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Abstract

Many auctions involve the sale of a variety of distinct assets. Ex-
amples are airport time slots, delivery routes, network routing and fur-
niture. Because of complementarities or substitution effects between
the different assets, bidders have preferences not just for particular
items but for sets of items. For this reason, economic efficiency is
enhanced if bidders are allowed to bid on bundles or combinations
of different assets. This note outlines some of the underlying theory
and identifies some research questions. The reader interested in more
details on research in this are should consult the survey paper by de
Vries and myself on combinatorial auctions. I am greatful for use-
ful conversations with Sushil Bikhchandani, Sven de Vries, Peter Eso,
Tuomas Sandholm, James Schummer and Subhash Suri.
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1 Introduction

Many auctions involve the sale of a variety of distinct assets. Examples are
the FCC spectrum auction (http://www.fcc.gov/wtb/auctions/) and auc-
tions for airport time slots (Rassenti et al. 1982) and delivery routes (Olson
et al. (200), Caplice 1996). Because of complementarities or substitution ef-
fects between different assets, bidders have preferences not just for particular
items but for sets of items, sometimes called bundles.

To illustrate, suppose you must auction off a dining room set consisting
of four chairs and a table. Would you wish to auction off the entire set or run
five separate auctions for each piece? The answer depends, of course, on what
bidders care about. If every bidder is interested in the dining room set and
nothing less, the first option is preferable. If some bidders are interested in the
set but others are interested only in a chair or two it is not obvious what to do.
If you believe that you can raise more by selling off the chairs separately than
the set, the second option is preferable. Notice, deciding requires a knowledge
of just how much bidders value different parts of the ensemble. For this
reason, economic efficiency is enhanced if bidders are allowed to bid directly
on combinations of different assets instead of bidding only on individual
items. Auctions where bidders are allowed to submit bids on combinations
of items are usually called combinatorial auctions. ‘Combinational auctions’
is more accurate, but in this survey we will comply with convention.

2 The Set Up

Let N be the set of bidders (n = |N |) and M the set of distinct objects.
Each bidder, j ∈ N is endowed with a value function, vj which specifies
the monetary value (non-negative) that bidder j assigns to every subset of
objects. Thus, the value that bidder j assigns to consuming S ⊆ M is vj(S).
These value functions are private information to each bidder. Notice that
bidder j cares only about what she consumes and not what others consume.
So, we are in the private values, no externality world. This restriction holds
throughout. The realm of interdependent values has even more problems and
I direct the reader to Jehiel and Moldovanu (2001) for some of the issues.

Each bidder assumes that the other bidders value functions are indepen-
dent draws from a finite set V of value functions with commonly known
distribution F . The probability that agent j has value function u will be
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denoted F (u). The probability that the n-tuple v = (v1, . . . , vn) ∈ V n is
realized is denoted Πn

j=1F (vj). For convenience this will be abbreviated to
F (v).

We assume an auctioneer interested in auctioning off the elements of M so
as to maximize expected revenue. By the revelation principle [see Myerson
(1981)] we can restrict attention to a direct revelation scheme. In such a
scheme the auctioneer announces how he will allocate the objects amongst
the bidders and the payments he will extract from each as a function of the
announced value functions. Then bidders are asked to announce their value
functions. The auctioneer is constrained to choose an allocation procedure
and payment function that satisfy two constraints:

1. Induce bidders to reveal their actual valuations (incentive compati-
bility).

2. No bidder is made worse off (in expectation) by participating in the
auction.

To define an allocation, let y(S, j) = 1 if the bundle S ⊆ M is allocated
to j ∈ N and zero otherwise. An allocation is a solution to:

∑

S�i

∑

j∈N

y(S, j) ≤ 1 ∀i ∈ M

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N

The first constraint ensures that overlapping sets of goods are never assigned.
The second ensures that no bidder receives more than one subset.

An allocation rule is a mapping from an n-tuple of value functions
to an integer solution to the system above. If A is an allocation rule and
v = (v1, v2, . . . , vn) an n-tuple of value functions, we will write A(v) to mean
the allocation selected by the rule A.

A payment rule is a mapping from an n-tuple of value functions to
an n-tuple of payments, one for each bidder. If P is a payment rule and
v = (v1, v2, . . . , vn) an n-tuple of value functions, we will write Pj(v) to
mean the payment that bidder j must make.
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3 Revenue Maximizing Auction

Here I will formulate as a mathematical program the problem of finding
the revenue maximzing auction. This is just a a specialization of the usual
formulation for optimal auctions with multidimensional types. The survey
paper by Rochet and Stole (2000) has more details on this subject (see also
Jehiel et al. (1999)). No closed form solution to the problem of optimal
auctions with multidimensional types is known and it is unlikely that any
exists. Under fairly severe restrictions on value functions and the space of
types (amounting to the types being one dimensional) results are available,
see Rochet and Stole (2000).

There is one decision variable that represents the choice of allocation rule
and another to represent the choice of payment rule. The objective is

max
A,P

∑

v∈V n

F (v)[
∑

j∈N

Pj(v)].

Incentive compatibility requires that for each j ∈ N with value function vj

and all u �= vj:

∑

v−j∈V n−1

[vj(A(vj,v−j))−Pj(v
j,v−j)]F (v−j) ≥

∑

v−j∈V n−1

[vj(A(u,v−j))−Pj(u,v
−j)]F (v−j).

That is, the expected utility from truthfully reporting ones value function
should be at least as large as the expected utility from reporting some other
value function. Given incentive compatibility we can write the individual
rationality constraint as

∑

v−j∈V n−1

[vj(A(vj,v−j)) − Pj(v
j,v−j)]F (v−j) ≥ 0

for all j ∈ N and value functions vj.
How might one solve this? First fix a choice for allocation rule, A. Let

νj(A, u) =
∑

v−j∈V n−1

vj(A(u,v−j))F (v−j)

and
ρj(u) =

∑

v−j∈V n−1

Pj(u,v
−j)F (v−j).
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Then we can rewrite the incentive compatibility and individual rationality
constraints as follows:

ρj(vj) − ρj(u) ≤ νj(A, vj) − νj(A, u),

and
ρj(vj) ≤ νj(A, vj).

The objective function can be written as:
∑

v∈V n

F (v)[
∑

j∈N

Pj(v)] =
∑

j∈N

∑

v∈V

F (v)ρj(u).

Thus the optimization problem becomes:

max
∑

j∈N

∑

v∈V

F (v)ρj(v)

s.t. ρj(v) − ρj(u) ≤ νj(A, v) − νj(A, u), ∀v, u ∈ V

ρj(v) ≤ νj(A, v), ∀v ∈ V.

Since the allocation rule A is fixed, the only variables are the ρ’s. There are at
most two of them per constraint with coefficients of +1 and -1. Hence, given
A, the problem of finding a payment rule that enforces incentive compatibility
and individual rationality is a network flow problem (or more precisely the
dual to one).1 For each possible choice of allocation rule A, we can determine
via the duality theorem of linear programming whether a payment rule that
is incentive compatible exists. Here is a recipe for determining the revenue
maximizing auction. Choose an allocation rule. Solve the shortest path
problem induced by this allocation rule to determine the revenue maximizing
payments that are incentive compatible and individually rational. Choose
another allocation rule and repeat.

• For what classes of valuation functions can we solve the optimal auction
problem, either in closed form or with a polytime algorithm?

• Can one find the revenue maximizing auction from amongst a restricted
class of allocation rules?

• For one dimensional types, a Vickrey auction with a reserve price is
revenue maximizing. For the general case, how close to optimal is a
Vickrey auction with reserve prices?

1Introduce one vertex for each value function in V . For each ordered pair (v, u), intro-
duce an arc directed from v to u with length νj(A, v),−νj(A, u). The dual problem is to
find the shortest path tree rooted at the source.

5



4 Efficient Auctions

One very popular restriction of allocation rules, is the rule that picks the
efficient allcoation. The efficient allocation is the solution to the following
problem (CAP):

max
∑

j∈N

∑

S⊆M

vj(S)y(S, j)

s.t.
∑

S�i

∑

j∈N

y(S, j) ≤ 1 ∀i ∈ M

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N

It is an instance of a set packing problem. In the context of combinatorial
auctions this is often called the winner determination problem. Winner de-
termination is a well worked area. See Rothkopf et al. (1998), Sandholm
et al. (2001) and de Vries and Vohra (2001) for a discussion of this subject.

4.1 A Comprehensive Formulation

I have given one formulation for winner determination, but it is not general
enough to encompass the formulations that have been used in special cases.

max
∑

i∈N

∑

S⊂Ωi

vj(S)y(S, j)

s.t.
∑

S�j

y(S, j) ≤ 1 ∀j ∈ N ∀S ⊂ Ωi GCAP 1

yj ∈ PA
j ∀j ∈ M GCAP 2

y ∈ PA GCAP 3

yj ∈ PB
j ∀j ∈ M GCAP 4

y(S,j) = 0,1 ∀j ∈ M ∀S ⊂ M GCAP 5

Here, PA
j and PB

j and PA are polyhedral sets.
The sets Ωi ⊆ 2M model restrictions on what bidders on can bid. They

can be fixed by the auctioneer or she might permit bidders to construct them
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themselves (subject to some constraints as in FCC-restrictions for auction
#31 on the number of packages). The constraints c-gcap-1 ensure that no
item is allocated to more than one bidder. The constraints c-gcap-2 are
imposed by the auctioneer and enforce capacity constraints on the bidders;
for example no bidder is supposed to win more than two items, no bidder
is supposed to win more than 40% of the total business, etc. In fact, the
auctioneer could construct polytopes PA

j that in effect restrict Ωj. To avoid
this we require PA

j ∩ NΩj to be full dimensional.
Constraints c-gcap-3 permit the auctioneer to restrict the overall alloca-

tion. For example, the allocation must be edges that form a path or a tree.
We assume that PA can not be described as the cartesian product of an
interval on the coordinate axis and a lower-dimensional polytope.

Constraints c-gcap-4 allow each bidder to restrict the allocations he might
win. For example, if he has a subadditive valuation, he might put PB

i = {y ∈
RΩj |∑S∈Ωj

y(S, j ≤ 1} to ensure that he doesn’t pay more than what he bid.
Finally, c-gcap-5 ensures that we end with an integral allocation.

4.2 Vickrey Auction

The incentive compatible and individually rational payment rule consistent
with the efficient allocation that maximizes the auctioneer’s revenue is the
(expected) Vickrey payment rule.2 The argument is simple and the reader
is referred to Williams (1999) or Krishna and Perry (1998) for the details.
One consequence of this derivation is that the efficient auction that maximizes
revenue for the seller (subject to individual rationality) is the Vickrey auction.

To describe the sealed bid Vickrey auction, define for any K ⊆ N let

V (K) = max
∑

j∈K

∑

S⊆M

vj(S)y(S, j)

s.t.
∑

S�i

∑

j∈N

y(S, j) ≤ 1 ∀i ∈ M

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N

2One does not get Vickrey directly but an an expected value version because we re-
quire only (Bayesian) incentive compatibility rather than dominance. However a similar
argument can be used to produce the Vickrey auction. Also, to save on space what I
am calling the Vickrey auction should be called the generalized vickrey auction or the
Vickrey-Clarke-Groves auction.
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y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N

The auction works as follows:

1. Agent j reports vj. There is nothing to prevent agent j from misrep-
resenting themselves. However, given the rules of the auction, it is a
weakly dominant strategy to bid truthfully.

2. The seller implements the efficient allocation, i.e., the one that solves:

V = max
∑

j∈N

∑

S⊆M

vj(S)y(S, j)

s.t.
∑

S�i

∑

j∈N

y(S, j) ≤ 1 ∀i ∈ M

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N

Call the efficient allocation y∗

3. The seller also computes V (N \ j) for each j ∈ N .

4. Each bidder j ∈ N is charged

V (N \ j) − [V −
∑

S⊆M

vj(S)y∗(S, j)].

Thus bidder k’s payment is the difference in ‘welfare’ of the other bid-
ders without him and the welfare of others when he is included in the
allocation. Notice that the payment made by each bidder to the auc-
tioneer is non-negative.

Under this auction each bidder j obtains a profit of V (N) − V (N \ j). This
last term is sometimes called bidder j’s marginal product. Furthermore
it is a dominant strategy for each bidder to bid truthfully. Executing the
Vickrey auction requires the solution to n + 1 optimization problems.

• Suppose agents preferences are such that the agents are subtitutes con-
dition holds (i.e. V (·) is submodular). Is the Winner determination
problem in this case polynomial in the number of objects and bidders?
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This is the case for all known cases where the agents are substitutes
property holds.3

• In some special cases [Hershberger and Suri (2001) and Bikhchandani
et al. (2001), de Vries et al. (2001)] this can be reduced to at most a
single optimization problem of the same complexity as that of finding
the efficient allocation. What other cases are there?

• Is there any reason to suppose that auction problems give rise to set
packing problems with a very different structure from those already
encountered elsewhere? If the answer is no, one can rely on existing
set packing solvers. Leyton-Brown et al. (2000) are collecting a test
suite of winner determination problems and are on the hunt for ‘real’
problem instances.

• Winner determination with side constraints is also of interest, see Dav-
enport and Kalaganam (2001) as well as Sandholm and Suri (2001).

• If the problem of finding an efficient allocation is NP-hard, we may have
to rely on an approximation algorithm. An approximation algorithm is
an allocation rule. Which approximation algorithms can be supported
by an incentive compatible payment rule? Lehmann et al. (2000), for
example, uses the greedy allocation and the Vickrey payment rule. In
general, this is not incentive compatible, but in a very special case of
single minded bidders it is.4

• What is the trade-off between revenue and efficiency when implement-
ing an approximately efficient auction that can be supported by an
incentive compatible payment rule?

• Executing the Vickrey auction requires that each bidder identify and
transmit a value for each combination of items. How is this to be done
in a computationally feasible way? Nisan (1999) considers the use of a
bidding language and given a language for asks what preferences over
subsets of objects can be correctly represented by the language. Nisan
(2001) asks what is the number of subsets of M that the auctioneer

3For example, diminshing marginal utilities, heterogenous objects with unit demand
and gross substitutes.

4For one dimensional types there is a literature on which allocation rules are supported
by incentive compatible payment rule, see pg. 257 of Fudenberg and Tirole (1992).
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needs values for in order to determine the efficient allocation? Nisan
shows that values forO(2|M |) subsets (in the worst case) are needed. For
what preference structures can one do better? Or, perhaps one should
be asking different kinds of quetsions to elicit valuation information
(Conen and Sandholm 2001).

4.3 Complements and Substitutes

The Vickrey auction gets a lost of stick for being counter-intuitive. One can
construct examples where as the number of bidders increase the revenue to
the seller drops. Also, in procurement settings, one can construct examples
where the Vickrey auction is overly generous, i.e., paying astounding multi-
ples of what something is worth. I want to take some time to stamp out the
view that these are counter-intuitive phenomena.

The key to understanding the behavior of the Vickrey auction is the
agents are substitutes condition. In the selling context, recall, this means
that V (N), the value of the efficient allocation is submodular. In the pro-
curement context where the cost of the efficient allocation (C(N)) is relevant,
we require that C(N) be supermodular. In both cases an economic interpre-
tation of the condition is not obvious, so I prefer an alternative formulation.

Let MP (S) denote the marginal product of the subset S of agents. Thus
MP (S) = V (N) − V (N \ S) or MP (S) = C(N \ S) − C(N) depending on
whether the auctioneer is selling or buying. The substitutes condition is then

MP (S) ≥
∑

j∈S

MP (j) ∀S ⊆ N.

The marginal product of a group is at least as large as the sum of the indi-
vidual marginal products.

Now I would like you to consider two problems defined on graphs. First
fix a connected graph G with edge set E and vertex set V . Every edge in the
graph is owned by a single agent and no agent owns more than one edge.5

The length/cost of an edge is private information to the agent who owns the
edge. The first problem is the minimum cost spanning tree problem. If A is
any subset of agents, denote by M(A) the length of the minimum spanning
tree using edges in A alone.6 In Bikhchandani et al. (2001) it is shown that
M(A) is supermodular.

5For this reason I will use the words edge and agent interchangeably.
6If A does not span the graph, take M(A) = ∞.

10



The second problem is the shortest path problem. Designate a source, s
and sink t and let L(A) be the length of the shortest s− t path using edges
only in A.7 Also to make things interesting, assume that the minimum s− t
cut is at least two. As shown in Bikhchandani et al. (2001) L(A) is not in
general supermodular.

In the first case the auctioneer would like to buy the edges necessary to
build the minimum spanning tree. If the auctioneer uses a Vickrey auction,
what does she end up paying for an edge, e, say, in the MST? If T is the MST
then she buys edge e for the cost of the cheapest edge f that forms a cycle
with e in T ∪f . Thus, if the number of edges in G were to increases, the price
that the auctioneer would have to pay for an edge can only go down. Second,
if the ratio of the most expensive edge to the cheapest were α, say, each agent
in T would receive at most α times their cost. In short everything about the
Vickrey auction in this case conforms to our inuition about how auctions
should behave. Why? This is because agents are substitutes. An agent is
included in the MST if it has low cost and there is no other agent with with
a lower cost that will perform the same ‘function’. That function is to ‘cover
a cut’. Thus no agent depends on another to make it into the MST, but
another agent could crowd it out of the MST. This pits the agents against
each other an benefits the auctioneer. Alternatively, the agents benefit by
banding together, this in effect is what the substitutes property means.

Now turn to the shortest path problem. Here the agents are substitutes
property does not hold. In fact, the reverse is almost true agents complement
each other. Whether an agent makes it into the shortest s−t path depends on
whether other agents make it in. To see why suppose G consists of just two
disjoint s− t paths each involving K edges. The edges in the ‘top’ path have
cost 1 each while in the ‘bottom’ path they have cost 1+r each. The Vickery
auction applied to this case would choose the top path. Each agent on the
top path has a marginal product of rK and so receives a payment of 1+ rK.
The total payment by the auctioneer is K + rK2, which, for appropriate r
and K is many times larger than the length of the shortest path. A clear
case of the ‘generosity’ of the Vickrey auction. Furthermore, if we increase
the number of agents by subdividing a top edge and assigning each segment
a cost of 1/2 the payments increase without an increase in the length of the
path! This ‘odd’ behavior occurs because the agents complement each other.
No agent on the top path can be selected unless all other agents on the top

7If A does not contain a s − t path set L(A) = ∞.
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path are selected. Agents on the same path are not in competition with each
other. The marginal product of the agents on the top path is less than the
sum of their individual marginal products.

When there are such severe complementarities and our goal is to reduce
the payments made by the auctioneer, will some other incentive compatible
mechanism work? This is a line taken by Archer and Tardos (2002) who sug-
gests that one relax the efficiency requirement. In the shortest path context
this would mean accepting a path that is perhaps only slightly longer than
the shortest path but the auctioneer ends up paying far less for it. Archer
and Tardos (2002) replaces efficiency by a collection of ‘monotonicty’ type
conditions and shows that the same ‘odd’ behavior persists.8 In light of the
complementary nature of agents this is not surprising. In fact I think it
is the complementary nature of agents coupled with incentive compatibility
that drives the generosity of the Vickrey auction rather than the desire for
efficiency.

To see why, return to the simple graph with two disjoint s− t paths. Now
that we understand the complementary nature of the agents, we recognize
that the auctioneer wants s− t paths to compete with each other rather than
edges. How can this be arranged? One thing the auctioneer could is simply
tell the agents on the top path to band together and submit a single bid and
the ones on the bottom a single bid. This forces competition between the two
paths and should lower payments. Now think about the winning group of
bidders. They receive a a certain amount of money to divide between them.
How do they do it? The winning group of bidders face a classical public goods
problem. The only way to induce each agent to truthfully reveal his cost is
to throw money at them. If the auctioneer does not provide the money, there
is no incentive for the bidders to band together.

4.3.1 False Name Bidding and Bribe-Proofness

When agents are substitiutes, the Vickrey auction is vulnerable to manipu-
lation by bidders banding together. When the substitutes condition is not
satisfied, then agents can benefit by ‘splitting’ up. A single agent masquer-
ades as many different agents. This is called fasle name bidding. The shortest
path example illustrates this very nicely. Take any agent on the top path
and have her split into two edges of length 1/2 each.

8One can think of these additional conditions as being properties of a path that would
be generated by optimizing some ‘nice’ function on paths other than just length.
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Makoto Yoko has proposed some mechanisms that would be invulnerbale
to false name bidding. It turn out that false name bidding is related to
‘bribe-proofness’ a concept studied in Schummer (2001). A mechanism is
bribe proof if no agent can pay another to lie such that both a better off than.
One can think of false name bidding as introducing a new agent who can be
bribed by an existing agent. Under a standard domain richness condition,
Schummer (2001) that a bribe proof rule must be a constant rule.

• When agents are substitutes one should be able to ‘bound’ the generos-
ity of the Vickrey auction in a nice way. In fact it should be possible
to give up on efficiency and reduce payments.

• When agents are not substitutes, just how complementary are they?
How should one package the bidders together so as to stimulate com-
petition and at the same time reduce the public goods problem that
each package of bidders face?

5 Indirect Mechanism’s

A direct mechanism places a huge computational burden upon the auction-
eer and imposes a considerable communication cost between bidder and auc-
tioneer. For this (and other reasons) there has been interest in indirect
mechanisms. In the context of auctions such mechanisms are referred to as
ascending/iterative auctions. Purists who know the latin root of the word
auction, carp that the qualifier ‘ascending’ is redundant. For this and other
reasons, I will use the term iterative auction.

Iterative auctions come in two varieties (with hybrids possible). In the
first, bidders submit, in each round, prices on various allocations. The auc-
tioneer makes a provisional allocation of the items that depends on the sub-
mitted prices. Bidders are allowed to adjust their price offers from the pre-
vious rounds and the auction continues. Such auctions come equipped with
rules to ensure rapid progress and encourage competition. Iterative auctions
of this type seem to be most prevalent in practice.

In the second type, the auctioneer sets the price and bidders announce
which bundles they want at the posted prices. The auctioneer observes the
requests and adjusts the prices. The price adjustment is usually governed by
the need to balance demand with supply.
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Call auctions of the first type quantity setting, because the auctioneer sets
the allocation or quantity in response to the prices/bids set by bidders. Call
the the second price setting because the auctioneer sets the price. Quantity
setting auctions are harder to analyze because of the freedom they give to
bidders. Each bidder determines the list of bundles as well as prices on same
to announce. In price setting auctions, each bidder is limited to announcing
which bundles meet their needs at the announced prices.

In many simple environments price setting and quantity setting auctions
can be viewed as being ‘dual’ to one another. The simplest example is the
auction of a single object. The popular English auction is an example of a
quantity setting auction. Bidders submit prices in succession, with the object
tentatively assigned to the current highest bidder. The auction terminates
when no one is prepared to top the current high bid. The ‘dual’ version
to this auction has the auctioneer continuously raising the price. Bidders
signal their willingness to buy at the current price by keeping their hands
raised. The auction terminates the instant a single bidder remains with their
hand raised. In fact this dual version of the English auction is used as a
stylized model of the English auction itself for the purposes of analysis (see
for example Klemperer 2000).

The discussion of iterative auctions is motivated by this ‘duality’. Price
setting auctions can be viewed as primal-dual algorithms for the underlying
winner determination problem. The reverse will also be true. Primal-dual
algorithms for CAP can be given a price setting auction interpretation. Such
interpretations are not new. Dantzig (1963), specifically offers an auction
interpretation for the decomposition algorithm for linear programming. A
more recent example is is Bertsekas (1991), who has proposed a collection of
dual based algorithms for the class of linear network optimization problems.
These algorithms he dubs auctions algorithms. Auction interpretations of
algorithms for optimization problems go back at least as far as Walras (see
Chapter 17H of the book by Mas-Collel et al. 1995) and all have the same
flavor. Dual variables are interpreted as prices and the updates on their value
that are executed in these algorithms can be interpreted as a form of myopic
best response on the part of bidders.

Is there any reason to prefer an iterative auction to a single round sealed
bid auction? Yes, and I list them below. This is followed by a dicussion of
their strength.

1. They (might) save bidders from specifying their bids for every possible
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combination in advance.

2. Winning bidders need not reveal their valuations. This may be attrac-
tive in a repeated situation where a bidder may not want information
revealed in one round to be used against them in a subsequent round.

3. A sealed bid auction gives the auctioneer more freedom to manipulate
the outcome than an iterative auction.9

4. An iterative auction can be adapted to dynamic environments where
bidders and objects arrive and depart at different times.

5. In settings where bidders have private information that is relevant to
other bidders, iterative auctions (with appropriate feedback) allow that
information to be revealed.

6. The cognitive burden on bidders, in terms of choosing a strategy, seems
to be lower in (some) iterative auctions than their sealed bid counter-
part. See for example Kagel and Levin (2001).

One might be able to incoporate these concerns formally into a model of
auction design (eg Larson and Sandholm 2001). In any case, for many of the
items of the list there seem to be other ways to resolve the difficulty. Secrecy
for bidders and credibility of the auctioneer can be handled by the use of a
trusted third party. Private information relevant to other bidders can still
emerge in a sealed bid auction by enriching the kinds of bids that bidders
may submit, see for example Dasgupta and Maskin (2000). In my opinion
only the first and last items on the list have real bit.

5.1 Efficient Iterative Auctions

If the goal is efficiency, then a great deal is known about iterative auctions
that accomplish this. Recall the winner determination problem (CAP). If
its LP relaxation admits an optimal integral solution, then any primal-dual
algorithm for the LP relaxation is a candidate for an iterative auction. The
dual variable associated with the constraint

∑

S�i

∑

j∈N

y(S, j) ≤ 1

9Implicit in this is that an iterative auction is conducted publically.
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can be interpreted as the price of object i ∈ M . The dual variable associated
with the constraint ∑

S⊆M

y(S, j) ≤ 1

can be interpreted as the surplus of agent j ∈ N . In this case, under the as-
sumption that bidders bid sincerely in each iteration, the auction (i.e. primal-
dual algorithm) will terminate with the efficient allocation. Examples of this
line of inquiry are Kelso and Crawford (1982) and Gul and Stachetti (1999).

What happens if there is an integrality gap in (CAP)? Through the use
of auxillary variables one can reformulate (CAP) as a linear program. The
dual variables of this extended formulation can interpreted as prices but
not on individual objects. Instead they will be prices on subsets of objects
and possibly non-annonymous. Examples of extened formulations of (CAP)
can be found in Bikhchandani and Ostroy ( 2000a) and Bikhchandi et al.
(2001). Parkes and Ungar (2000) develop a primal-dual algorithm for the
extended formulation in Bikhchandani and Ostroy ( 2000a) and give it an
auction interpretation. Again, under the assumption of sincere bidding in
each iteration, the auction terminates with the efficient allocation.

Is it possible to drop the assumption of sincere bidding? Can one design
an iterative auction in which it is an equilibrium for bidders to bid sincerely
and still terminate with the efficient allocation? Yes, under certain condi-
tions, or if one is prepared to stretch the intuitive sense of what an iterative
auction is.

In Bikhchandani and Ostroy ( 2000a) it is shown that when V (K) is
submodular, there is an LP formulation for (CAP) in which amongst the set
of optimal dual solution is one, which gives a surplus to each bidder equal
to their marginal product. Equivalently, the dual variables corresponding to
prices coincide with the prices that the bidders would pay under a Vickrey
auction. Thus the appropriate primal-dual algorithm for this formulation
yields an iterative auction in which bidding sincerely is an equilibrium and
the efficient allocation is realized (see Bikhchandani et al. (2001) for details).
Examples of iterative auctions that fit within this framework are Leonard
(1983), Demange et al. (1986) Ausubel (1997), de Vries et al. (2001). When
V (K) is not submodular, then no such formulation exists, so submodularity
of V (K) is both necessary and sufficient for this approach to work.

In the absence of submodularity of V (K) is an iterative auction that im-
plements the efficient allocation possible? Ausubel (2000) proposes an itera-
tive auction under the assumption that there is no integrality gap in (CAP).
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Here I give a high level description of Ausubel’s auction for heterogenous
objects. 10.

Since there is no integrality gap in (CAP) any primal-dual algorithm for
the linear relaxation of (CAP) can be used to determine the efficient alloca-
tion (under the assumption of sincere bidding). Call the auction correspond-
ing this primal-dual algorithm the pd-auction. Ausubel’s scheme involves
n + 1 applications of the pd-auction. First run the pd-auction with all bid-
ders. Then, exclude one bidder, and run another pd-auction. The auction
that excludes bidder j, say, does not determine the payments to be made by
the remaining bidders, but does determine the payment of bidder j. Thus,
under the assumption of sincere bidding, Ausubel’s scheme determines the
efficient allocation associated with V (N) and V (N \ j) for all j ∈ N . From
the history of price changes in each of the n+ 1 auctions Aususbel generates
enough information to compute the price that each bidders must pay under
the Vickrey auction and this is the price they end up paying.

The interesting feature of Ausubel’s auction is the use of a collection of
auxillary auctions which do not determine the payments and allocations of
those participating in it. This is what I mean by stretching the intuitive
sense of an iterative auction. This is not the only strech one can conceive of.
Parkes and Ungar (2001) have proposed augmenting their origianl iterative
auction with fake bidders to prolong the auction so as to generate enough
extra information to determine the Vickrey prices.

• The work to date suggests that an ascending auction exists when CAP
is computationally feasible. A theorem along these lines would be nice,
but the difficulty is in pinning down a ‘good’ definition of an ascending
auction.

• Is there a situation where reporting the valuation function is hard but
reporting the set of bundles that maximize net utility is easy?

• If one is willing to accept less than full economic efficiency, perhaps the
range of economic environments that admit practical iterative auctions
is widened.

• Many practical iterative auctions deal with the computational con-
straint, by restricting prices to be linear.11 This invariably leads to the

10This description is based on de Vries et al. (2001)
11The price of a subset of items is the sum of the prices of the items in the subset.
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threshod problem (Bykowsky et al. (1995)). Consider three bidders, 1,
2 and 3, and two objects {x, y}. Suppose:

v1(x, y) = 100, v1(x) = v1(y) = 0, v2(x) = v2(y) = 75, v2(x, y) = 0,

v3(x) = v3(y) = 40, v3(x, y) = 0.

Here vi(·) represents the value to bidder i of a particular subset. Notice
that the bid that i submits on the set S, bi(S), need not equal vi(S).

If the bidders bid truthfully, the auctioneer should award x to 2 and y
to 3, say, to maximize his revenue. Notice however that bidder 2 say,
under the assumption that bidder 3 continues to bid truthfully, has an
incentive to shade his bid down on x and y to, say, 65. Notice that
bidders 2 and 3 still win but bidder 2 pays less. This argument applies
to bidder 3 as well. However, if they both shade their bids downwards
they can end up losing the auction. This feature of combinatorial auc-
tions is called the ‘threshold problem’: a collection of bidders whose
combined valuation for distinct portions of a subset of items exceeds
the bid submitted on that subset by some other bidder. It may be diffi-
cult for them to coordinate their bids to outbid the large bidder on that
subset. The basic problem is that the bidders 2 and 3 must decide how
to divide 75 + 40 − 100 between them. Every split can be rationalized
as the equilibrium of an appropriate bargaining game. How does one
organize the auction to alleviate it?
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