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Integer programming (IP)

Min

Subject to:

• Can also have inequalities in either direction (slack variables):

• If                             , then this is a mixed-integer program (MIP)

• Linear programming (LP) has no integrality constraints               (in P)

• IP (easily) expresses any NP-complete problem

cTx

ai
Tx ≤ bi ⇒ ai

T x + si = bi  ,  si ≥ 0
€ 

  

€ 

Ax = b
l ≤ x ≤ u
x = (xI ,xC )
xI ∈ Zn    (integer values)
xC ∈ Qn   (rational values)

€ 

xI =∅

€ 

xI ≠∅ and xC ≠∅
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Terminology

In this context programming means making decisions.

Leading terms say what kind:

• (Pure) Integer programming: all integer decisions

• Linear programming

• Quadratic programming: quadratic objective function

• Nonlinear programming: nonlinear constraints

• Stochastic programming: finite probability distribution of scenarios

Came from operations research (practical optimization discipline)

Computer programming (by someone) is required to solve these.

Slide 4

Decisions

The IPs I’ve encountered in practice involve either

• Allocation of scarce resources

• Study of a natural system

– Computational biology

– Mathematics

Maybe during or after this course, you can add to the list
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Integer Variables

Use                  (binary variables) to model:

• Yes/no decisions

• Disjunctions

• Logical conditions

• Piecewise linear functions (this not covered in this lecture)

€ 

xi ∈ 0,1{ }
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General Integer Variables

Use general integer variables to choose a number of indivisible objects

such as the number of planes to produce

Integer range should be small (e.g. 1-10)

• Computational tractability

• Larger ranges may be well approximated by rational variables (number

of bags of potato chips to produce)
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Example: Binary Knapsack

Given set of objects 1..n

total weight W, item weight/size wi, value vi

€ 

xi =
1   If we select item i
0      Otherwise        
 
 
 

max  vi
i=1

n

∑ xi

Subject to

        wi
i=1

n

∑ xi ≤W
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Example: Shortest-Path Network Interdiction

Delay an adversary moving through a network.

• Adversary moves start→target along a shortest path (in worst case)

• Path length = sum of edge lengths. Measure of time, exposure, etc.

Start
Target

3

2

4
1

2

5

5 6

1

Shortest Path Length: 8
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Example: Shortest-Path Network Interdiction

Defender blocks the intruder by paying to increase edge lengths.

Goal: Maximize the resulting shortest path.

Start
Target

3

2

4
1

2

5

5 6

1

+2
+1

Shortest Path Length: 11
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Path Interdiction Mixed-Integer Program

Graph G = (V,E)
Edge lengths          for edge (u,v)
Can increase length of (u,v) by λuv at cost cuv

Budget B

Variables:

      du: shortest distance from start s to node u

€ 

xuv =
1            if we pay to lengthen edge (u,v)
0           Otherwise                                     
 
 
 

  

€ 

l uv
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Path Interdiction Integer Program

Objective: maximize the shortest path to the target

              maximize dt

Subject to:

Path to the start has length 0:

ds = 0

Calculate a shortest path length:

Respect the budget:

  

€ 

du ≤ dv + l uv + λuv xuv for all (u,v)∈ E
dv ≤ du + l uv + λuv xuv for all (u,v)∈ E

€ 

cuv xuv(u,v )∈E∑ ≤ B

  

€ 

l uv

u

v
+ λuv
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Modeling Dependent Decisions

Suppose x,y are two binary variables that represent a decision (where 1 means

“yes” and 0 means “no”)

The constraint                 allows x to be “yes” only if y is “yes”

€ 

x ≤ y



Slide 13

Example: Unconstrained Facility Location

Given potential facility locations, n customers to be served
cj = cost to build facility j
hij = cost to meet all of customer i’s demand from facility j

Sometimes it’s OK to satisfy customers from multiple facilities:

€ 

x j =
1 if facility j built
0 Otherwise        
 
 
 

    yij =
1 if customer i is served by facility j
0 Otherwise                                     
 
 
 

€ 

min  c j
j
∑ x j + hij yij

i, j
∑

st.   yij
j
∑ =1     ∀i (each customer satisfied)

       yij ≤ x j        ∀i, j (facility built  before use)
       x j ,yi ∈ 0,1{ }

€ 

yij  becomes a percentage :  yij ∈ Q,  0 ≤ yij ≤1
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Formulation is really important in practice

Unconstrained facility location

Could sum constraints                            over all customers i to get:

Recall n is the number of customers.

Still requires a facility is built before use (IPs are equivalent at optimality)

But, for 40 customers, 40 facilities, random costs

• First formulation solves in 2 seconds

• Second formulation solves in 53,121 seconds (14.75 hours)

€ 

yij ≤ xi   ∀i, j

€ 

yij ≤ n
i
∑ x j   ∀j
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What makes one formulation so much better?

• Understanding this fully is an open problem.

• Some performance differences can be explained by the way IPs are solved

in practice by branch-and-bound-like algorithms: the LP relaxation
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Recall Integer Programming (IP)

Min

Subject to:
cTx

€ 
  

€ 

Ax = b
l ≤ x ≤ u
x = (xI ,xC )
xI ∈ Zn    (integer values)
xC ∈ Qn   (rational values)
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Linear programming (LP) relaxation of an IP

Min

Subject to:

• LP can be solved efficiently (in theory and practice)

• Relaxation = removing constraints

– All feasible IP solutions are feasible

– LP gives a lower bound

cTx

€ 
  

€ 

Ax = b
l ≤ x ≤ u
x = (xI ,xC )
xI ∈ Zn    (integer values)
xC ∈ Qn   (rational values)
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Linear Programming Geometry

The solutions to a single inequality                                  form a half space

(in n-dimensional space)

€ 

aT x ≤ b,  x ∈ Qn

€ 

aT x = b

feasible
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Linear Programming Geometry

Intersection of all the linear (in)equalities form a convex polytope

• For simplicity, we’ll always assume polytope is bounded

feasible
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IP Geometry

Feasible integer points form a lattice inside the LP polytope
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IP Geometry

The convex hull of this lattice forms the integer polytope
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IP/LP Geometry

A “good” formulation keeps this region small

Every node for which the LP bound is lower than the integer optimal must be

processed (e.g. expanded)
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IP/LP Geometry

A “good” formulation keeps this region small

One measure of this is the Integrality Gap:

Integrality gap = maxinstances I(IP (I))/(LP(I))
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Unconstrained Facility Location Revisited

Given potential facility locations, customers to be served
cj = cost to build facility j
hij = cost to meet all of customer i’s demand from facility j

€ 

x j =
1 if facility j built
0 Otherwise        
 
 
 

    y j =
1 if customer i is served by facility j
0 Otherwise                                     
 
 
 

€ 

min  c j
j
∑ x j + hij yij

i, j
∑

st.   yij
j
∑ =1     ∀i (each customer satisfied)

       yij ≤ x j        ∀i, j (facility built  before use)
       x j ,yi ∈ 0,1{ }
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How the weaker LP “cheats”

Using

Allows the LP to completely satisfy customer i with facility j (yij = 1) even

with xj = 1/n.

With these constraints:

If xi = 1/n, then yij <= 1/n

€ 

yij ≤ xi   ∀i, j
€ 

yij ≤ n
i
∑  x j   ∀j
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Can’t we just round the LP Solution?

• Not generally feasible

• If (miraculously) it is feasible, it’s not generally good
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Example: Maximum Independent Set

• Find a maximum-size set of vertices that have no edges between any pair

2

1 4

7

5

3

6
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Example: Maximum Independent Set

2

1 4

7

5

3

6

vi =
1 if vertex i is in the MIS
0 otherwise                     
 
 
 

max vi∑
s.t. vi + v j ≤ 1     ∀ i, j( )∈E
      vi ∈ 0,1{ }
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Example: Maximum Independent Set

The zero-information solution (vi = .5 for all i) is feasible and it’s optimal if the

optimal MIS has size at most |V|/2.

Rounding everything (up) is infeasible.

2

1 4

7

5

3

6

max vi∑
s.t. vi + v j ≤ 1     ∀ i, j( )∈E

1/2

1/2

1/2

1/2

1/2

1/2

1/2
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Can’t we project the lattice onto the objective gradient?

• Hard to find a feasible solution to project (NP-complete!)

– Make the objective a constraint and do binary search

• This is a lot harder in n dimensions than it looks like in 2

€ 

cT x =  opt

gradient
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Perfect formulations

• Sometimes solving an LP is guaranteed to give an integer solution

– All polytope corners have integer coefficients (naturally integer)

– Sometimes only for specific objectives (e.g.          )

€ 

c ≥ 0
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Perfect Formulation Example: Minimum Cut

• Special nodes s and t

• Each edge e has capacity ue.  Set of edges S has capacity

• Partition vertex set V into S,T where

• A cut is the edges (u,v) such that

Find a cut with minimum capacity

12

s

1 427

9
2

55

3
t

2

3

5
8

20

2

1

Capacity ue

€ 

ue
e∈S
∑

€ 

s∈ S and t ∈ T

€ 

u∈ S and v ∈ T
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Perfect Formulation Example: Minimum Cut IP

Helper variables ye = 1 if e is in the cut and 0 otherwise

The y variables will be integral if the v variables are.

€ 

vi =
0 if node v is on the s side
1 if node v is on the t side
 
 
 

€ 

min  ue∑ ye

st     ye ≥ vi − v j     ∀e = (i, j)
       ye ≥ v j - vi    ∀e = (i, j)
       vs = 0, vt =1
       ve ∈ 0,1{ }
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Total Unimodularity

The minimum cut matrix (possibly with slack variables) is totally

unimodular (TU): all subdeterminants (including the matrix entries)

have value 0, 1, or -1.

• All corner solutions x satisfy Ax=b

• By Kramer’s rule x will be integral

Network matrices (adjacency matrices of graphs) are TU.

Nemhauser and Wolsey (Integer and Combinatorial Optimization, Wiley,

1988) give some sufficient conditions for a matrix to be TU.

Note: if a matrix is TU, there is always an efficient combinatorial

algorithm to solve the problem (not necessarily obvious)
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Total Unimodularity is Fragile

• Example: Network Interdiction

– Expend a limited budget to maximally damage the transport capacity

of a network
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Network Flow

• Source(s) s, sink (consumers) t

• Capacity (bottom number)

• Flow (top number)

• Maximize flow from s to t obeying

– Capacity constraints on edges

– Conservation constraints on all nodes other than s,t

s

t

1

2

3

4

5

11/27
11/12

9/9
2/2

0/5
5/5

3/3
2/8

8/20

2/2

1/1
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Network Interdiction

• Each edge e now has a destruction cost de (cost to remove e; assume linear)

• Budget B

Expend at most B removing (pieces of) edges in the network so resulting max flow is

minimized

s

t

1

2

3

4

5

11/27
11/12

9/9
2/2

0/5
5/5

3/3
2/8

8/20

2/2

1/1
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Network Interdiction

By LP duality (we’ll see later)

value of max flow = value of min cut

So

   minattacks max flow = minattacks min cut

Pay to knock out transport capacity from s to t

12

s

1 427

92
5

5

3
t

2

3

5
8

20

2

1
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A Mixed Integer Program for Network Inhibition

• Based on min-cut LP

• Find best cut to attack

• Decision variables place vertices on the s or t side as before

• All edges going across the cut must be destroyed (consume budget) or contribute

to residual cut capacity

0 1
s t

S ⊂ V S
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Network Inhibition IP

Helper variables ye = percent of an edge in cut that is not removed

                           ze = percent of an edge in the cut that is destroyed€ 

vi =
0 if node v is on the s side
1 if node v is on the t side
 
 
 

€ 

min  ue∑ ye

st     ye + ze ≥ vi − v j     ∀e = (i, j)
       ye + ze ≥ v j - vi    ∀e = (i, j)
       vs = 0, vt =1

       dee∑ ze ≤ B

       ve ∈ 0,1{ }
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Total Unimodularity is Fragile

The matrix is still TU without the budget constraint

Adding the budget constraint makes the problem strongly NP-complete

• No known polynomial-time approximation algorithms

• Still has some very nice structure that gives a pseudo-approximation

– Pseudo-approximation might give a superoptimal solution that slightly exceeds

the budget or it could give a true approximation

€ 

min  ue∑ ye

st     ye + ze ≥ vi − v j     ∀e = (i, j)
       ye + ze ≥ v j - vi    ∀e = (i, j)
       vs = 0, vt =1

       dee∑ ze ≤ B

       ve ∈ 0,1{ }
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Modeling Sets

Given a set T,

•                            means select at least 1 element of T

– Making sure at least one local warehouse has inventory for each

customer

•                            means select at most 1 element of T

– Conflicts (e.g. modeled by a maximum independent set problem)

– Resource constraints

•                            means select exactly 1 element of T

– Time indexed scheduling variables xjt, schedule job j at time t. This

picks a single time for job j.

€ 

xii∈T∑ ≥1

€ 

xii∈T∑ =1€ 

xii∈T∑ ≤1
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Modeling Disjunctive Constraints

Let                                     be two constraints with nonnegative

coefficients

To force satisfaction of at least one of these constraints:€ 

a1
T x ≥ b1 and a2

T x ≥ b2

€ 

(ai ≥ 0, i =1,2)

€ 

a1
T x ≥ yb1
a2
T x ≥ (1− y)b2
y ∈ 0,1{ }

Slide 44

Modeling Disjunctive Constraints - General Number

Let                                  be m constraints with nonnegative coefficients

To force satisfaction of at least k of these constraints:

  

€ 

ai
T x ≥ bi,  i =1Km

€ 

(ai ≥ 0)

  

€ 

ai
T x ≥ biyi   i =1Km

yii=1

m
∑ ≥ k

y ∈ 0,1{ }
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Modeling a Restricted Set of Values

• Variable x can take on only values in

– Frequently the vi are sorted

– Example: capacity of an airplane assigned to a flight

– The yi’s are a special ordered set.

  

€ 

v1,v2,Kvm{ }

€ 

x = vi
i=1

m

∑ yi

yii=1

m
∑ =1

y ∈ 0,1{ }
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Some simple logical constraints

Want                         (logical or)

Suffices if there is pressure in the objective function to keep y low.

• Saw this in minimum cut

Similarly if we want                         (logical and)

Suffices if there is pressure in the objective function to keep y high.

€ 

y = x1∨ x2

€ 

y ≥ x1
y ≥ x2

€ 

y = x1∧ x2

€ 

y ≤ x1
y ≤ x2
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Example: Protein Structure Comparison

• 2 nonadjacent amino acids share an edge if they’re physically close when
folded

Contact Map
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Example: Protein Structure Comparison

• 2 nonadjacent amino acids share an edge if they’re physically close folded

• Noncrossing alignment of two proteins to maximize shared contacts

• Measure of similarity
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Protein Structure Comparison

• Variables xij = 1 if amino acid in position i of the top protein is matched to

amino acid in position j of the bottom protein, 0 otherwise

• Helper variables

€ 

yijkl = xij ∧ xkl
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Non-crossing alignment

• For any pair of edges, we can tell if they cross

if the pair is forbidden (simply don’t create this variable).
• There are more clever ways to do this (e.g. using Ramsey theory).  See what you

can come up with.
€ 

yijkl = 0
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Protein Structure Comparison

Only consider yijkl if this is a shared contact ((i,k) a contact, (j,l) a contact)

€ 

max  yijklyijkl  exists∑
st      yijkl = 0  if (i, j) and (k,l) cross (doesn't exist)
         yijkl ≤ xij
         yijkl ≤ xkl
         xij ∈ 0,1{ }
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MIP Applications (Small Sample)

• Logistics

– Capacity planning, scheduling, workforce planning, military spares management

• Infrastructure/network security

– Vulnerability analysis, reinforcement, reliability, design, integrity of physical

transport media

– Sensor placement (water systems, roadways)

• Waste remediation

• Vehicle routing, fleet planning

• Bioinformatics: protein structure prediction/comparison, drug docking

• VLSI, robot design

• Tools for high-performance computing (scheduling, node allocation, domain

decomposition, meshing)
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Solving Integer Programs

• NP-hard

• Many special cases have efficient solutions or provably-good

approximation bounds

– Need time to explore structure
• General IPs can be hard due to size and/or structure

(Sufficiently) optimal solution is important

• When lives or big $ at stake

• For rigorous benchmarking of heuristic/approximation methods

• To gain structural insight for better algorithms/proofs.


