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Introduction to Integer Programming

Cynthia Phillips, Sandia National Laboratories
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Integer programming (IP)

Min ¢'x
Subjectto: Ay =p

l=xsu

x=(x;,xc)

x, €EZ" (integer values)

x. €Q" (rational values)
« Can also have inequalities in either direction (slack variables):

a'x<sb=a'x+s=b,5=0

o If x, %@ and x. = @ then this is a mixed-integer program (MIP)
+ Linear programming (LP) has no integrality constraints X, =& (in P)
« IP (easily) expresses any NP-complete problem
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Terminology Decisions
In this context progr means making decision: The IPs I’ve encountered in practice involve either
Leading terms say what kind: « Allocation of scarce resources
« (Pure) Integer programming: all integer decisions « Study of a natural system
« Linear programming — Computational biology
* Quadratic programming: quadratic objective function — Mathematics
« Nonlinear programming: nonlinear constraints
« Stochastic programming: finite probability distribution of scenarios Maybe during or after this course, you can add to the list
Came from operations research (practical optimization discipline)
Computer programming (by someone) is required to solve these.
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Integer Variables

Use x, €{0,1} (binary variables) to model:
* Yes/no decisions

« Disjunctions

« Logical conditions

« Piecewise linear functions (this not covered in this lecture)
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General Integer Variables

Use general integer variables to choose a number of indivisible objects
such as the number of planes to produce

Integer range should be small (e.g. 1-10)

+ Computational tractability

« Larger ranges may be well approximated by rational variables (number
of bags of potato chips to produce)
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Ex le: Binary Knapsack Example: Shortest-Path Network Interdiction
Given set of objects 1..n Delay an adversary moving through a network.
total weight W, item weight/size w;, value v; « Adversary moves start—target along a shortest path (in worst case)
. . « Path length = sum of lengths. Measure of tim re, etc.
1 1f we select item i ength = sum of edge lengths. Measure of time, exposure, etc
710 Otherwise
- Target
max Ev,x,
i=1
Subject to
"
2 wx, =W
=1
Shortest Path Length: 8
Sonda Sonda
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Example: Shortest-Path Network Interdiction

Goal: Maximize the resulting shortest path.

Shortest Path Length: 11
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Defender blocks the intruder by paying to increase edge lengths.
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Path Interdiction Mixed-Integer Program

Graph G = (V.E)
Edge lengths /,, for edge (u,v)
Can increase length of (u,v) by A, at cost ¢,

Budget B
Variables:
1 if we pay to lengthen edge (u,v)
x =
“ 0 Otherwise

d,: shortest distance from start s to node u
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Path Interdiction Integer Program

Objective: maximize the shortest path to the target

maximize d,

Subject to:
Path to the start has length 0:
d,=0 u

Calculate a shortest path length:

d,=d +/0,+A,x, forall (uv)EE

d,sd,+0, +*,x, forall (uv)EE v

Respect the budget:

D st =B
(u,v)EE
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odeling Dependent Decisions

Suppose x,y are two binary variables that represent a decision (where 1 means
“yes” and 0 means “no”)

The constraint X <y allows x to be “yes” only if y is “yes”
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mple: Unconstrained Facility Location

Given potential facility locations, n customers to be served
;= cost to build facility j
h;; = cost to meet all of customer i’s demand from facility j

1 if facility j built 1if customer i is served by facility j
770 Otherwise 77| 0 Otherwise

min Ecjx] + Ehvyv
i i

st Eyu =1 Vi (each customer satisfied)
j

yy=x;, Vi j(facility built before use)

x .y, €{0.1}

Sometimes it’s OK to satisfy customers from multiple facilities:
v, becomes a percentage : V, €0, Osy, =<1

Formulation is really important in practice

Unconstrained facility location
Yy =% Vi j overall customers i to get:

E yysnx; Vj

Recall 7 is the number of customers.

Could sum constraints

Still requires a facility is built before use (IPs are equivalent at optimality)
But, for 40 customers, 40 facilities, random costs

« First formulation solves in 2 seconds

* Second formulation solves in 53,121 seconds (14.75 hours)
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/ ‘What makes one formulation so much better? Recall Integer Programming (IP)
« Understanding this fully is an open problem. Min CTX
« Some performance differences can be explained by the way IPs are solved Subject to: Ay = )
in practice by branch-and-bound-like algorithms: the LP relaxation
l=x=u
x = (x;,%c)
x, EZ" (integer values)
X € Q" (rational values)
. . Sonda
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Linear programming (LP) relaxation of an IP

Min  ¢'x
Subject to: Ax=b
lsx=u
X =(xp,Xc)
X &7 (integer values)

X, € Q" (rational values)

« LP can be solved efficiently (in theory and practice)
* Relaxation = removing constraints
— All feasible IP solutions are feasible
LP gives a lower bound

Linear Programming Geometry

The solutions to a single inequality " x <b, x € Q" form a half space
(in n-dimensional space)

feasible

Sanda Sonda
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=V Linear Programming Geometry IP Geometry
Intersection of all the linear (in)equalities form a convex polytope Feasible integer points form a lattice inside the LP polytope
« For simplicity, we’ll always assume polytope is bounded
feasible
Sonda Sonda
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IP Geometry

The convex hull of this lattice forms the integer polytope

IP/LP Geometry

A “good” formulation keeps this region small

Every node for which the LP bound is lower than the integer optimal must be

processed (c.g. expanded)

Sanda Sonda
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#P/LP Geometry nconstrained Facility Location Revisited
A “good” formulation keeps this region small Given pmcx:)tiall ‘facililty locations, customers to be served
¢; = cost to build facility j
hju = cost to meet all of customer i's demand from facility j
1if facility j built 1 if customer i is served by facility j
" looterwise 7710 Otherwise
min Ecjx, + Eh,/y,/
7 i
st Ey“ =1 Vi (each customer satisfied)
i
. yy=x; Vi j(facility built before use)
One measure of this is the Integrality Gap: o
. X5V s
Integrality gap = MaXi, nees (1P (D/LP(D) !
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How the weaker LP “cheats”

Using Cenx Vi
Vi iV

Allows the LP to completely satisfy customer i with facility j (v; = 1) even
with x; = 1/n.

With these constraints: Yy s X Vi, j

Ifx; = 1/n, then y; <= 1/n
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Can’t we just round the LP Solution?

* Not generally feasible
« If (miraculously) it is feasible, it’s not generally good
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xample: Maximum Independent Set

« Find a maximum-size set of vertices that have no edges between any pair
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xample: Maximum Independent Set

1 if vertex i is in the MIS
i {0 otherwise

max E v
sty +vsl v(i,j)EE
v, E{O,l}
Sandia
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Example: Maximum Independent Set

172

stv+v,<1 VY(i,j)EE

The zero-information solution (v, = .5 for all i) is feasible and it’s optimal if the
optimal MIS has size at most [V|/2.
Rounding everything (up) is infeasible.

A

Can’t we project the lattice onto the objective gradient?

c"x= opt

gradient

* Hard to find a feasible solution to project (NP-complete!)
Make the objective a constraint and do binary search

« This is a lot harder in # dimensions than it looks like in 2

Sanda Sonda
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i ' Perfect formulations Perfect Formulation Example: Minimum Cut
« Sometimes solving an LP is guaranteed to give an integer solution .
. R i Capacity u,
— All polytope corners have integer coefficients (naturally integer)
— Sometimes only for specific objectives (e.g. ¢=0)
« Special nodes s and ¢
« Each edge e has capacity u,. Set of edges S has capacity E u,
 Partition vertex set V into S,T where s€E Sand t €T s
« A cut is the edges (u,v) such that u€ SandvET
Find a cut with minimum capacity
Sonda Sonda
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Perfect Formulation Example: Minimum Cut IP

0 if node v is on the s side
Vit 1 if node v is on the 7 side

Helper variables y, = 1 if ¢ is in the cut and 0 otherwise
min Eu, Ve
st y.zvi-v, Ve=(@))
Yezv;-v, Ve=(ij)

v,=0,v, =1
v, {01}

The y variables will be integral if the v variables are.

Total Unimodularity

The minimum cut matrix (possibly with slack variables) is totally
unimodular (TU): all subdeterminants (including the matrix entries)
have value 0, 1, or -1.

« All corner solutions x satisfy Ax=b

* By Kramer’s rule x will be integral

Network matrices (adjacency matrices of graphs) are TU.

Nemhauser and Wolsey (Integer and Combinatorial Optimization, Wiley,
1988) give some sufficient conditions for a matrix to be TU.

Note: if a matrix is TU, there is always an efficient combinatorial

algorithm to solve the problem (not necessarily obvious)

Sandia Sandia
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Total Unimodularity is Fragile
« Example: Network Interdiction
— Expend a limited budget to maximally damage the transport capacity
of a network
+ Source(s) s, sink (consumers) t
« Capacity (bottom number)
« Flow (top number)
+ Maximize flow from s to t obeying
— Capacity constraints on edges
— Conservation constraints on all nodes other than s,t
Sanda Sanda
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Network Interdiction

Network Interdiction

By LP duality (we’ll see later)
value of max flow = value of min cut
So

min,, ., max flow = min, ., min cut

Pay to knock out transport capacity from s to ¢

2/8 2/2
+ Each edge e now has a destruction cost d, (cost to remove e; assume linear)
* Budget B
Expend at most B removing (pieces of) edges in the network so resulting max flow is
minimized

Sandia Sandia
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ixed Integer Program for Network Inhibition Network Inhibition IP
0 if node v is on the s side
" | 1if node v is on the  side
Helper variables y, = percent of an edge in cut that is not removed
z, = percent of an edge in the cut that is destroyed
- min > uy,
SCv S 2
st y.+zzv,-v, Ve=(j)
+ Based on min-cut LP etz zv;-v, Ve=(ij)
« Find best cut to attack v v, =1
* Decision variables place vertices on the s or t side as before E dz, <B
« All edges going across the cut must be destroyed (consume budget) or contribute v é {0 I}
to residual cut capacity N ’

Sanda Sanda
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' Total Unimodularity is Fragile

min E wy,

st oy.+z zv,-v, Ve=())
Yotz zv,-v, Ve=())
vi=0,v,=1
Eld‘,z, =B
v, {01}

The matrix is still TU without the budget constraint
Adding the budget constraint makes the problem strongly NP-complete
+ No known polynomial-time approximation algorithms
« Still has some very nice structure that gives a pseudo-approximation
— Pseudo-approximation might give a superoptimal solution that slightly exceeds

the budget or it could give a true approximation

F

deling Sets

Givenaset T,

. 2 =1 means select at least 1 element of T
— Making sure at least one local warchouse has inventory for each

customer
. Evax, =1 means select at most 1 element of T
— Conflicts (e.g. modeled by a maximum independent set problem)
— Resource constraints
. E‘U x,=1 means select exactly | element of T
— Time indexed scheduling variables x;,, schedule job ; at time . This

picks a single time for job /.

Sonda
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r ' Modeling Disjunctive Constraints Modeling Disjunctive Constraints - General Number
Let @ x=b and ajx = b, be two constraints with nonnegative Let a'x=b, i=1...m be m constraints with nonnegative coefficients (¢, =0)
coefficients (q, =0, i=12)
To force satisfaction of at least k of these constraints:
To force satisfaction of at least one of these constraints:
T alx=by m
a, x = yb, i X =0 -
aix=(1-y)b, ik
ye{ol} ye{o1}
Sonda Sonda
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' Modeling a Restricted Set of Values ' Some simple logical constraints

« Variable x can take on only values in {v,,v,....v, } Want y=x,vx, (logical or)
— Frequently the v, are sorted y=x,
— Example: capacity of an airplane assigned to a flight y=x,

Suffices if there is pressure in the objective function to keep y low.

< * Saw this in minimum cut
x= Ev,y,
i=1
" y, =1 Similarly if we want ¥ =X AX, (logical and)
=171
ysx
yE {0,1} ver

Suffices if there is pressure in the objective function to keep y high.

— The y;’s are a special ordered set.
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/ Example: Protein Structure Comparison % Example: Protein Structure Comparison
AN S S N A
Contact Map

* 2 nonadjacent amino acids share an edge if they’re physically close folded

+ 2 nonadjacent amino acids share an edge if they’re physically close when * Noncrossing alignment of two proteins to maximize shared contacts

folded * Measure of similarity
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Protein Structure Comparison

* Variables x;; = 1 if amino acid in position i of the top protein is matched to
amino acid in position j of the bottom protein, 0 otherwise
* Helper variables  Yju = X; A Xy

e S < e
M SRS S5 NG A
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on-crossing alignment

+ For any pair of edges, we can tell if they cross

Yim =0

if the pair is forbidden (simply don’t create this variable).
« There are more clever ways to do this (e.g. using Ramsey theory). See what you
can come up with.
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Protein Structure Comparison

Only consider y, if this is a shared contact ((i,k) a contact, (j,/) a contact)

max 3y
Yau cxNAy ikl

st Yiu =0 if (i,) and (k,I) cross (doesn't exist)
Yiga =Xy
Yija = Xy

x; €{0,1}
e —
MG
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P Applications (Small Sample)

* Logistics
Capacity planning, scheduling, workforce planning, military spares management
« Infrastructure/network security

— Vul bility analysis,

, design, integrity of physical
transport media

— Sensor placement (wates

stems, roadways)

* Waste remediation

* Vehicle routing, fleet planning

+ Bioinformatics: protein structure prediction/comparison, drug docking
* VLSI, robot design

* Tools for high-performance ing ( ing, node alloca domain

decomposition, meshing)
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“/ﬁlving Integer Programs

* NP-hard
« Many special cases have efficient solutions or provably-good

approximation bounds
— Need time to explore structure
* General IPs can be hard due to size and/or structure

(Sufficiently) optimal solution is important

« When lives or big $ at stake

« For rigorous benchmarking of heuristic/approximation methods
« To gain structural insight for better algorithms/proofs.
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