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Abstract: Clustering algorithms separate (partition) discrete data sets into disjoint groups-
clusters, such that every cluster contains only the elements close to each other in a precisely
defined sense. These procedures are widely used in mathematical taxonomy, management,
and many other applications of mathematics. In this module we discuss the simplest and
commonly used hierarchical algorithms for clustering — Hubert’s single-link and complete-
link algorithms. These algorithms are called hierarchical because they build up an hierarchy
of larger and larger clusters. The algorithms are based on the properties of a graph describing
an initial collection of objects, and the terms single-link, complete-link refer to the methods
of combining two subgraphs in one larger subgraph.

The module is aimed at freshman and sophomore students studying finite mathematics, in-
troductory discrete mathematics, or statistics. So, only a minimal, high-school background
in mathematics is assumed. In particular, we do not expect any knowledge of graph theory
or probability theory. All relevant graph-theoretical definitions (like spanning trees, etc.) are
discussed and illustrated by examples. The algorithms considered are simple and can be ex-
amined in an introductory computer science course. We do not perform any formal analysis
of the algorithms, however we present them in a pseudocode form. The module can be used
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in any field concerned with classification of data. Examples are numerical taxonomy, design
of the Internet, classification of natural languages, or image processing, to name just a few.
The readers of the module will learn how to form clusters step by step, first in an informal
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ABSTRACT

Clustering algorithms separate (partition) discrete data sets into disjoint groups-clusters, such that
every cluster contains only the elements close to each other in a precisely defined sense. These
procedures are widely used in mathematical taxonomy, management, and many other applications
of mathematics. In this module we discuss the simplest and commonly used hierarchical algorithms
for clustering — Hubert’s single-link and complete-link algorithms. These algorithms are called
hierarchical because they build up an hierarchy of larger and larger clusters. The algorithms are
based on the properties of a graph describing an initial collection of objects, and the terms single-
link, complete-link refer to the methods of combining two subgraphs in one larger subgraph.

The module is aimed at freshman and sophomore students studying finite mathematics, in-
troductory discrete mathematics, or statistics. So, only a minimal, high-school background in
mathematics is assumed. In particular, we do not expect any knowledge of graph theory or prob-
ability theory. All relevant graph-theoretical definitions (like spanning trees, etc.) are discussed
and illustrated by examples. The algorithms considered are simple and can be examined in an
introductory computer science course. We do not perform any formal analysis of the algorithms,
however we present them in a standard pseudocode form. The module can be used in the classroom
and for the students’ projects.

It is supposed that after actively studying the module and working the included exercises,
the reader

• will learn some basic concepts of graph theory together with their simple applications,

• will learn basic concepts of cluster theory and clustering algorithms,

• will be able to apply these algorithms for clustering small (since we do not discuss any software
issues) arrays of data,

• will have enough background to learn and apply computer software for clustering real data,

• will be able to study more advanced literature on classification and clustering.
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1 INTRODUCTION

Suppose a student wants to put some money into a mutual fund. To make the right choice, she
may consider many different funds on the basis of their long-term and short-term performance, the
manager’s philosophy of investing, administrative costs, and so forth. Comparing various funds,
she can pick up the few that are more suitable for her goals. The things under consideration, like
mutual funds, are called objects or entities. The properties of objects, like performance or attitude
to risk, are called features, or variables, or attributes. If every object is characterized by several
variables, it is difficult to compare different objects, and we want to get a kind of a “common
denominator” to measure similarity of the objects. We can separate all available funds into several
groups containing similar funds.

Such classification is useful in many occasions. For instance, if the investor hears about a
new fund within a short time after its inception, it is hard, without any information, to make a
prediction of the fund’s future performance based on its own history. If our student can include
the fund into a group of several similar funds, she can apply the information on the whole group to
each member and make a more reliable prediction. Furthermore, if we have a lot of similar objects,
it is often just impossible to study every one of them separately, but we can study a representative
of each group of similar objects and apply the information derived to every item2.

To perform such analysis, we first separate the objects into smaller groups, called clusters
(overlapping groups are sometimes called clumps). This process, called clustering, is an essential
part of cluster analysis. In this module we discuss initial concepts and algorithms of this subject.
The list of references at the end of the module contains more extended and advanced expositions
of the subject.

Obviously, the objects combined in a group should have some common features and proper-
ties. The more two objects have in common, the less is their dissimilarity. Ultimately, the similarity
of identical objects is infinite and their dissimilarity is zero. In cluster analysis, it is often more
convenient to measure dissimilarity rather than the similarity of various objects. We do not discuss
here how to assign the dissimilarity values to two multivariate objects, because it essentially de-
pends upon particularities of specific problems — see, for example, [4], Chap. 2; [10]. We assume
that the dissimilarities are assigned in advance — given a set of objects to be explored, we are
provided with a table (also called a matrix) of their dissimilarities.

Example 1.1 Table 1.1 contains the average altitudes above the sea level of fifteen southern states
in the U.S. (see [5], p. 59).

State A D F G K L M M M N S T T V W
L E L A Y A D I O C C N X A V

Average 50 6 10 60 75 10 35 30 80 70 35 90 170 95 150
Altitude

Table 1.1: The average altitudes above the sea level of fifteen southern states in the USA (in tens
of feet).

2From the mathematical point of view, this approach is not new. We often use the equivalence relations to replace
a set under consideration with a smaller factor-set to simplify our study. Here this idea is applied to clustering the
given objects.
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If we are interested in the altitudes only, we can consider the difference (or the absolute value
of the difference) between the altitudes as a kind of distance, or as a measure of the dissimilarity
between two states. Even though this difference is not the real geographical distance, similar
quantities, under some specific conditions, are also called distances. In this sense, the dissimilarity
between Alabama and Delaware is 50 − 6 = 44, the dissimilarity between Florida and Georgia is
|10−60| = 50, and the dissimilarity between Florida and Louisiana is 0 — unlike the mathematical
distance, the dissimilarity of two different objects can be 0. Table 1.1 can be transformed into a
dissimilarity table (Table 1.2 below), where the main diagonal contains only zeros since each object
is absolutely similar to itself. We have completed only the upper triangle, because the table is
symmetrical with respect to the main diagonal.

AL DE FL GA KY LA MD MI MO NC SC TN TX VA WV
AL 0 44 40 10 25 40 15 20 30 20 15 40 120 45 100
DE 0 4 54 69 4 29 24 74 64 29 84 164 89 144
FL 0 50 65 0 25 20 70 60 25 80 169 85 140
GA 0 15 50 25 30 20 10 25 30 110 35 90
KY 0 65 40 45 5 5 40 15 95 20 75
LA 0 25 20 70 60 25 80 160 85 140
MD 0 5 45 35 0 55 135 60 115
MI 0 50 40 5 60 140 65 120
MO 0 10 45 10 90 15 70
NC 0 35 20 100 25 80
SC 0 55 135 60 115
TN 0 80 5 60
TX 0 75 20
VA 0 55
WV 0

Table 1.2: Dissimilarity table for the average altitudes.

Depending upon the level of dissimilarity we are willing to accept — this level is called a
threshold value or just a threshold — we can form different clusterings. That is, we can split the
fifteen states into different clusters. For instance, the following is a partition of these states into
eight clusters with a threshold value of 10. That is, the maximum distance between any two objects
in each cluster does not exceed 10:

{DE, FL, LA}, {MD, MI, SC}, {AL, GA}, {NC, KY, MO}, {TN}, {VA}, {TX}, {WV}.
If we select the threshold level of 5, then the corresponding clustering may be the following one:

{DE, FL, LA}, {MD, MI, SC}, {AL}, {GA}, {NC, KY}, {MO}, {TN, VA}, {TX}, {WV}.
We can also set up another clustering with the same dissimilarity level of 5:

{DE, FL, LA}, {MD, MI, SC}, {AL}, {GA}, {NC}, {KY, MO}, {TN}, {VA}, {TX}, {WV}.
We see that this procedure is not generally unique. It is clear also that if we decrease the threshold,
some clusters may decompose into smaller ones. Thus, the second and the third clusterings contain
more clusters than the first one.
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Exercise 1 Construct another clustering of these fifteen states with the same dissimilarity level of
10.

Exercise 2 Construct clusterings of these fifteen states consisting of four or five clusters. Find
corresponding threshold values.

Exercise 3 Find a dissimilarity value that generates a unique clustering.

Compare our clusterings once more. While building the second clustering, we relocated some
objects. Now, the group {TN, VA} of the second clustering does not belong completely to any
cluster in the first clustering. On the other hand, every cluster of the third clustering is contained
completely in a cluster of the first one. A process that forms a series of consecutive clusters
such that every cluster of the preceding level is a subset of a cluster in the next level, is called
hierarchical clustering. We begin with a completely disjoint clustering, where every object forms
its own single-element cluster. Then step by step we join (amalgamate) two or more clusters with
the smallest dissimilarity into larger ones, until we reach a threshold value. Such algorithms are
called agglomerative.

We can also proceed in the opposite direction, as in the example above. Namely, we can depart
from a conjoint clustering, when one cluster contains all the objects under consideration, and split
it repeatedly into smaller groups, until we reach either the threshold value or the completely disjoint
clustering. Such algorithms are called divisive.

Any problem involving classification of real data can not be reduced to applying a clustering
algorithm alone. Before that, the data must be collected and consistently presented, and dissim-
ilarity values must be assigned. After building the clusters, these groups are to be validated and
assessed. The results have to be properly interpreted. All these are crucial issues, because any al-
gorithm generates some clustering, but without further considerations we can not conclude whether
these clusters reflect real structure of data or this is just an artifact of the algorithm. We leave out
all these issues along with the problem of computer implementation and in this module consider
only clustering algorithms.

In the module we discuss hierarchical algorithms for clustering discrete sets of data. These
algorithms are based on the properties of a graph describing an initial collection of objects. Section
2 contains relevant graph-theoretical definitions — a reader familiar with graph theory can skip
this section. In Section 3, using a simple model example, we develop a single-link hierarchical
clustering algorithm. Section 4 is devoted to Hubert’s single-link algorithm. In Section 5 we
discuss a connection of the single-link hierarchical clustering with minimum spanning trees. Section
6 is devoted to another hierarchical clustering algorithm — Hubert’s complete-link algorithm. In
Section 7 we apply the single-link algorithm to a more realistic problem.

The partition clustering algorithms, based on the nearness of different objects, will be dis-
cussed in another module in this series. In the literature (see the list in the end of module) one
can find other approaches to clustering. This module is aimed at undergraduate students studying
discrete mathematics and/or statistics. The algorithms presented are simple and can be used in an
introductory computer science course.

Acknowledgment. The author is extremely grateful to the DIMACS center at Rutgers
University for their hospitality during the Reconnect ’98 and Reconnect ’99 conferences and to
Professor Catherine McGeoch for her kindness and generous help.
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2 DEFINITIONS

Our exposition uses basic concepts of graph theory, and here we remind our readers of some basic
definitions. For a detailed exposition of graph theory see, for example, [11], Chap. 7 and 8.
Intuitively, a graph G is a collection V of points called vertices. Some or all of these points are
connected by arcs called edges — we denote the set of all edges by E. We call such drawings
undirected geometrical graphs or just graphs3 and denote them by G = (V,E). An actual shape
of the edges makes no difference in our considerations. There is only one essential issue — which
pairs of vertices are connected and which pairs are not.

v
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v
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v
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v
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e
4

e
3

e
1

Figure 2.1: Graph G1.

The graph G1 (Figure 2.1) has five vertices labelled v1, . . . , v5 and four edges labelled e1, . . . , e4.
The vertex v5 is called isolated, because it is connected with no other vertex. Every edge has two
corresponding vertices called its endpoints. Thus, the vertices v1 and v2 are the endpoints of the
edge e1. An edge connecting the vertices vi and vj is often denoted by {vi, vj} or even by ei,j. The
edge is incident to each of its endpoints and vice versa. Two vertices are called adjacent if they are
the endpoints of the same edge. Thus, v1 and v2 are adjacent vertices but v1 and v4 are not.

Definition 2.1 Given a graph G = (V,E), any alternating sequence of its vertices and edges
P = (vi1 , ei1 , vi2 , ei2 , vi3 , . . . , eik , vik+1

), where vi ∈ V and ei ∈ E , is called a path (of length k)
in G, provided that in every consecutive triple (vij , eij , vij+1) the vertices vij and vij+1 are the
endpoints of the edge eij . The path P connects vertices vi1 and vik+1

. If vi1 = vik+1
, the path is

called a closed path or a cycle.

Exercise 4 Find two paths having length 3 in the graph G1 (Figure 2.1).

Definition 2.2 A graph G is called connected if, for each pair of its vertices vi and vj , there exists
a path connecting them.

Exercise 5 Are the graphs G1 (above) and G2 (see Figure 2.3 below) connected?

Definition 2.3 If every pair of vertices of a graph is adjacent, the graph is called complete. A
complete graph with n vertices is commonly denoted by Kn.

Exercise 6 Draw complete graphs K1, . . . ,K4.

Exercise 7 Give an example of a connected but not complete graph. What is a minimal number
of vertices in such graph?

3We consider only simple graphs, that is, graphs without loops and multiple edges.
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Definition 2.4 A graph G′ = (V ′, E′) is called a subgraph of a graph G = (V,E), if V ′ ⊆ V and
E′ ⊆ E. That is, if e ∈ E′ and vi, vj are its endpoints in G, then these vertices vi, vj must belong
to G′.

Definition 2.5 A connected subgraph G′ = (V ′, E′) of a graph G = (V,E) is called a connected
component of G if either G′ = G or no vertex in the set-difference V \ V ′ (that is, outside V ′) is
connected with any vertex in V ′.

Exercise 8 Find all connected components in the graphs G1 (Figure 2.1) and G2 (Figure 2.3).

Definition 2.6 An edge e in a graph G is called a cut-edge or a bridge if its removal increases the
number of connected components in the graph. For example, in the graph G1 only the edge e4 is
a cut-edge.

In many problems, it is useful to assign a piece of additional information, numerical or
otherwise, to some edges of a graph. This information may represent the length of a trip, or a
potential flow through the pipe, or directions like “One-Way” signs in streets. A numerical or
literal label is called the weight of an edge. If every edge of a graph has a weight, the graph is said
to be a weighted graph. The total sum of the weights of all edges is called the weight of the graph.

Definition 2.7 A connected graph without cycles is called a tree.

Figure 2.2: An example of a tree.

Exercise 9 Prove that every edge in a tree is a cut-edge.

Exercise 10 Prove that a tree with n vertices has n− 1 edges.

The graph G2 (Figure 2.3) is actually a subgraph of G1 above — we just removed the isolated
vertex v5. Compare the graph G2 (Figure 2.3) and a graph T = ({v1, v2, v3, v4}, {e1, e3, e4}) (Figure
2.4):

The graph T (Figure 2.4), in turn, is a subgraph of G2 — it contains all vertices of G2 and
some of its edges. Moreover, T is a tree containing all vertices of G2. Such a subgraph is called a
spanning tree of G2. We give a formal definition.

Definition 2.8 A subgraph G′ = (V ′, E′) of a graph G = (V,E) is called a spanning tree of G if
G′ is a tree and V ′ = V .

9



v
1

e
2

v
3

v

v
4

2

e
4

e
3

e
1

Figure 2.3: Graph G2.
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Figure 2.4: Graph T .

A graph may have several spanning trees. In a weighted graph, spanning trees may have
different weights; a spanning tree with minimal total edge weight over all spanning trees is called
a minimum spanning tree. Again, a graph might have several minimum spanning trees.

Exercise 11 Draw a graph having only one spanning tree.

Exercise 12 Find all spanning trees of the graph G2.

Exercise 13 Find all minimum spanning trees in the graph G3 (Figure 2.5):

1

2 2 4

3 35

2

1

3

4

Figure 2.5: Graph G3.

We also need a few definitions from set theory.

Definition 2.9 A family of sets U = {Xa,Xb,Xc, . . .} is called a partition of a set X if all sets
Xa,Xb,Xc, . . . (called terms of the partition) are non-empty mutually disjoint subsets of X, whose
union is equal to X; that is, if

1. ∅ �= Xa ⊆ X, ∅ �= Xb ⊆ X, . . .

2. All pairwise intersections are empty: Xa ∩Xb = ∅, etc., and

3. Xa ∪Xb ∪ . . . = X.
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Definition 2.10 A partition V of a set X is called nested in a partition U of X if every term of
V is a subset of a term of U .

For example, a family of sets U = {X1,X2,X3}, where X1 = {a, b}, X2 = {c}, and X3 = {d, e, f},
forms a partition of the set X = {a, b, c, d, e, f}. A family V = {Y1, Y2, Y3, Y4, Y5}, where Y1 = {a},
Y2 = {b}, Y3 = {c}, Y4 = {d}, and Y5 = {e, f}, forms another partition of the same set X =
{a, b, c, d, e, f}, which is nested into the partition U .

Exercise 14 (a) Prove that the set of whole numbers and the set of negative integer numbers form
a partition of the set Z of all integers.

(b) Prove that the set of natural numbers, the set of negative integer numbers, and the
one-element set {0} form another partition of Z.

(c) Which one (if any) of the partitions in parts a) and b) is nested in another partition?
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3 MODEL EXAMPLE

In this section, we consider the following model problem. A certain state has eight cities. Hereafter,
we denote them by c1, c2, . . . , c8. The Government wants to connect all of them by highways. It
is possible to build a highway connecting every pair of cities. In graph theory terms, such a road
network can be described as the complete graph K8. However, that project is very expensive. On
the other hand, it is possible to link every city with only one or two other cities, thus having a
minimal number of roads built. Even though it is less expensive to construct, this project (which can
be modeled by a minimum spanning tree) is not good for future commuters, who will have to waste
their time and fuel, because some pairs of cities do not have direct routs. Thus, a mathematician
has offered an intermediate approach - he has suggested to split all the cities into several groups
— clusters. The cities within each cluster are to be connected completely, but any two different
clusters should be connected by only one road.

A cluster should, obviously, include the cities that are close to each other. The closeness here
can be measured in various ways. The Government provides information about the average number
of commuters in both directions between the cities. Let us, say, these amounts of commuters, in
thousands of people per day, are 24 between the cities c1 and c2, 2 between c1 and c6 and 6 between
c2 and c6. Thus, there is a large flow of commuters between c1 and c2 — in this sense these two
cities are near to each other, even though they may be located far away from each other. So, they
are similar and should be in one cluster. Yet, c6 is distant from them. However, if we use these
quantities — 24, 2, 6, etc., as a measure of closeness (a generalized distance), then the distance
between nearby cities is greater than the distance between the distant ones.

In this problem and, as we have already mentioned, in clustering theory generally, it is more
suitable to use the dissimilarities of objects rather than their similarities. We can convert the
commuter data into dissimilarity values in some convenient way, perhaps by taking inverses or
subtracting from some maximum value – see Table 3.1 below.

Definition 3.1 A square symmetric4 matrix (table) with non-negative elements, whose main di-
agonal contains only zeros, is called a dissimilarity matrix (table).

Table 3.1 below is a dissimilarity table for our model example. We consider the total amount
of commuters in both directions, so the table is symmetrical with respect to the main diagonal and
we fill in only its upper triangle. Moreover, since we want to start with a simple example, all the
entries are different (the table contains no ties) and they are all natural numbers from 1 to

(8
2

)
= 28.

The mathematician must now solve the problem of combining the cities into clusters according
to this dissimilarity matrix. A procedure for building clusters is called a clustering algorithm. At
the initial step, the algorithm treats each object under consideration as a single-element cluster.
The set of these clusters is called the clustering of level zero. If we use graph-theory language, we
can depict this clustering as a graph having only isolated vertices, without any edges.

Then, at every step, the algorithm uses only one edge to combine two closest (that is, with
the smallest dissimilarity) clusters into a new one. Such an edge connecting two clusters of the
same level into a cluster of the next level is called a link. That is why this and similar procedures
are called single-link clustering, or single linkage. In this section we begin with a descriptive version
of an agglomerative single-link clustering algorithm, apply it to the model example, and then give
a formal treatment of the algorithm. In Section 4 we present a version of the algorithm known as
Hubert’s single-link algorithm [6, 7].

4In this module we do not consider non-symmetrical case.
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c1 c2 c3 c4 c5 c6 c7 c8

c1 0 5 10 7 22 27 25 13
c2 0 8 12 28 23 17 6
c3 0 1 9 19 3 26
c4 0 4 14 2 21
c5 0 11 16 18
c6 0 15 20
c7 0 24
c8 0

Table 3.1: The dissimilarity table for the model example.

We denote the consecutive clusterings by boldface capital letters with one index C0,C1,C2,
and so forth. The italic capital letters with double indices, Ckl, denote clusters — the first index,
k, means the level of clustering and the second index, l, stands for the number of this particular
cluster in the clustering of the kth level. Thus, C34 denotes the fourth cluster in the third-level
clustering C3.

Now we build clusterings for the model example. In our notations, {ci, cj} is a pair (two-
element set) comprising the ith city ci and jth city cj , and a number d(ci, cj), or d(i, j) for short,
at the crossing of the ith row and jth column stands for the dissimilarity of these two cities; due to
the symmetry, d(i, j) = d(j, i). First, we rearrange all pairs of the cities in ascending order of their
dissimilarities (Table 3.2).

At the initial step, we form a disjoint clustering, such that each city forms its own cluster
containing only one element. This is C0 — the clustering of level zero:

C0 = {C01, C02, C03, C04, C05, C06, C07, C08} where C0i = {ci}, i = 1, . . . , 8.

The dissimilarity diss(C0i, C0j) between two clusters of level zero is defined to be the dissimilarity
between the corresponding cities, that is, diss(C0i, C0j) = d(ci, cj).

It is helpful to visualize the process of clustering by drawing graphs of special kind, called
threshold graphs.

Definition 3.2 Given a dissimilarity matrix of size n and a nonnegative number v, the threshold
graph G(v) is a (simple) weighted graph with n vertices corresponding to n entities under consid-
eration, such that two vertices vi and vj are adjacent if and only if d(ci, cj) ≤ v. The weight of an
edge ei,j connecting two vertices vi and vj is the dissimilarity d(ci, cj).
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Pair {ci, cj} Dissimilarity d(i, j)
{c3, c4} 1
{c4, c7} 2
{c3, c7} 3
{c4, c5} 4
{c1, c2} 5
{c2, c8} 6
{c1, c4} 7
{c2, c3} 8
{c3, c5} 9
{c1, c3} 10
{c5, c6} 11
{c2, c4} 12
{c1, c8} 13
{c4, c6} 14
{c6, c7} 15
{c5, c7} 16
{c2, c7} 17
{c5, c8} 18
{c3, c6} 19
{c6, c8} 20
{c4, c8} 21
{c1, c5} 22
{c2, c6} 23
{c7, c8} 24
{c1, c7} 25
{c3, c8} 26
{c1, c6} 27
{c2, c5} 28

Table 3.2: The same dissimilarity table (Table 3.1) rearranged in ascending level of the dissimilar-
ities.

So, two vertices are adjacent in G(0) if and only if their dissimilarity is zero; if there is no
such a pair of vertices, G(0) contains only n isolated vertices and no edge. If a threshold value v is
greater than or equal to the largest entry of the dissimilarity matrix, we get a complete threshold
graph and denote it by G(∞).

The smallest dissimilarity in the problem is d(3, 4) = 1. So that, if the threshold value (an
acceptable level of dissimilarity) is less than 1, we can not combine any two cities in one cluster and
have to stop here. In terms of our model example, that means that no cluster has an infrastructure,
and we have to build a road between all pairs of cities (Figure 3.2).

Suppose, the threshold is at least 1. Then we have to consider all 28 pairwise unions
C01 ∪ C02, C01 ∪ C03, . . . , C01 ∪ C08, C02 ∪ C03, . . . , C02 ∪ C08, . . . ., C07 ∪ C08. In a corresponding
graph (the same Figure 3.2) its 28 edges {1, 2}, {1, 3},. . ., {1, 8}, {2, 3}, . . ., {7, 8} with weights
d(1, 2), . . . , d(7, 8) correspond to these 28 unions.

Since the lowest weight is d(c3, c4) = 1, the clusters C03 and C04 have the smallest dissimilarity
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Figure 3.1: The threshold graph G(0) for the model example. It corresponds to the C0-clustering.

c
1

c
6

c
5

c
2

c
8

c
7

c
4

c
3

8

24 1

Figure 3.2: The complete graph G(∞) for the model example; only a few weights (dissimilarities)
are shown.
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diss(C03, C04) = d(c3, c4) = 1. In terms of our problem they have the largest flow of commuters
between them. Thus, we have to connect them first, and we amalgamate these two clusters of
level zero in one cluster of the first level. All the other clusters of level zero automatically become
clusters of the first level. This way, we get the first-level clustering C1:

C1 = {C11, C12, C13, C14, C15, C16, C17},
where C11 = C03 ∪C04 = {c3, c4}, C1,i = C0,i−1 = {ci−1} for i = 2, 3, and C1i = C0,i+1 = {ci+1} for
i = 4, . . . , 7. This clustering is shown in Figure 3.3 where the connected component with the vertices
{c3, c4} corresponds to the cluster C11. The dissimilarities between the clusters C12, . . . , C17 are
the same as those between the corresponding “old” clusters of level zero. The dissimilarity between
C11 and any cluster {ci}, i = 1, 2, 5, . . . , 8, is the smaller of d(c3, ci) and d(c4, ci). For instance,
diss(C11, C14) = min{d(c3, c5); d(c4, c5)} = min{9; 4} = 4.

c
1

c
6

c
5

c
2

c
8

c
7

c
4

c
3

Figure 3.3: The threshold graph G(1) corresponds to the first-level clustering C1 — only two
vertices are connected.

The clustering in Figure 3.3 contains one two-element cluster {c3, c4} and 6 one-element
clusters {c1}, {c2}, {c5}, {c6}, {c7}, {c8}.

It should be repeated that while building C1 from C0, we have used only one link — in the
sense that the threshold graph corresponding to C1 contains just one new link, one more edge than
the graph corresponding to C0. All the 28 pairs of vertices {C01, C02}, . . . , {C07, C08}, each pair
taken together with the incident edge, represent connected two-vertex subgraphs of the graph in
Figure 3.2 — we have selected among them a subgraph with the minimal weight and linked two
vertices of this chosen subgraph into a cluster. Again in terms of our model, we have to build a
road between c3 and c4. This “in-cluster” road is shown in bold in Figure 3.4. Then we have to
connect each other city with either c3 or c4, but not with both, using “between-clusters” roads.

Given two clusters, C11 = {c3, c4} and C1i = {ci}, i = 1, 2, 5, . . . , 8, the decision on what city
(c3 or c4) to connect with ci, is based on the dissimilarity between the clusters C11 and C1i . For
example, since diss(C11, C14) = min{d(c3, c5); d(c4, c5)} = d(c4, c5) = 4, the cluster {c5} is to be
connected with c4. A corresponding road map may look like one in Figure 3.4.

If the threshold is 1, we should stop here. However, if we can accept a larger threshold, we are
to continue. To build a second-level clustering, we proceed in the same way. Namely, we consider
all pairs of the first-level clusters and look for a connecting link with the smallest dissimilarity. The
edge {c3, c4}, which had been utilized before, may not be used again. Among the unused edges, the
smallest dissimilarity is d(c4, c7) = 2, and we form the second-level cluster C21 as a set — union of
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Figure 3.4: A road map corresponding to the clustering C1 = {C11, C12, C13, C14, C15, C16, C17}.
Keep in mind that the “between-clusters” roads reflect the dissimilarities, not the real distances
between the cities.

two first-level clusters containing the cities c4 and c7. To form this cluster, we have used a single
link — the edge {c4, c7}. All the other first-level clusters move into the second-level clustering C2

unchanged, after just renumbering (Figure 3.5):

C2 = {C21, C22, C23, C24, C25, C26}
where C21 = C11 ∪C16 = {c3, c4, c7}, C2i = C1i, i = 2, . . . , 5, and C26 = C17.
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Figure 3.5: The threshold graph G(2) corresponds to C2 — one more edge is added; C2 consists
of one three-element cluster {c3, c4, c7} and five one-element ones {c1}, {c2}, {c5}, {c6}, {c8}.

This clustering corresponds to the threshold value of 2. It is worth noting that the dissimi-
larity d(3, 7) between the objects c3 and c7 in the cluster C23, is greater than 2, but there are edges
in the cluster, connecting these vertices, namely, {c3, c4} and {c4, c7}, such that their weights do
not exceed the threshold value. This is an important feature of single-link methods: for any two
objects x and y in a cluster there exists a sequence of objects in this cluster connecting x and y,
such that the dissimilarity of any two neighbors in this sequence does not exceed the threshold value,
even though the dissimilarity of x and y may be greater than the threshold.

We continue building a hierarchical clustering for our model example. Suppose we can accept
a value of the threshold greater than 2. The next unused dissimilarity d(c3, c7) gives nothing new,

17



because the cities c3 and c7 have been already connected in a cluster. Therefore, d(c3, c7) does not
generate a next clustering (Figure 3.6).
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Figure 3.6: The threshold graph G(3) does not generate a new clustering.

Thus, we skip d(c3, c7) and use the next dissimilarity d(c4, c5) = 4. Therefore, the next
clustering, corresponding to the threshold value of 4, is C3 = {{c3, c4, c5, c7}, {c1}, {c2}, {c6}, {c8}}.
Five sets in C3 represent all five clusters of the third level (Figure 3.7). Again, the dissimilarity
between some vertices in the first cluster C31 is greater than 4, but for any two vertices there exists
a connecting path such that every edge in the path has a weight (dissimilarity) of not more than
4. In formal terms, we consider all the unions C2a ∪ C2b formed by a single edge and look for the
link with the smallest weight, which generates a new cluster.
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Figure 3.7: The threshold graph G(4) contains one new edge. It corresponds to C3-clustering
containing one four-element cluster {c3, c4, c5, c7} and four one-element ones {c1}, {c2}, {c6}, {c8}.

The next smallest weight to use is d(1, 2) = 5, and if we are willing to continue and use this
value of the threshold, we have to combine {c1} and {c2}, that is, C4 = {{c1, c2}, {c3, c4, c5, c7}, {c6},
{c8}}.

A road map corresponding to the fourth-level clustering C4 is shown in Figure 3.9.
This way, we construct the hierarchy of consecutive clusterings, corresponding to increasing

values of the threshold. It is now the turn of d(2, 8) = 6, and the fifth-level clustering is C5 =
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Figure 3.8: The threshold graph G(5) generates the fourth-level clustering C4 consisting of one
four-element cluster {c3, c4, c5, c7}, one two-element {c1, c2}, and two one-element ones {c6}, {c8}.
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Figure 3.9: A road map corresponding to the clustering C4 = {{c1, c2}, {c3, c4, c5, c7}, {c6}, {c8}}.
Two first clusters are connected by the edge {c1, c4}, because this edge has the smallest dissimilarity
among the edges connecting the two clusters.
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{{c1, c2, c8}, {c3, c4, c5, c7}, {c6}}.
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Figure 3.10: The threshold graph G(6) generates the fifth-level clustering C5, which contains one
four-element cluster {c3, c4, c5, c7}, one three-element cluster {c1, c2, c8}, and a one-element cluster
{c6}.

The next unused edge with the lowest weight is {c1, c4} with d(1, 4) = 7 and we come up
with the next clustering C6 = {{c1, c2, c3, c4, c5, c7, c8}, {c6}} (Figure 3.11).
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Figure 3.11: The threshold graph G(7) generates the sixth-level clustering C6 containing one seven-
element and one one-element clusters {c1, c2, c3, c4, c5, c7, c8} and {c6}.

The edges with weights 8, 9, and 10 generate no new clusters. Finally, using d(5, 6) = 11
we get the one-cluster clustering (Figure 3.12), which is called conjoint: C7 = {C7,1}, where
C7,1 = {c1, c2, c3, c4, c5, c6, c7, c8}.

It is worth noting that in terms of our model, both C0 and C7 result in the same road network
as shown in Figure 3.2.

Having done the job, the mathematician made a presentation, showing possible road networks
corresponding to all consecutive levels of clustering. In particular, he showed Figures 3.2, 3.4, and
3.9. A road map corresponding to the clustering C4 (Figure 3.9) was actually accepted as a plan
for a future construction.
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Figure 3.12: The threshold graph G(11); it generates the conjoint clustering C7 = {C7,1}.

Exercise 15 Draw road maps corresponding all other levels of clustering (C2,C3,C5,C6) in the
model example.

We see that the algorithm above can be stated in the following formal way suitable for
computer realization, which is called a pseudocode form.

AGGLOMERATIVE SINGLE-LINK ALGORITHM

Given a set of n objects X = {x1, x2, . . . , xn}, their dissimilarity table, and a threshold value v.

1. Rearrange the dissimilarity table in ascending order.

2. Set m = 0 and form a completely disjoint clustering of zero level C0 = {C01, C02, . . . , C0n}
where C0i = {xi}, i = 1, . . . , n.

3. Set m := m + 1 and consider the first unused entry in the dissimilarity table. Let it be, say,
d(xk, xl). If d(xk, xl) > v, stop. Otherwise, there are two possibilities.

A) The set {xk, xl} is a subset of an existing cluster. Then skip d(xk, xl) and return to step 3
(increase m).

B) The objects xk and xl belong to different existing clusters, say xk ∈ Cm−1,a and xl ∈ Cm−1,b.
Form a cluster of the mth level as a union cm,1 = Cm−1,a ∪ Cm−1,b, renumerate all the other
clusters of the (m− 1)th level to the mth level unchanged, and return to step 3 (increase m).

♦

Remark 3.3 We can get the conjoint clustering before we achieve the threshold level.

Remark 3.4 Given n objects, there are n levels of clustering — C0, . . . ,Cn−1, where the last one
is the conjoint clustering. Moreover, as far as the dissimilarity table contains n(n − 1)/2 entries,
there are no more than n(n−1)/2+1 threshold graphs (exactly n(n−1)/2+1 if there are no ties).

21



Remark 3.5 Since we look only for disjoint clusters, a clustering of any level is just a certain
partition of the initial set of objects. Therefore, our algorithm generates a family of nested partitions
of the given set. Moreover, we know (see, for example, [11], p. 412) that every partition of a set
generates an equivalence relation on this set and vice versa. This relationship is dealt with in the
next exercise.

Exercise 16 Describe explicitly the equivalence relations corresponding to the partitions of the
set C = {c1, c2, c3, c4, c5, c6, c7, c8} generated by the clusterings C0, . . . ,C7.

Exercise 17 Construct dissimilarity tables for a set with n elements such that there are exactly
2, 3, . . . , n(n− 1)/2 + 1 threshold graphs.

Exercise 18 Change the {c3, c7} entry in Table 3.2 to 2 and {c2, c8} entry to 7, respectively, so
that a new table contains ties. Apply the algorithm of this section to this new table and compare
the resulting clusterings.

Exercise 19 Using the algorithm above, build all consecutive clusterings of the set X = {x1, x2, . . . ,
x6}, given the dissimilarity table 3.3 below. What level of clustering corresponds to the threshold
level of 3? Of 2?

x1 x2 x3 x4 x5 x6

x1 0 6 8 3 4 8
x2 0 2 4 1 5
x3 0 6 2 3
x4 0 9 2
x5 0 4
x6 0

Table 3.3: The dissimilarity table for Exercise 19.
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4 HUBERT’S SINGLE-LINK ALGORITHM

In the preceding section we considered an agglomerative single-link algorithm and applied it to
the model example. Each cluster is a set of vertices, so that a cluster generates a subgraph of
the complete graph G(∞) corresponding to the initial set of entities. Vice versa, each connected
subgraph of this complete graph can be viewed as a cluster consisting of the vertices of this subgraph.
Therefore, we will freely interchange, on one hand, the language of objects and their collections —
clusters — and, on the other hand, the language of vertices, graphs, and subgraphs. Hubert [6]
gave versions of a single-link algorithm and a complete-link algorithm based on the concept of a
threshold graph. In this section we give a formal treatment of Hubert’s single-link algorithm [6,
7]. This algorithm leads to the same clustering as the agglomerative algorithm of the preceding
section. However, we present it here to introduce some important notations used in discussing more
difficult complete-link algorithm in the next section. First of all, some more designations are in
order.

As always, we denote the clustering of the mth level by Cm = {Cm1, Cm2, . . . ,
Cm,n(m)}, m = 0, 1, 2, . . ., where n(m) stands for the number of clusters contained in Cm. In
particular, n(0) = n. After Cm has been generated, we consider all pairwise unions Cma ∪ Cmb,
a, b = 1, . . . , n(m), a �= b; there are n(m)(n(m)− 1)/2 of these unions. A union Cma ∪Cmb contains
some objects, say, xi, . . . , xj . Given a union Cma∪Cmb, we can form several connected subgraphs of
the threshold graph G(v) spanned on these vertices xi, . . . , xj . Namely, to make up such a subgraph
from two clusters Cma and Cmb , we consider all possible connections of a vertex from Cma with a
vertex from Cmb using only one edge. Let Sm(a, b) = min{d(xi, xj)|xi ∈ Cma, xj ∈ Cmb} stand for
the smallest dissimilarity between a vertex in Cma and a vertex in Cmb. If the initial dissimilarity
matrix contains ties, there may be several edges with the minimal weight — we can select any one
of them. At every step we decrease the number of clusters by 1.

The function Sm = Sm(a, b) is defined on all pairs of clusters {Cma, Cmb} of the mth level.
The letter “S” in Sm(a, b) stands for “Single-linkage”. Since we only consider finite sets, this
function attains its minimum value on a certain pair of clusters, Cmp and Cmq. Let us denote this
minimum value over all pairs of indices {a, b} by mina,b{Sm(a, b)} = Sm(p, q) and also denote the
dissimilarity of the edge that links these clusters Cmp and Cmq by dmin(p, q).

Next we present Hubert’s single-link algorithm in standard pseudo-code notation.

HUBERT’S SINGLE-LINK ALGORITHM

Given a set of n objects X = {x1, x2, . . . , xn}, the dissimilarity table, and a threshold value v.

1. Set m = 0 and form the disjoint clustering of zero level:

C0 = {C01, C02, . . . , C0n}
consisting of n one-element clusters C0k = {xk}, k = 1, . . . , n. Define the dissimilarities
between the clusters of level zero as diss(C0i, C0j) = d(xi, xj).

2. Set m := m + 1, calculate the values Sm−1(a, b) = min{d(xi, xj)|xi ∈ Cm−1,a, xj ∈ Cm−1,b}
for all pairs of indices {a, b}, a �= b, and also find their minimum value mina,b{Sm−1(a, b)} =
Sm−1(p, q). To form the next clustering Cm, we merge those two clusters Cm−1,p and Cm−1,q,
whose second indices are p and q, into a cluster Cm,1 = Cm−1,p ∪Cm−1,q by making use of an
edge with the weight dmin(p, q). If there are ties, that is, there exist several edges with the
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same weight dmin(p, q), we can use any one of them. All the other clusters of the (m − 1)th

level become the clusters of level m without changes but just renumbering.

3. Update the dissimilarity table as follows: The dissimilarity between every two “old” clus-
ters (promoted from the preceding level) remains the same. The dissimilarity between
Cm,1 and any cluster Cm−1,r, r �= p, r �= q, is the smaller of diss(Cm−1,p, Cm−1,r) and
diss(Cm−1,q, Cm−1,r).

4. Continue until we reach the threshold value v or all the objects are merged into one conjoint
cluster, whichever occurs first.

♦

Remark 4.1 As we see in the example, not every threshold graph generates a new clustering.

Remark 4.2 It should be noted that finding a next clustering involves calculating the double
minimum value

Sm(p, q) = min
a,b
{Sm(a, b)} = min

a,b
{min{d(xi, xj)|xi ∈ Cma, xj ∈ Cmb}}.

We illustrate this algorithm on the same model example from preceding section. So that,
in the rest of this section we denote the objects by ci. The algorithm starts with single-element
clusters corresponding to each city c1, . . . , c8. That is, we set m = 0, and form the disjoint clustering
C0 = {C01, C02, . . . , C0n}, where C0k = {ck}, k = 1, . . . , n. This clustering corresponds to a
subgraph of the graph G(∞) with no edges — every vertex is an isolated one.

Next, set m = 1. To every union C0a ∪ C0b, there corresponds a unique connected sub-
graph of G(∞); this subgraph contains two vertices and their incident edge. Therefore, at this
step dmin = d(c3, c4), p = 3, q = 4, and S0(p, q) = 1. Thus, we have to combine the clusters
C03 and C04 in a cluster C11 of the first level, promote all other zero-level clusters to the first
level, and update the dissimilarity table. For example, since C12 = {c1}, we get diss(C11, C12) =
min{diss(C0,1, C0,3); diss(C0,1C0,4)} = min{d(c1, c3); d(c1, c4)} = min{10; 7} = 7.

Now, set m = 2. In addition to the same two-vertex subgraphs with vertices other than c3

and c4 that were considered before, we have to look for connected subgraphs with three vertices.
Namely, we consider the subgraphs, which contain c3 and c4, their common edge, one other vertex,
and an edge connecting the latter with either c3 or c4. The minimal dissimilarity is now S1(4, 7) = 2
and we have to connect clusters {c7} and {c3, c4} in a cluster of the second level.

At the next step set m = 3. In the threshold graph G(2), there are one three-element and five
one-element clusters. The smallest unused dissimilarity is d(3, 7) = 3, but adding the corresponding
edge to G(2) does not create a new cluster. Therefore, we have to leave out d(3, 7) and proceed to
d(4, 5) = 4. This way, we build on the clusterings of all higher levels, up to C7.

When amalgamating the clusters, step by step, we are increasing the threshold value and
respectively, we are generating the threshold graphs. The latter were drawn in section 3 (Figures
3.1 .. 3.3, 3.5 .. 3.8, 3.10 .. 3.12).

To visualize the process of clustering, a special kind of tree-like graph is also used. These
graphs are called dendrograms. Below we build the single-link dendrogram corresponding to our
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model problem. It is clear from this example how to build a dendrogram for any problem. It should
be noted that different horizontal levels of the dendrogram, going down, correspond to consecutive
clusterings in the problem.
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Figure 4.1: Dendrogram corresponding to the model example.

Any cutting of a dendrogram generates a clustering. Thus, cutting at a level A←→ A gives
the clustering C3 = {{c1}, {c2}, {c8}, {c3, c4, c7, c5}, {c6}}, sectioning at a level B←→ B generates
the clustering C5 = {{c1, c2, c8}, {c3, c4, c5, c7}, {c6}}.

Exercise 20 Using Hubert’s single-link algorithm, build all consecutive threshold graphs and clus-
terings of the set X = {x1, x2, . . . , x6}, given the dissimilarity Table 3.3. What levels of clustering
correspond to the threshold levels of 2? Of 3? Of 4?

Exercise 21 Apply Hubert’s single-link algorithm to the dissimilarity table of Exercise 18 and
compare the results with the clusterings obtained in that exercise.

25



5 SPANNING TREES

Consider a connected weighted graph G4 (Figure 5.1), where w1 = 2, w2 = 5, w3 = 1, w4 = 3:
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Figure 5.1: Graph G4.

The graph in Figure 5.1 has three weighted spanning trees:
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Figure 5.2: Spanning trees T1, T2, T3.

These trees have different weights: W (T1) = w2 + w3 + w4 = 9, W (T2) = w1 + w3 + w4 = 6,
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W (T3) = w1 + w2 + w4 = 10, with T2 having the smallest weight — it is the minimum spanning
tree of the graph G4.

Clustering algorithms can be developed in terms of spanning trees. To discuss this connection,
we first present here Kruskal’s algorithm for finding a minimum spanning tree in a connected graph.
Connectedness is, obviously, a necessary condition for a graph to have a spanning tree.

KRUSKAL’S ALGORITHM

Given a connected weighted graph G(V,E) with n vertices. We assume that all weights are
nonnegative numbers.

1. Select an edge e with a minimum weight. If a graph has several edges with equal weights, we
can choose any of them. The edge e and its end-points form an initial subgraph T1 of G.

2. For m = 1, 2, . . . , n − 2, select an unused edge with the smallest weight such that this edge
does not form a cycle with the edges selected earlier. In particular, we can use an edge with
the same weight as the one in the previous step. Add the edge chosen and its end-points, if
necessary, to the subgraph Tm generated at the previous step, to generate the next subgraph
Tm+1.

3. The subtree Tn+1 is a minimum spanning tree in G.

♦
Remark 5.1 The condition of not forming cycles in Step 2 is in a sense equivalent to the restriction
in a single-link algorithm, which forbids using an edge connecting two vertices that already belong
to the same cluster.

Remark 5.2 Not every graph among T2, . . . , Tn−2 must be a tree, but each has a property that
every connected component is a tree; such graphs are (obviously) called forests.

Exercise 22 Prove that the algorithm generates a minimum spanning tree in any connected graph.

Now we build a minimum spanning tree for the basic graph (Figure 3.2) in the model example.
The next figures exhibit all steps of this process.
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Figure 5.3: Step One. The first subtree T1 with only one edge is formed. Its two vertices {c3, c4}
together with all other isolated vertices precisely correspond to the first level clustering C1.
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Figure 5.4: Step Two. The second edge is added. This drawing corresponds to the subtree T1 and
to the clustering C2.

The next smallest weight is d(3, 7) = 3. However, we can not choose the edge {c3, c7} because
it forms a cycle with the previously selected edges {c3, c4} and {c4, c7}. It should be noted that
when we worked out Hubert’s single-link algorithm in Section 4, we also could not choose the edge
{c3, c7} since it had not set up a new cluster. Thus, the next subgraphs are:
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Figure 5.5: Step Three. This subtree with three edges corresponds to the clustering C3.
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Figure 5.6: Step Four. The subgraph T4 is not a tree, since it is not connected. It consists of two
subtrees — with three edges and with one edge. This drawing corresponds to the clustering C4.
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Figure 5.7: Step Five. This drawing corresponds to the subgraph T5 and to the clustering C5.
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Figure 5.8: Step Six. Two subtrees merged into the subtree T6. This drawing corresponds to the
clustering C6.

And finally, at the last step we obtain a minimum spanning tree T7 of the initial graph:
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Figure 5.9: The minimum spanning tree of the graph G(∞); its weight is w(T ) = 36.

Note that we have exactly repeated all the steps in the construction of consecutive clusterings
(Figures 3.1..3.12) in the model example. So that, while building a minimum spanning tree in a
graph, we simultaneously generate single-link hierarchical clusterings of the set of vertices of the
graph. Conversely, the agglomerative clustering algorithm generates a minimum spanning tree.
Thus, the problem of constructing a single-link clustering and that of constructing a minimum
spanning tree are, in this sense, equivalent.

Moreover, a minimum spanning tree generates straightforwardly a divisive single-link clus-
tering algorithm: given a minimum spanning tree, we can go backward and remove the edges,
one at a time, starting from the heaviest one. In the model example, the minimum spanning tree
corresponds to the conjoint clustering C7. Removing the edge with d(c5, c6) = 11 off the spanning
tree, we get the C6-clustering. After that, removing the edge with d(c1, c4) = 7, we generate the
C5-clustering, and so forth.

Exercise 23 Find a minimum spanning tree in graph G5 (Figure 5.10).
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Figure 5.10: Graph G5.

Exercise 24 Considering the weights of the edges of graph G5 as the dissimilarities of the objects
V1, . . . , V5, use the minimum spanning tree from Exercise 23 to construct the single-link clusterings
of these objects.
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6 HUBERT’S COMPLETE-LINK ALGORITHM

In this section we consider a complete-link clustering algorithm. An essential distinction between
single-link and complete-link algorithms is the rule of merging two clusters into one of a higher
level. Instead of connected subgraphs of the threshold graph G(∞) used in the single linkage, now
we consider the maximum complete subgraphs of G(∞). As we shall see in examples, single linkage
and complete linkage may result in different clusterings. In this section we use the same notations
as in Section 4 but consider only dissimilarity matrices without ties5.

Again, we start with an informal description of the algorithm. Given the clustering Cm =
{Cm1, Cm2, . . . , Cm,n(m)} of the mth level, m = 0, 1, 2, . . ., we consider all pairwise unions Cma∪Cmb,
a, b = 1, . . . , n(m), a �= b. Suppose, the union Cma∪Cmb contains objects xi, . . . , xj . While building
a single-linkage, we looked for a single link with the smallest dissimilarity. Now, however, we are
adding, one at a time, edges connecting a vertex in Cma with a vertex in Cmb, in increasing order
of their dissimilarities, until we form a complete subgraph (in the sense of Definition 3) of the
threshold graph G(∞) spanned on all these vertices xi, . . . , xj . Let �m(a, b) stand for the maximal
dissimilarity over all edges used in this construction, that is,

�m = �m(a, b) = max{d(xi, xj)|xi ∈ Cma, xj ∈ Cmb}.

Similarly to Sm, �m is a function on pairs of clusters of the mth level. Let {Cmp, Cmq} denote a
pair of clusters where this function attains its minimum value and denote the minimum value by
�m(p, q) = mina,b{�m(a, b)}. To form the clustering Cm+1, we merge these two clusters Cmp and
Cmq.

HUBERT’S COMPLETE-LINK ALGORITHM

Given a set X = {x1, x2, . . . , xn}, the dissimilarity table, and a threshold value v.

1. Set m = 0, and form the disjoint clustering of level zero:

C0 = {C01, C02, . . . , C0n}

consisting of n one-element clusters C0k = {xk}, k = 1, . . . , n. Define the dissimilarities
between the clusters of level zero as diss(C0I , C0j) = d(xi, xj).

2. Set m := m+1 and calculate the values Cm−1(a, b) = max{d(xi, xj)|xi ∈ Cm−1,a, xj ∈ Cm−1,b}
for all pairs of indices {a, b} and their minimum value mina,b Cm−1(a, b) = Cm−1(p, q). To
form the next clustering Cm, we look for two clusters Cm−1,p and Cm−1,q, whose second indices
are p and q, and define Cm,1 = Cm−1,p ∪Cm−1,p. All the other clusters of the (m− 1)th level
become, after renumbering, the clusters of level m without changes.

3. Update the dissimilarity table as follows: The dissimilarity between every two “old” clusters
(promoted from the preceding level) remains the same. The dissimilarity between the “new”
cluster Cm,1 and any “old” cluster Cm−1,r with r �= p and r �= q is the smaller of the two
dissimilarities diss(Cm−1,p, Cm−1,r) and diss(Cm−1,q, Cm−1,r).

5Clustering in the presence of ties is discussed, for example, in [7], p. 76.
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4. Continue until we reach the threshold value v or all the objects are merged into one conjoint
cluster, whichever occurs first.

♦

Remark 6.1 In step 2 we combine two clusters into a new one only when we reach an edge with the
maximal dissimilarity between the entities in the two clusters; so to say, we link them completely.
In terms of graphs, we merge two complete subgraphs Gp and Gq by using all edges with one end
in Gp and another end in Gq.

Remark 6.2 Unlike the single linkage where we calculate a double minimum of the dissimilarities
(first over a fixed pair of clusters and then over all pairs of clusters — see Remark 4.2 after Hubert’s
single-link algorithm), in the complete linkage we calculate a minimum of the maximal values: first
we calculate the maximal dissimilarity of the objects over a fixed pair of clusters and then the
minimum of these maximums over all pairs of clusters.

We apply this algorithm to our model example with the dissimilarity table reproduced in the
next page. A graph generated by two vertices c3 and c4 is a complete subgraph (it is isomorphic
to K2) of the threshold graph G(1):
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Figure 6.1: The threshold graph G(1).

Therefore, first two clusterings are the same as in the single-link case:

C0 = {C01, C02, C03, C04, C05, C06, C07, C08},

where C0i = {ci}, i = 1, . . . , 8, and C1 = {C11, C12, C13, C14, C15, C16, C17}, where C11 = C03 ∪
C04 = {c3, c4}, C1,i = C0,i−1 = {ci−1} for i = 2, 3, and C1i = C0,i+1 = {ci+1} for i = 4, . . . , 7.

However, the threshold graph G(2) does not contain a complete subgraph — its subgraph,
spanned by the vertices c3, c4, and c7, is not a complete graph. Thus, even though G(2) generates
a single-link clustering (see Section 4), it does not generate a complete-link clustering (see Figure
6.2).
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Pair {ci, cj} Dissimilarity d(i, j)
{c3, c4} 1
{c4, c7} 2
{c3, c7} 3
{c4, c5} 4
{c1, c2} 5
{c2, c8} 6
{c1, c4} 7
{c2, c3} 8
{c3, c5} 9
{c1, c3} 10
{c5, c6} 11
{c2, c4} 12
{c1, c8} 13
{c4, c6} 14
{c6, c7} 15
{c5, c7} 16
{c2, c7} 17
{c5, c8} 18
{c3, c6} 19
{c6, c8} 20
{c4, c8} 21
{c1, c5} 22
{c2, c6} 23
{c7, c8} 24
{c1, c7} 25
{c3, c8} 26
{c1, c6} 27
{c2, c5} 28

Table 6.1: Dissimilarity table (Table 3.2) for the model example.
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Figure 6.2: The threshold graph G(2). The edge {c4, c7} is dotted because it does not generate the
next level complete-link clustering.
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The threshold graph G(3) contains a complete subgraph, isomorphic to K3, spanned by the
vertices {c3, c4, c7}:
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Figure 6.3: The threshold graph G(3).

So that, we merge these three vertices into a cluster and the next complete-link clustering
is C2 = {C21, C22, C23, C24, C25, C26}, where C21 = C11 ∪ C16 = {c3, c4, c7}. Five other clusters
contain only one vertex each. It is worth noting that we have used here three edges — three links.
At this step the single-link and the complete-link clusterings still coincide. The next threshold
graph G(4) is generated by the edge {c4, c5}. However, this edge does not generate a new complete
subgraph, that is why it is dotted in the next figure. Thus, the threshold graph G(4) does not
generate the next level of complete clustering.
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Figure 6.4: The threshold graph G(4). The subgraph spanned on the vertices {c3, c4, c5, c7} is not
complete.

The threshold graph G(5) contains a K2-isomorphic subgraph with the vertices c1 and c2.
Thus, it generates a new complete-link clustering C3 = {C31, C32, C35, C36, C33}, where C31 =
{c1, c2}, C32 = {c3, c4, c7}, C33 = {c5}, C34 = {c6}, and C35 = {c8}. Starting from this step,
Hubert’s complete-link algorithm generates clusterings different from the single linkage.
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Figure 6.5: The threshold graph G(5).

G(6) does not contain a new complete subgraph either:

c
1

c
6

c
5

c
2

c
8

c
7

c
4

c
3

Figure 6.6: The threshold graph G(6).

The next threshold graphs, G(7) – G(12) (Figure 6.7) also contain no new complete subgraphs
and generate no new clusterings.
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Figure 6.7: The threshold graphs G(7) – G(12).
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Only in the threshold graph G(13) a vertex, namely, c8, is completely connected with both
vertices of a previous cluster (and the edge {c2, c8} becomes now continuous).
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Figure 6.8: The threshold graph G(13).

Thus, we obtain the next clustering C4 = {C41, C43, C45, C46}, where, C41 = {c1, c2, c8},
C42 = {c3, c4, c7}, C43 = {c5}, C44 = {c6}.

The threshold graphs G(14) and G(15) do not generate a new clustering as well:
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Figure 6.9: The threshold graphs G(14), G(15).

However, in the next threshold graph G(16) the vertex c5 is completely connected with
all the vertices of an old cluster C42 and we get the fifth-level complete-link clustering, C5 =
{C51, C52, C53}, consisting of clusters C51 = {c3, c4, c5, c7}, C52 = {c1, c2, c8}, and C53 = {c6}
(Figure 6.10).
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Figure 6.10: The threshold graph G(16).

We continue building the threshold graphs:
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Figure 6.11: The threshold graphs G(17), G(18).

The threshold graph G(19) generates the next complete-link clustering C6 = {C61, C62}, with
C61 = {c3, c4, c5, c6, c7} and C62 = C52:
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Figure 6.12: The threshold graph G(19).
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Obviously, only the last threshold graph G(28) generates the final conjoint complete-link
clustering C7.

Remark 6.3 We repeat that in this example only the first three levels in the single-link and
complete-link clusterings coincide. From the fourth level on, the clusters are different.

Finally, we draw a dendrogram for the complete-link clustering in this example, which is
different from the one in Section 4 (Figure 4.1):
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Figure 6.13: A dendrogram for the complete-link clustering in the model example.

Exercise 25 Using Hubert’s complete-link algorithm, build conjoint clustering of the set X, whose
dissimilarity table is given below:

x1 x2 x3 x4 x5

x1 0 4 1 3 8
x2 0 2 5 10
x3 0 6 7
x4 0 9
x5 0

Exercise 26 Give an example of a 4-element set with different single-link and complete-link clus-
terings.
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7 CASE STUDY

Table 7.1 contains the actual final grades and GPA scores of 15 students in a Statistics class. The
students are listed in alphabetical order. The GPA scores were calculated earlier, so that they do
not reflect the grades in the Statistics class. Using the final grades, we build single-link clusterings6

of this 15-element set and compare the results with the students’ GPA scores. Our goal in doing
this comparison is to assess the reliability and validity of the presented clustering algorithm.

Name St1 St2 St3 St4 St5 St6 St7
Final Grade 62 54 71 60 36 81 84

GPA 1.808 2.369 3.058 2.825 2.460 3.681 3.508

Name St8 St9 St10 St11 St12 St13 St14 St15
Final Grade 69 55 70 58 61 60 40 75

GPA 2.793 2.738 3.123 3.100 2.197 2.285 2.113 2.703

Table 7.1: The final grades and GPA scores.

As a measure of dissimilarity, we chose the absolute value of the difference between the final
grades and completed the dissimilarity table:

St1 St2 St3 St4 St5 St6 St7 St8 St9 St10 St11 St12 St13 St14 St15
St1 0 8 9 2 26 19 22 7 7 8 4 1 2 22 13
St2 0 17 6 18 27 30 15 1 16 4 7 6 14 21
St3 0 11 35 10 13 2 16 1 13 10 11 31 4
St4 0 24 21 24 9 5 10 2 1 0 20 15
St5 0 45 48 33 19 34 22 25 24 4 39
St6 0 3 12 26 11 23 20 21 41 6
St7 0 15 29 14 26 23 24 44 9
St8 0 14 1 11 8 9 29 6
St9 0 15 3 6 5 15 20
St10 0 12 9 10 30 5
St11 0 3 2 18 17
St12 0 1 21 14
St13 0 20 15
St14 0 35

Table 7.2: The dissimilarity table for the Statistics class.

In this problem we have many ties. Thus, some intermediate steps are not unique. However,
application of the agglomerative single-link algorithm (Section 3) gives the following results. Since
there are two elements whose dissimilarity is zero, the first-level clustering C1 contains one two-
element cluster {St4, St13} and thirteen one-element ones. If the threshold level does not exceed
1, we get nine clusters:

C2 = {{S1, S4, S12, S13}, {S3, S8, S10}, {S2, S9}, {S5},
{S6}, {S7}, {S11}, {S14}, {S15}}.

6We do not apply here complete-link clustering because the problem involves ties.
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At the level 2 we have eight clusters:

C3 = {{St1, St4, St11, St12, St13}, {St3, St8, St10}, {St2, St9},
{St5}, {St6}, {St7}, {St14}, {St15}}.

At the level 3 we have six clusters:

C4 = {{St1, St2, St4, St9, St11, St12, St13}, {St3, St8, St10},
{St6, St7}, {St5}, {St14}, {St15}}.

At the level 4 we have only four clusters:

C5 = {{St1, St2, St4, St9, St11, St12, St13}, {St3, St8, St10, St15},
{St6, St7}, {St5, St14}}.

There is no merger at the level 5, but two of these clusters link at the level of 6:

C6 = {{St1, St2, St4, St9, St11, St12, St13},
{St3, St6, St7, St8, St10, St15}, {St5, St14}}.

At the level 7 only two clusters left:

C7 = {{St1, St2, St3, St4, St6, St7, St8, St9, St10, St11, St12, St13, St15},
{St5, St14}}.

Ultimately, these two clusters amalgamate to the conjoint clustering at the fourteenth level.

Now we want to assess the clustering derived. The following three charts represent three
clusters in C6. Every chart contains the GPA-scores of the students in the corresponding cluster
(See Table 7.4).

C61 Name St1 St2 St4 St9 St11 St12 St13
GPA 1.808 2.369 2.825 2.738 3.100 2.197 2.285

C62 Name St3 St6 St7 St8 St10 St15
GPA 3.058 3.681 3.508 2.793 3.123 2.703

C63 Name St5 St14
GPA 2.460 2.113

Table 7.3: The C6-clustering.

Naturally, as is always the case while dealing with real data, there is no perfect match.
However, we see that at this threshold level the clusters C62 and C63 demonstrate good uniformity
of the GPA scores contained, while C61 comprises more variety of scores.

Next, let us consider the clustering C5. The following four charts represent its four clusters.
Every chart contains the GPA-scores of the students in the corresponding cluster.

Again, we see that there is a sensible closeness of the GPA scores within the clusters C52,
C53, and C54. In particular, the cluster C53 contains two highest GPA scores.

41



C51 Name St1 St2 St4 St9 St11 St12 St13
GPA 1.808 2.369 2.825 2.738 3.100 2.197 2.285

C52 Name St3 St8 St10 St15
GPA 3.058 2.793 3.123 2.703

C53 Name St6 St7
GPA 3.681 3.508

C54 Name St5 St14
GPA 2.460 2.113

Table 7.4: The C5-clustering.

To get more quantifiable assessment of the clusterings derived, we make some calculations.
The following charts contain the averaged statistics grades and the averaged GPA scores for each
cluster in all levels:

Clustering C0 Averaged statistics grade Averaged GPA score
Cluster C01 62.4 2.717

Table 7.5: The averaged statistics grades and GPA-scores over the whole class — the C0-clustering.

Clustering C1 Averaged statistics grade Averaged GPA score
Cluster C1,1 60 2.555
Cluster C1,2 62 1.808
Cluster C1,3 54 2.369
Cluster C1,4 71 3.058
Cluster C1,5 36 2.46
Cluster C1,6 81 3.681
Cluster C1,7 84 3.508
Cluster C1,8 69 2.793
Cluster C1,9 55 2.738
Cluster C1,10 70 3.123
Cluster C1,11 58 3.1
Cluster C1,12 61 2.197
Cluster C1,13 40 2.113
Cluster C1,14 75 2.703

Table 7.6: The averaged statistics grades and GPA-scores over the C1-clustering.
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Clustering C2 Averaged statistics grade Averaged GPA score
Cluster C2,1 60.75 2.279
Cluster C2,2 70 2.991
Cluster C2,3 54.5 2.554
Cluster C2,4 36 2.46
Cluster C2,5 81 3.681
Cluster C2,6 84 3.508
Cluster C2,7 58 3.1
Cluster C2,8 40 2.113
Cluster C2,9 75 2.703

Table 7.7: The averaged statistics grades and GPA-scores over the C2-clustering.

Clustering C3 Averaged statistics grade Averaged GPA score
Cluster C3,1 60.2 2.443
Cluster C3,2 70 2.991
Cluster C3,3 54.5 2.554
Cluster C3,4 36 2.46
Cluster C3,5 81 3.681
Cluster C3,6 84 3.508
Cluster C3,7 40 2.113
Cluster C3,8 75 2.703

Table 7.8: The averaged statistics grades and GPA-scores over the C3-clustering.

Clustering C4 Averaged statistics grade Averaged GPA score
Cluster C4,1 58.57 2.475
Cluster C4,2 70 2.991
Cluster C4,3 82.5 3.594
Cluster C4,4 36 2.46
Cluster C4,5 40 2.113
Cluster C4,6 75 2.703

Table 7.9: The averaged statistics grades and GPA-scores over the C4-clustering.

Clustering C5 Averaged statistics grade Averaged GPA score
Cluster C5,1 58.57 2.475
Cluster C5,2 71.25 2.919
Cluster C5,3 82.5 3.595
Cluster C5,4 38 2.287

Table 7.10: The averaged statistics grades and GPA-scores over the C5-clustering.
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Clustering C6 Averaged statistics grade Averaged GPA score
Cluster C6,1 58.57 2.475
Cluster C6,2 75 3.144
Cluster C6,4 38 2.287

Table 7.11: The averaged statistics grades and GPA-scores over the C6-clustering.

Finally, the following chart contains Pearson’s correlation coefficients between the averaged
grades and GPA-scores for every level of clustering:

Clustering level C0 C1 C2 C3 C4 C5 C6

Correlation coefficient 0.659 0.671 0.788 0.850 0.832 0.925 0.929

Table 7.12: The Pearson coefficient of correlation.

We see that every next level of clustering. except for C4, improves correlation of the final
grades and the GPA scores. This observation validates our procedure.
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ANSWERS TO EXERCISES

Exercise 1 {DE}, {FL, LA}, {MI}, {MD, SC}, {AL}, { GA, NC}, {KY, MO}, {TN, VA},
{WV}, {TX}.

Exercise 2 Four clusters: {DE, FL, LA, MD, MI, SC}, {AL, GA, KY, MO, NC}, {TN,
VA}, {WV, TX}.

Five clusters: {DE, FL, LA}, {AL, MD, MI, SC}, {GA, KY, MO, NC}, {TN, VA}, {WV,
TX}.

Exercise 3 This dissimilarity value is 3.
Exercise 4 (v1, e1, v2, e3, v3, e2, v1); (v1, e1, v2, e3, v3, e4, v4).

Exercise 5 Both graphs are connected.

Exercise 6

1K  : 2 3K  :K  :

4K  :

Exercise 7 The minimal number of vertices is 3:

Exercise 8 G1 consists of two connected components, G2 is connected itself.

Exercise 9 If such an edge does exist, then it must belong to a cycle.

Exercise 10 Use Mathematical Induction with respect to n.

Exercise 11 Any tree satisfies this condition. See also answer to Exercise 13.

Exercise 12 {e1, e4, e5}; {e1, e3, e5}; {e1, e2, e5}; {e3, e4, e5}; {e2, e4, e5}.
Exercise 13

1

2 2

3

2

1

3

Exercise 14 a) Every whole number is nonnegative and every integer is either positive or
zero (that is, it is a whole number) or negative.

b) Every integer is either positive, or zero, or negative, and these three subsets are, obviously,
disjoint.

c) The partition in b) is nested in the partition in a).

Exercise 15 The following road maps correspond to the clustering C3:
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Exercise 16 For example, the clustering C0 corresponds to a trivial disjoint partition, where
every point is equivalent to itself only; C7 corresponds to another trivial partition, where there is
only one equivalence class, that is, each point is equivalent to every other one. The partition,
generated by C3, consists of five equivalence classes {c3, c4, c5, c7}, {c1}, {c2}, {c6}, {c8}.

Exercise 17 If a dissimilarity table of size n contains the maximal possible number of different
entries, that is, these entries are 1, 2, 3, . . . , n(n−1)/2, it generates n(n−1)/2+1 different threshold
graphs. Each tie in the table decreases this number by one.

Exercise 18 There may be different intermediate clustering on levels 2 or 6, depending on
the order we resolve the ties; all the other clusterings are the same.

Exercise 19 The problem contains the ties starting from the dissimilarity level of 2. There-
fore, the first-level clustering is unique: {x2, x5}, {x1}, {x3}, {x4}, {x6}. However, the second-level
clustering depends upon what edge with the dissimilarity of 2 is chosen first. This clustering may
be {{x2, x3, x5}, {x1}, {x4}, {x6}} or {{x2, x5}, {x4, x6}, {x1}, {x3}}. In turn, these clusterings lead
to different clusterings of the next level. After that, the coming conjoint clustering is, of course,
unique.

Exercise 20 Of course, Hubert’s algorithm generates the same clustering as in Exercise 19.
For example, the first updated dissimilarity table is
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{x1} {x2, x5} {x3} {x4} {x6}
{x1} 0 4 8 3 8
{x2, x5} 0 2 4 4
{x3} 0 6 3
{x4} 0 2
{x6} 0

Exercise 21 See answer to Exercise 18.

Exercise 22 See [11], Section 8.6.

Exercise 23
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Exercise 24 Because of ties, it is possible to generate different chains of clusterings, for
example,

{v2}, {v3}, {v5}, {v1}, {v4};
{v2, v3}, {v5}, {v1}, {v4};
{v2, v3, v5}, {v1}, {v4};
{v2, v3, v5, v1}, {v4};
{v2, v3, v5, v1, v4}.

Exercise 25 Level 1: {x1, x3}, {x2}, {x4}, {x5}; Level 4: {x1, x2, x3}, {x4}, {x5}; Level 6:
{x1, x2, x3, x4}, {x5}; Level 10: {x1, x2, x3, x4, x5}.

Exercise 26 Consider the following dissimilarity table:

x1 x2 x3 x4

x1 0 1 6 5
x2 0 2 4
x3 0 3
x4 0
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