually compute on others' valuation problems, but
do use information from the other agents' performance pro-
�les to aid in counterspeculation. We categorize single{item
auctions based on whether agents' strategies will include
computing on opponents' valuation problems or not, given

our model of bounded rationality. The results are summa-
rized in Table 2. In combinatorial auctions the computation
of valuations becomes very complex. Agents must decide
on which subset of valuations to compute on. This decision
may depend on how other agents are using their own compu-

tational resources. Theorems 5 and 6 show that the gener-
alized Vickrey auction loses its dominant strategy property
when agents are computationally limited. Finally, we note
that the model of bounded rationality used is important
when talking about resource bounded agents' strategies. A
di�erent model may change the strategies substantially.

The results for combinatorial auctions are disheartening for
resource bounded agents, as they are faced with a compli-
cated decision problem of how to allocate their limited re-
sources. Future work should focus on designing protocols
which would simplify this decision problem while maintain-

ing other nice properties of the generalized Vickrey auction.



Strategic deliberation?

Auction mechanism Counterspeculation by Weak Strong

rational agents? deliberation deliberation

Single item Vickrey no no no

English no no no

First Price yes yes yes

Dutch yes yes yes

Multiple items

GVA (deterministic performance pro�les) no yes no

GVA (stochastic performance pro�les) no yes yes

Table 2: A summary of when strategic computation does and does not occur when agents have free but limited

deliberation.

Further study should also include a full analysis of bidding
and deliberation strategies under other models of bounded

rationality, followed by the design of di�erent auction pro-
tocols which take into account agents limitations, and lead
to as Pareto eÆcient as possible outcomes.
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