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A Few Topics in Polyhedral Combinatorics

Cynthia Phillips, Sandia National Laboratories

trengthen Linear Program with Cutting Planes

Cutting plane

(valid inequality)

Original LP
Feasible region

LP optimal solution

Integer optimal

» Make LP polytope closer to integer polytope
« Use families of constraints too large to explicitly list

— Exponential, pseudopolynomial, polynomial (n*, n%)
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7 Separation / Example: Traveling Salesman Problem
+ Consider a family of cutting planes @ x <b, « Input: asetof ncities, 1, =distance d;; between cities i and j
_ Abbreviate as (a,) — Can travel between any pair (automatic with the triangle inequality)
) . ) ; N o + Goal: Visit each city exactly once so as to minimize the total distance
* A separation algorithm takes this family and an x* and in polynomial time
cither Variable x; = 1 if edge (i) in the tour, 0 otherwise
— Returns a member of the family (a;,b,) such that al'x' > b,
« x* violates (a,b,) min ye,x;
— Says (truthfully) that x* violates no member of the family <
st Exv =2 Vj
« If we iteratively add the cuts returned by the separation algorithm, in !
X;=x
polynomial time, we will have an optimal LP solution that satisfies the v
whole family (Ellipsoid algorithm)
Undirected formulation
Enforce all nodes have degree 2 in the tour
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Subtours

« Degree constraints aren’t sufficient for an IP formulation because we have
have disconnected cycles

Eliminate Subtours

+ Force 2 edges to cross every (nontrivial) cut
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7 Subtour Elimination Constraints The Power of Separation
2 E"u =2 VSCN.2< \S\ <n-2 For 300 cities, there are over 10% subtour elimination constraints!
€S @S i But we can enforce them all for instances with thousands of cities.
5 . . 5 N 3 Adding classes of cutting planes can provably reduce the integrality gap
« If we give each edge e weight x *, then the separation algorithm is looking . . .
3 (ratio between best IP solution and best LP solution)
for a cut of capacity less than 2
* Just run a standard minimum cut code
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Compact Formulations

« When the separation algorithm is itself an LP can sometimes represent the

entire separation process as a single LP (with polynomially more

Valid Inequality

An inequality is valid for a polytope if it contains the whole polytope

constraints)
)
axsh
a'x=b )
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/ Facet Convex Combinations
Let ¢"x < b be a valid inequality for polyhedron P + A point x is a convex combination of two others x; and x, if
Then F= {x EPldx= b} is a face of the polyhedron (componentwise)
If F=, then F ts P
. en su.ppor .s . X=X, + Ayx,, with
If F is exactly one dimension smaller than P, then it is a facet -
Families of facet-defining inequalities are optimal in a sense
X
x
X,
a'x=b
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Extreme Points

Another definition of an extreme point (corner of a polyhedron):
X € P is an extreme point if and only if there are no x,,x, € P

such that x is a convex combination of x; and x,

Convex Decomposition

x = feasible solution to the LP relaxation p*LP

Find feasible integer solutions
Sy Sps e 1S, such that > 4,8, = px

Convex combination:
0 <1, 3, =1
« Implies one of the S; has cost
at most p * LP optimal

(something’s a good as average)

X, LP
gradient
/ Integer polytope
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' Decomposition Precisely Defines Integrality Gap LP-Relaxation-Based Approximation for IP
IP has a solution within p times the LP bound if and only if px* can be « Compute LP relaxation (lower bound).
decomposed into a convex combination of feasible solutions. + Common technique:
— Use structural information from LP solution to find feasible IP solution
Definition: A p-approximation algorithm for a minimization problem (use parallelism if possible)
guarantees a solution no more than p times the optimal solution for all — Bound quality using LP bound
instances. * Integrality gap = max(IP (I))/(LP(I))
 This technique cannot prove anything better than integrality gap
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Example: Vertex Cover

~

Find a minimum-size set of vertices such that each edge has at least one
endpoint in the set.

Example: Vertex Cover

1 if vertex i is in the VC
i {0 otherwise

min Evl

sty +vzl v(i j)EE

v E{O, 1}
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7 2-Approximation algorithm for Vertex Cover v Capacitated Network Design
* Solve the LP relaxation for vertex cover: 2@
Capacity u, (cost c,)
min Ev,
st +vz1 V(i j)EE
O=sy =1
* Select all vertices i such that v;> 1/2.
« This covers all edges: at least one endpoint will have value at least 1/2.
* Each such vertex contributed as least 1/2 to the optimal LP solution, so
rounding to 1 at most doubles cost. * Each pair (v;, v)) has a demand (required connectivity) d;
— Min cut separating v; and v; is at least d;;
+ Choose min-cost subgraph s.t. all pairwise demands satisified
« All/none decision for each edge.
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Network Reinforcement - Communication Network

124

Capacity u, (cost c,)

© .
00—
2

)
2(8) 4

/

message packets take “all” paths, must capture all packets to compromise (Franklin)
« Capacity = attacker cost to compromise edge

* Min cut = attacker cost to eavesdrop

Pay to protect all communication at desired level.
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Special Case - Minimum Knapsack Problem

Given: Set of objects: Object i has cost ¢;, value v;
Required value V

Find: minimum-cost set of objects with total value at least V

vy ()

Vi (C)
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neralization - Capacitated Covering

min ¢’ x
st.Ux=d

O=<sx=b

xX€Z'

« All entries of ¢,U.,d are nonnegative.
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Definition: Bond

A bond is a minimal set of edges whose removal disconnects a pair with
positive demand. Count multiedges as 1.

Card(Bond) = 4
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Integer Program (IP) for capacitated network design

Solving a linear objective function subject to linear constraints. Variables
must take integer values.

* Models any NP-complete problem

A simple IP for capacitated network design:

min OZE:C CX,
ZC ux,zd(C) ¥V cutset C
eE

x. €401}

Where d(C) is the maximum demand d; for any pair that crosses cut C
X, = 1 if edge e is selected

imple Network Reinforcement IP has Bad

Antegrality Gap
u=D-1 =0
u=b c=1
u=D-1 =0
QO g
u=D _ . =1
e=l wD oo
IP cost=1 LP cost=1/D

Ratio OPT(IP)/OPT(LP) = D \
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/ Effective Capacities % Inhibiting One Form of Cheating
u=D- =0
Demand D
u=D e=1
Can assume + New problem with remaining edges and residual Demand D - (D-1) = 1
u, = max,..D(C)
Cisacut,
D(C) = max, e d; Residual
Demand 1
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Knapsack Cover (KC) Inequalities

A
C
L/
[ ¢ 1

=

Knapsack Cover (KC) Cuts for General Graphs

min ECCXP

€eEE
st Yu,(e)x, = D(A)for AC E,u(A) <D
wA) = Y, < D(C) eckoa
pr=7A x, €{0,1}

residual D(A) = D - u(A)

u, (e) =min(u,,D(A))

KC: Du,(e)x, = D(A)

eEC-A
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New Integrality Gaps

« 2 for Knapsack
* B (G) + 1 for general graphs

Proof: Find feasible integer solution with cost 2 (or f (G) + 1) times LP

optimal
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