

Reconnect '04 **Introduction to Integer Programming**

Cynthia Phillips, Sandia National Laboratories

Integer programming (IP)

Min $c^T x$ Subject to: Ax = b $\ell \leq x \leq u$ $x=(x_I,x_C)$ $x_l \in Z^n$ (integer values) $x_C \in Q^n$ (rational values)

- Can also have inequalities in either direction (slack variables):
 - $a_i^T x \le b_i \Rightarrow a_i^T x + s_i = b_i, s_i \ge 0$
- If $x_1 \neq \emptyset$ and $x_C \neq \emptyset$ then this is a mixed-integer program (MIP) Linear programming (LP) has no integrality constraints $x_1 = \emptyset$ (in P)
- IP (easily) expresses any NP-complete problem

Slide 2

In this context programming means making decisions. Leading terms say what kind:

- (Pure) Integer programming: all integer decisions
- Linear programming
- Quadratic programming: quadratic objective function
- · Nonlinear programming: nonlinear constraints
- Stochastic programming: finite probability distribution of scenarios

Came from operations research (practical optimization discipline)

Computer programming (by someone) is required to solve these.

Slide 3

Decisions

The IPs I've encountered in practice involve either

- · Allocation of scarce resources
- · Study of a natural system
 - Computational biology
 - Mathematics

Maybe during or after this course, you can add to the list

Use $x_i \in \{0,1\}$ (binary variables) to model:

- Yes/no decisions
- Disjunctions
- · Logical conditions
- Piecewise linear functions (this not covered in this lecture)

Slide 5

General Integer Variables

Use general integer variables to choose a number of indivisible objects such as the number of planes to produce

Integer range should be small (e.g. 1-10)

- · Computational tractability
- Larger ranges may be well approximated by rational variables (number of bags of potato chips to produce)

Slide 6

Example: Binary Knapsack

Given set of objects 1..n total weight W, item weight/size w_i , value v_i

$$x_i = \begin{cases} 1 & \text{If we select item } i \\ 0 & \text{Otherwise} \end{cases}$$

$$\max \sum_{i=1}^{n} v_i x_i$$
Subject to

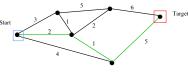
$$\sum_{i=1}^n w_i x_i \le W$$

Slide 7

Example: Shortest-Path Network Interdiction

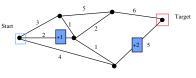
Delay an adversary moving through a network.

- Adversary moves start→target along a shortest path (in worst case)
- Path length = sum of edge lengths. Measure of time, exposure, etc.



Shortest Path Length: 8

Example: Shortest-Path Network Interdiction Defender blocks the intruder by paying to increase edge lengths. Goal: Maximize the resulting shortest path.



Shortest Path Length: 11

Slide 9

Path Interdiction Mixed-Integer Program

Graph G = (V,E)

Edge lengths ℓ_{uv} for edge (u,v)Can increase length of (u,v) by λ_{uv} at cost c_{uv}

Budget B

Variables:

if we pay to lengthen edge (u,v)

 $x_{uv} = \begin{cases} 1 \\ 0 \end{cases}$ Otherwise

d_u: shortest distance from start s to node u

Slide 10

Path Interdiction Integer Program

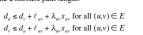
Objective: maximize the shortest path to the target maximize d_t

Subject to:

Path to the start has length 0:

 $d_s = 0$

Calculate a shortest path length:



Respect the budget:

$$\sum\nolimits_{(u,v)\in E}c_{uv}x_{uv}\leq B$$

Slide 11

Sandia National Laborator

Modeling Dependent Decisions

Suppose x,y are two binary variables that represent a decision (where 1 means "yes" and 0 means "no")

The constraint $x \le y$ allows x to be "yes" only if y is "yes"

Example: Unconstrained Facility Location

Given potential facility locations, n customers to be served c = cost to build facility i

 c_j = cost to build facility j h_{ij} = cost to meet all of customer i's demand from facility j

$$x_j = \begin{cases} 1 \text{ if facility } j \text{ built} \\ 0 \text{ Otherwise} \end{cases} y_{ij} = \begin{cases} 1 \text{ if customer } i \text{ is served by facility } j \\ 0 \text{ Otherwise} \end{cases}$$

$$\min \sum_{j} c_{j} x_{j} + \sum_{j} h_{ij} y_{ij}$$

st.
$$\sum y_{ij} = 1$$
 $\forall i$ (each customer satisfied)

$$y_{ij} \le x_j$$
 $\forall i, j \text{ (facility built before use)}$
 $x_j, y_i \in \{0,1\}$

Sometimes it's OK to satisfy customers from multiple facilities: $y_{ij} \text{ becomes a percentage: } y_{ij} \in \textit{Q}, \ 0 \leq y_{ij} \leq 1$ Slide 13

Formulation is really important in practice

Unconstrained facility location

Could sum constraints $y_{ij} \le x_i \quad \forall i, j \text{ over all customers } i \text{ to get:}$

$$\sum_i y_{ij} \leq n x_j \ \forall j$$

Recall n is the number of customers.

Still requires a facility is built before use (IPs are equivalent at optimality)

- But, for 40 customers, 40 facilities, random costs
 First formulation solves in 2 seconds
- Second formulation solves in 53,121 seconds (14.75 hours)

Slide 14

What makes one formulation so much better?

- Understanding this fully is an open problem.
- Some performance differences can be explained by the way IPs are solved in practice by branch-and-bound-like algorithms: the LP relaxation

Slide 15

Recall Integer Programming (IP)

Min $c^T x$ Subject to: Ax = b $\ell \le x \le u$ $x = (x_1, x_C)$ $x_j \in Z^n$ (integer values) $x_C \in Q^n$ (rational values)

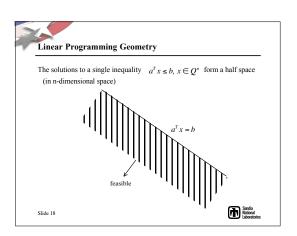
Linear programming (LP) relaxation of an IP

$$\begin{aligned} & \text{Min} \quad c^T x \\ & \text{Subject to:} \quad Ax = b \\ & \quad \ell \leq x \leq u \\ & \quad x = (x_1, x_C) \\ & \quad x_C \in \mathcal{Q}^n \quad \text{(integer values)} \end{aligned}$$

- LP can be solved efficiently (in theory and practice)
 Relaxation = removing constraints
 All feasible IP solutions are feasible

- LP gives a lower bound

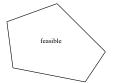
Slide 17

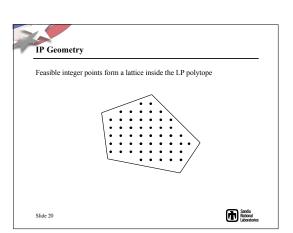


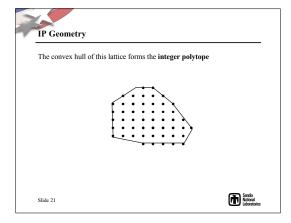
Linear Programming Geometry

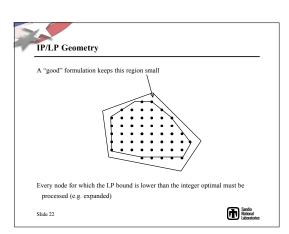
Intersection of all the linear (in)equalities form a convex polytope

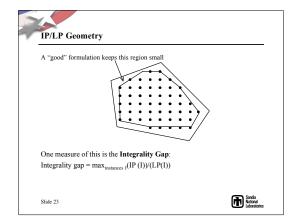
• For simplicity, we'll always assume polytope is bounded

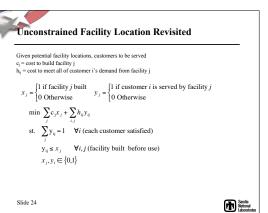


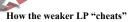












Using $\sum y_{ij} \le n x_j \ \forall j$

Allows the LP to completely satisfy customer i with facility j ($y_{ij} = 1$) even with $x_j = 1/n$.

With these constraints: $y_{ij} \le x_i \quad \forall i, j$

If $x_i = 1/n$, then $y_{ij} \le 1/n$

Slide 25

Can't we just round the LP Solution?

- Not generally feasible
- If (miraculously) it is feasible, it's not generally good

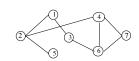
Slide 26

Example: Maximum Independent Set

• Find a maximum-size set of vertices that have no edges between any pair

Slide 27

Example: Maximum Independent Set

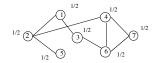


 $v_{i} = \begin{cases} 1 \text{ if vertex i is in the MIS} \\ 0 \text{ otherwise} \end{cases}$

 $\max \; \sum v_{_{i}}$

s.t.
$$v_i + v_j \le 1$$
 $\forall (i, j) \in E$
 $v_i \in \{0,1\}$

Example: Maximum Independent Set



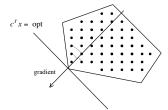
 $max \ \sum \nu_i$ s.t. $v_i + v_j \le 1$ $\forall (i, j) \in E$

The zero-information solution $(v_i = .5 \text{ for all } i)$ is feasible and it's optimal if the optimal MIS has size at most |V|/2.

Rounding everything (up) is infeasible.

Slide 29

Can't we project the lattice onto the objective gradient?



- Hard to find a feasible solution to project (NP-complete!)
- Make the objective a constraint and do binary search
- This is a lot harder in n dimensions than it looks like in 2

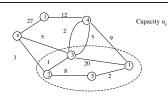
Slide 30

Perfect formulations

- Sometimes solving an LP is guaranteed to give an integer solution
- All polytope corners have integer coefficients (naturally integer)
- Sometimes only for specific objectives (e.g. $c \ge 0$)

Slide 31

Perfect Formulation Example: Minimum Cut



- Special nodes s and t
- Each edge e has capacity u_e . Set of edges S has capacity $\sum_{e \in S} u_e$ Partition vertex set V into S,T where $s \in S$ and $t \in T$
- A cut is the edges (u,v) such that $u \in S$ and $v \in T$ Find a cut with minimum capacity

Perfect Formulation Example: Minimum Cut IP

$$v_i = \begin{cases} 0 \text{ if node } v \text{ is on the } s \text{ side} \\ 1 \text{ if node } v \text{ is on the } t \text{ side} \end{cases}$$

Helper variables $y_e = 1$ if e is in the cut and 0 otherwise

$$\begin{aligned} & \min \ \sum u_e y_e \\ & \text{st} \quad y_e \geq v_i - v_j \quad \forall e = (i,j) \\ & y_e \geq v_j - v_i \quad \forall e = (i,j) \\ & v_s = 0, \ v_t = 1 \\ & v_e \in \{0,1\} \end{aligned}$$

The y variables will be integral if the v variables are.

Slide 33

Total Unimodularity

The minimum cut matrix (possibly with slack variables) is totally unimodular (TU): all subdeterminants (including the matrix entries) have value 0, 1, or -1.

- All corner solutions x satisfy Ax=b
- By Kramer's rule x will be integral

Network matrices (adjacency matrices of graphs) are TU. Nemhauser and Wolsey (Integer and Combinatorial Optimization, Wiley, 1988) give some sufficient conditions for a matrix to be TU. Note: if a matrix is TU, there is always an efficient combinatorial algorithm to solve the problem (not necessarily obvious)

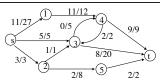
Slide 34

Total Unimodularity is Fragile

- Expend a limited budget to maximally damage the transport capacity of a network

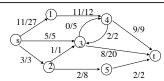
Slide 35

Network Flow



- Source(s) s, sink (consumers) t
- Capacity (bottom number)
- Flow (top number)
 Maximize flow from s to t obeying
 - Capacity constraints on edges
- Conservation constraints on all nodes other than s,t

Network Interdiction



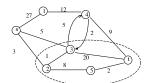
- Each edge e now has a destruction cost d_e (cost to remove e; assume linear)
- Budget B

Expend at most B removing (pieces of) edges in the network so resulting max flow is minimized

Slide 37

Network Interdiction

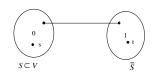
By LP duality (we'll see later) value of max flow = value of min cut So $min_{attacks} max flow = min_{attacks} min cut$ Pay to knock out transport capacity from s to t



Slide 38

Sandia National Laboratorie

A Mixed Integer Program for Network Inhibition



- · Based on min-cut LP
- Find best cut to attack
 Decision variables place vertices on the s or t side as before
- All edges going across the cut must be destroyed (consume budget) or contribute to residual cut capacity

Slide 39

Network Inhibition IP

 $v_i = \begin{cases} 0 \text{ if node } v \text{ is on the } s \text{ side} \\ 1 \text{ if node } v \text{ is on the } t \text{ side} \end{cases}$

Helper variables y_e = percent of an edge in cut that is not removed z_e = percent of an edge in the cut that is destroyed

$$\begin{split} & \min \ \sum u_e y_e \\ & \text{st} \quad y_e + z_e \geq v_i - v_j \quad \forall e = (i,j) \\ & y_e + z_e \geq v_j - v_i \quad \forall e = (i,j) \\ & v_i = 0, \ v_i = 1 \\ & \sum_e d_e z_e \leq B \end{split}$$

 $v_{e} \in \{0,1\}$

Total Unimodularity is Fragile

$$\min \; \sum u_e y_e$$

$$\begin{aligned} \text{st} & \quad \mathbf{y}_c + \mathbf{z}_c \geq v_i - v_j & \quad \forall e = (i,j) \\ & \quad \mathbf{y}_c + \mathbf{z}_c \geq v_j - \mathbf{v}_i & \quad \forall e = (i,j) \\ & \quad v_i = 0, \ v_i = 1 \\ & \quad \sum_c d_c z_c \leq B \\ & \quad \mathbf{v}_c \in \{0.1\} \end{aligned}$$

The matrix is still TU without the budget constraint

Adding the budget constraint makes the problem strongly NP-complete

- No known polynomial-time approximation algorithms
- Still has some very nice structure that gives a pseudo-approximation
 - Pseudo-approximation might give a superoptimal solution that slightly exceeds the budget or it could give a true approximation

Slide 41

Modeling Sets

- $\sum_{i \in T} x_i \ge 1$ means select at least 1 element of T
- Making sure at least one local warehouse has inventory for each
- $\sum_{i \in T} x_i \le 1 \quad \text{means select at most 1 element of T}$ Conflicts (e.g. modeled by a maximum independent set problem)
- Resource constraints
- $\sum_{i \in T} x_i = 1$ means select exactly 1 element of T Time indexed scheduling variables x_{jp} schedule job j at time t. This picks a single time for job j.

Slide 42

Modeling Disjunctive Constraints

Let $a_1^T x \ge b_1$ and $a_2^T x \ge b_2$ be two constraints with nonnegative coefficients $(a_i \ge 0, i = 1,2)$

To force satisfaction of at least one of these constraints:

$$a_1^T x \ge y b_1$$

$$a_2^T x \ge (1 - y) b_2$$

$$y \in \{0,1\}$$

Slide 43

Modeling Disjunctive Constraints - General Number

Let $a_i^T x \ge b_i$, i = 1...m be m constraints with nonnegative coefficients $(a_i \ge 0)$

To force satisfaction of at least ${\bf k}$ of these constraints:

$$a_i^T x \ge b_i y_i \quad i = 1...m$$

$$\sum_{i=1}^m y_i \ge k$$

$$y \in \{0,1\}$$

Modeling a Restricted Set of Values

- Variable x can take on only values in $\{v_1, v_2, \dots v_m\}$
- Frequently the v_i are sorted
- Example: capacity of an airplane assigned to a flight

$$x = \sum_{i=1}^{m} v_i y_i$$
$$\sum_{i=1}^{m} y_i = 1$$
$$y \in \{0,1\}$$

– The y_i 's are a special ordered set.

Slide 45

Some simple logical constraints

Want $y = x_1 \lor x_2$ (logical or)

$$y \ge x_1$$

 $y \ge x_2$

Suffices if there is pressure in the objective function to keep y low.

Saw this in minimum cut

Similarly if we want $y = x_1 \wedge x_2$ (logical and)

$$y \le x_1$$
$$y \le x_2$$

Suffices if there is pressure in the objective function to keep y high.

Slide 46

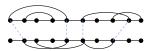
Example: Protein Structure Comparison

Contact Map

• 2 nonadjacent amino acids share an edge if they're physically close when folded

Slide 47

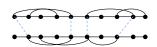
Example: Protein Structure Comparison



- 2 nonadjacent amino acids share an edge if they're physically close folded
- Noncrossing alignment of two proteins to maximize shared contacts
- Measure of similarity

Protein Structure Comparison

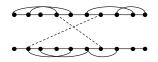
- Variables $x_{ij} = 1$ if amino acid in position i of the top protein is matched to amino acid in position j of the bottom protein, 0 otherwise
- Helper variables $y_{ijkl} = x_{ij} \wedge x_{kl}$



Slide 49

Non-crossing alignment

· For any pair of edges, we can tell if they cross



$$y_{iikl} = 0$$

if the pair is forbidden (simply don't create this variable).

• There are more clever ways to do this (e.g. using Ramsey theory). See what you can come up with.

Slide 50

Protein Structure Comparison

Only consider y_{ijkl} if this is a shared contact ((i,k) a contact, (j,l) a contact)

$$\max \ \sum\nolimits_{\mathbf{y}_{ijkl} \ \mathrm{exists}} \mathbf{y}_{ijkl}$$

st $y_{ijkl} = 0$ if (i, j) and (k, l) cross (doesn't exist)

$$y_{ijkl} \leq x_{ij}$$

$$y_{ijkl} \leq x_{kl}$$

$$x_{ij} \in \{0,1\}$$

Slide 51

MIP Applications (Small Sample)

- Capacity planning, scheduling, workforce planning, military spares management
- · Infrastructure/network security
- Vulnerability analysis, reinforcement, reliability, design, integrity of physical transport media
- Sensor placement (water systems, roadways)
- · Waste remediation
- · Vehicle routing, fleet planning
- Bioinformatics: protein structure prediction/comparison, drug docking
- VLSI, robot design
- Tools for high-performance computing (scheduling, node allocation, domain decomposition, meshing)

- Many special cases have efficient solutions or provably-good approximation bounds
- Need time to explore structure
 General IPs can be hard due to size and/or structure

(Sufficiently) optimal solution is important

- When lives or big \$ at stake
- For rigorous benchmarking of heuristic/approximation methods
 To gain structural insight for better algorithms/proofs.

