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ABSTRACT

This module leads students to investigate several geometrical aspects of illumination: the effective-
ness of various types of floodlights placed in polygonal rooms either with or without holes as well
as problems related to lighting a stage. An optional Section 4 for more advanced students provides
formal statements and proofs of some intuitive ideas used in the applications. Exploratory exercises
occur throughout the text to encourage students to reflect on new concepts as they are introduced.
In addition, more challenging problems are provided.
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1 Introduction

We begin our examination of simplified lighting problems by considering some examples that indi-
cate the wide applicability of the concepts related to illumination. We usually restrict our attention
to the case of two dimensions.

1.1 A surveillance camera problem

Median Bank is planning to upgrade its security system with new surveillance cameras. The officers
of the bank want to use as few cameras as possible to keep costs low and to ensure that the cameras’
presence is unobtrusive. They want to know how many cameras are needed, what camera features
are helpful, and where the cameras should be placed. These cameras must survey every part of the
bank’s main room. The problem is complicated further by the shape of the room as shown below.

Figure 1.1

1.2 Related problems

There are several other problems related to the placement of security cameras. Figure 1.1 could be
viewed as:

• a parking lot that should be lit with floodlights of a certain aperture to ensure the safety of
the drivers and their cars,

• a lawn that requires watering in its entirety with sprinklers that only rotate through a given
angle, or

• an art gallery that needs to be protected by guards standing in fixed positions.

The problem in each case is to find the smallest number of cameras, floodlights, sprinklers, or
guards that survey, illuminate, water, or observe the required region. We will investigate only some
of the related problems.

All these problems are considered to be variations of the major class of problems collectively
called the Art Gallery Problems. Victor Klee posed the original Art Gallery Problem in 1973 about
guards who can turn to see 360 degrees but who are standing in one location. We think of these
guards as points. In this problem, the art gallery room is assumed to have a floor shaped like a
polygon with n vertices. For each such room there is a minimum number of these guards needed to
observe the entire room. The problem is to find the maximum of these minimum numbers for every
fixed value of n. Klee conjectured that this number is �n/3�, the greatest integer that is less than
or equal to n/3, and in 1975 V. Chvátal published a proof of this conjecture [C]. We relate this
original problem to illumination problems by considering point sources of light instead of guards
and regions illuminated by lights rather than regions surveyed by guards.
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Exploratory Exercises
1.1 In the room below in Figure 1.2, one camera with viewing angle (aperture) of 90 degrees

is placed in the upper left corner. The region surveyed by the camera is shaded. We assume that
the camera surveys this region’s boundaries as well as its interior. How many additional cameras
with aperture of 90 degrees are needed to survey the entire room? Where should these cameras be
placed?

Figure 1.2

1.2 Suppose that you have three surveillance cameras. In addition, you know that each camera
has viewing angle (aperture) of 90 degrees. Try to place the three cameras in corners of each of the
rooms below so that the cameras survey the entire room, and indicate the region surveyed by each
camera. In which rooms will fewer than three cameras suffice? In which rooms is it impossible to
survey the entire room with these three cameras?

Figure 1.3

1.3 Use the following method to find the viewing angle (aperture) of your camera. Select two
vertical lines on a wall, such as the vertical sides of a window or the vertical edges of a large picture.
Measure the distance y between these vertical lines. Let AB be a horizontal line segment between
these vertical lines on the wall. As you look into your camera, step back and forth along the line
perpendicular to the wall at the midpoint of the line segment AB. You want to line up the vertical
edges of the camera’s viewing window with the selected vertical lines on the wall. When you see the
vertical edges of the camera’s viewing window coincide with the vertical edges on the wall, measure
your distance x from the wall. Make a sketch similar to the one in Figure 1.4 below. Make the
sketch to scale with great accuracy. Then use a protractor to measure the camera’s aperture, the
angle ACB.
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Figure 1.4

1.4 What are the advantages and disadvantages of placing a camera of aperture 90◦ in a room
at a corner, along a side, or in the interior?

1.3 Mathematical formulation of the camera problem

As we translate the problem of security cameras into mathematics, we should note that this problem
has not been entirely solved by anyone in the world today. We will explain the part of the problem
that has been solved and will explore the part that is still yet to be solved. To explain the results
that have already been found about the optimal placement of the security cameras we will have
to impose a restriction on the problem. Mathematicians have approached the problem of camera
placement by allowing the cameras to be placed only in the corners of the room. The general
problem of considering the cameras placed anywhere in the room or anywhere along the walls
of the room has not been fully explored. Thus, for the most part, we will treat the problem in
the following form since this is the form that has been studied extensively in the mathematical
literature:

How many corner cameras with a given viewing angle suffice to see all points of a given
room?

In mathematical terms, the room translates to a polygon, the corners to the vertices of a polygon,
the camera angle to an aperture, the region viewed by the camera to a wedge, and seeing all points
of the room to covering the polygon. Now the problem can be stated in a more mathematical way
as follows:

How many vertex cameras with a given aperture suffice to cover a polygon?

We will consider the problem as stated mathematically.

1.4 Mathematical formulation of other lighting problems

A wide range of applications can be mathematically formulated as lighting problems similar to the
examples for the security cameras in the introduction. Below you will find some applications that
fit within this range.

Problems

1.1 We are designing a garden within a wall that has already been built, and we wish to water
the garden using as few sprinklers as possible. The range of each sprinkler is greater than the
diameter of the garden, but each sprinkler has limited angle of rotation α. Since the walls
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are solid, they block the spray. In order to save money, we would like to install the smallest
possible number of sprinklers.

a. For a general polygonal garden with n vertices, formulate the problem of watering the
lawn in the most economical fashion in mathematical terms. How does this problem differ
from the security camera problem?

b. Is this model a realistic way to address the problem of installing a sprinkler system
economically? What other concerns might affect the cost?

c. How does the problem change if the garden is already well established and the owner would
like to avoid digging it up?

1.2 We wish to illuminate the complete area of a parking lot by means of overhead lights. The
lights are on posts k feet tall, and each light illuminates a cone of vertex angle α as shown in
Figure 1.5 below. To do this in the most economical form, we would like to use the minimum
number of lights.

a. For a general polygonal parking lot and the restrictions given above, formulate the problem
of lighting the parking lot in the most economical fashion using mathematical terms. (For
now, don’t attempt to solve the problem, just try to describe it.) How does this problem
differ from the security camera problem and the problem of watering the garden? Why are
three dimensions involved rather than only two dimensions?

b. Is it realistic to assume that we only want the area of the parking lot illuminated? If so,
explain why. If not, explain how the statement of the problem could be changed in order to
make it more realistic.

α

k ft

Figure 1.5

2 Mathematical Background

As you investigate and study the problem of illumination, you will need to understand and use
some mathematical terms. In this section, we define most of the terms that you will need in the
rest of the module.

A polygon is generally defined as an ordered sequence of at least three points v1, v2, . . . , vn in
the plane and the n line segments v1v2, v2v3, . . . , vn−1vn, and vnv1. The points are called vertices
of the polygon, and the line segments are called edges of the polygon. The line segments taken
together are also called the boundary of the polygon. A simple polygon is a polygon with the
constraint that nonconsecutive edges do not intersect. A simple polygon divides the plane into two
regions, an unbounded exterior and a bounded interior.

From this point on we use the term polygon to denote a simple polygon together with its interior.
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Simple Polygon Non-simple Polygon

Figure 2.1

Angles will be given in radian measure unless otherwise stated. Recall that:

π radians = 180 degrees.

A vertex of a polygon is reflex if its interior angle is strictly greater than π radians. A vertex is
convex if its interior angle is less than or equal to π radians, and it is strictly convex if its interior
angle is strictly less than π radians. A polygon is convex if, for each pair of points in the polygon,
the line segment joining these points lies within the polygon. An orthogonal polygon is a polygon
with adjoining sides that are perpendicular.

Convex Polygon Nonconvex Polygon Orthogonal Polygon

Figure 2.2

Exploratory Exercises

2.1 Identify any reflex vertices of each polygon in Figure 2.3 below

Figure 2.3

2.2 Sketch a convex polygon with 5 edges.

2.3 Sketch a polygon with 4 convex vertices and 2 reflex vertices.

2.4 Sketch an orthogonal polygon with 12 edges.

2.5 Sketch an orthogonal polygon with five sides or explain why none exists.
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Now we go on to some definitions that are related to floodlights placed in polygonal rooms.
A wedge is the set of points that are interior to an angle. The vertex of the wedge is called the
apex. A floodlight of angle α is a wedge of light of aperture at most α and such a floodlight is
called an α-light. A floodlight placed in a simple polygon with its apex at a vertex is called a vertex
floodlight. The aperture of a floodlight is its angle. A point is illuminated if it lies within some
floodlight’s wedge or on the boundary of some floodlight’s wedge.

For the purpose of this paper, no vertex may have more than one floodlight, and each floodlight
is placed in one position and then does not move. Note that the aperture of a floodlight may exceed
the angle where it is placed.
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Figure 2.4

Figure 2.4 above illustrates some of the previous definitions. The vertex is x, and the apex
of the illuminated wedge is at x. The point y is illuminated. The patterned wedge in the figure
indicates a vertex floodlight of aperture α.

The function floor will be used in some of the theorems mentioned later in this module. Let n
be a real number. Then the floor of n, denoted �n�, is the integer k such that k ≤ n < k + 1. An
alternate way to express this is that �n� is the greatest integer k such that k ≤ n.

Examples: �5� = 5, �5.3� = 5, �−5.3� = −6.

Problems

2.1 Simplify the following expressions.

a. �8/3�
b. �17/8�

2.2 Describe �n/3� where n is an integer that is a multiple of 3.

2.3 Can you guess the definition of the ceiling of an integer n? The ceiling is denoted �n�.

3 The Floodlight Problem for Polygons

3.1 Convex Polygons

Many rooms take the form of convex polygons. Since convex polygons have no reflex vertices and
no holes, they have no internal barriers. This property makes them relatively easy to illuminate. In
fact, given a single light with large enough aperture it is possible to illuminate any convex polygon.
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Theorem 3.1 Any convex polygon can be illuminated by a single π-light.

Proof: Let P be a convex polygon, and let v be any vertex of the polygon. Rotate the floodlight
so that both edges of the polygon containing v fall within the wedge of light. Let x be any point
in P . By the definition of a convex polygon, the entire line segment from v to x must lie in P and
therefore be illuminated by the floodlight. ♦

Exploratory Exercises

3.1 Is a π-light necessary to illuminate the polygon P in Figure 3.1? If not, what aperture is
necessary for a floodlight placed on a vertex of P to illuminate the entire polygon? Use a
protractor to measure the angle at each vertex. Explain your answer.

Figure 3.1

3.2 Given an arbitrary convex polygon with vertices of angles α1, α2, . . ., αn, what is the minimum
angle β such that a single light of aperture β placed at a vertex of your choice is sufficient to
illuminate the entire polygon? Explain your answer.

3.3 Sketch a convex polygon that cannot be illuminated by a single π/2-light. Explain your
answer.

3.4 Calculate the number of vertex π/2-lights needed to illuminate the following figures.

a. regular quadrilateral

b. regular hexagon (6 sides)

c. regular decagon (10 sides)

If we use more lights, it is possible for each floodlight to have a smaller aperture than would be
possible for a single light to illuminate the entire polygon alone. This is illustrated in the following
theorem.

Theorem 3.2 Any convex polygon P can be illuminated by a pair of vertex π/2-lights.

Proof: If any vertex v of P has angle at most π/2, then by Exploratory Exercise 3.2, one π/2-light
with its apex at v is sufficient to illuminate the entire polygon. The second floodlight can be placed
at any vertex of your choice with the exception of v.

Now we assume that every vertex of the polygon P has angle greater than π/2. Consider any
edge AB of the polygon P . Rotate P so that the edge AB is horizontal and so that this edge is
the bottom edge of the polygon. Draw x- and y-axes so that the edge AB lies on the x-axis. We
will assume that A = (a, 0), B = (b, 0) and a < b. Place one of the floodlights at the vertex A and
the other at the vertex B so that one side of the wedge illuminated by each light is flush against
AB as shown in Figure 3.2. Note that any point in P not illuminated by the floodlight at A has
x-coordinate less than a and any point in P not illuminated by the floodlight at B has x-coordinate
greater than b.
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A:(a,0) B:(b,0)

X:(x,y)

Figure 3.2

Let X = (x, y) be any point in the polygon P not illuminated by the floodlight whose apex
lies at the vertex A. Then x < a, and thus, since x < a and a < b, we have that x < b. Therefore
the point X is illuminated by the floodlight whose apex lies at the vertex B. By an analogous
argument, any point in P not illuminated by the floodlight whose apex lies at B is illuminated by
the floodlight whose apex lies at A. Thus we see that every point of the convex polygon P can be
illuminated by a pair of vertex π/2-lights. ♦

Exploratory Exercises

3.5 Suppose that you are given a convex polygon P and that you must purchase a pair of flood-
lights that will light the region. Both floodlights must have the same aperture. Must the
lights be π/2-lights? Explain your answer.

3.6 Show that any convex polygon can be illuminated by any pair of floodlights having apertures
α1 and α2 such that α1 + α2 = π.

3.7 Let P be the convex polygon with vertices:

v0 = (0,−2), v1 = (4,−1), v2 = (5, 0), v3 = (4, 1) and v4 = (0, 2).

Make an accurate sketch of the polygon P , and label its vertices. Cut off two corners of a
new sheet of paper (no round-edged notebook paper, please), and pin the vertices of the right
angles of the cut-off corners to the vertices v1 and v3. These bits of paper will represent the
wedges of light cast by two π/2-floodlights.

a. Rotate the “floodlight” at the vertex v1 so that one side is flush against the edge v1v2.
Can you rotate the “floodlight” at the vertex v3 in such a way that the entire polygon P is
covered? Explain your answer.

b. Rotate the “floodlight” at the vertex v1 so that one side is flush against the edge v1v0.
Can you rotate the “floodlight” at the vertex v3 in such a way that the entire polygon P is
covered? Explain your answer.

c. Explain why it is impossible to illuminate the polygon P with a pair of π/2-lights at
vertices v1 and v3.

3.8 Can a convex polygon have many pairs of vertices for which π/2-lights fail to illuminate the
polygon? Explain.
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Note that while Theorem 3.2 holds for convex polygons, it does not hold for general polygons
such as the nonconvex polygon in Figure 2.2. We have considered only the case where we have a
pair of floodlights with the sum of their apertures equal to π. Although it takes quite a bit more
work, we can generalize this idea to that of using three floodlights whose apertures sum to π to
illuminate any convex polygon.

Theorem 3.3 (Urrutia [U]) Let α1 + α2 + α3 = π and consider any convex polygon P . Three
floodlights of apertures α1, α2, and α3 can be placed on the vertices of P in such a way that the
entire polygon is illuminated.

It is tempting to try to generalize the previous two theorems, but in the end it turns out to be
a fruitless endeavor, as shown by O’Rourke, Shermer and Streinu in [OSS] in the following theorem.

Theorem 3.4 There is an integer n and a convex polygon P of n sides that cannot be illuminated
by n π/n-lights placed one at each vertex.

The proof of this theorem uses a polygon with a very large number of vertices, and it is not
known what is the smallest integer k for which there is a convex polygon that cannot be illuminated
by k floodlights each having aperture π/k.

Open Question
We now can state an open question, a question that no one has been able to answer: It is not

even known if four π/4-lights suffice to illuminate all convex polygons of four vertices.

Problems

3.1 Is there some angle α < π such that every convex polygon can be illuminated by a single
floodlight having aperture α? Explain your answer.

3.2 In this section, we have assumed that floodlights must be placed on vertices of the polygon.
Suppose that we still wish to use only floodlights of aperture α to illuminate a polygon, but
that we allow the floodlights to be placed anywhere within the polygon or on the boundary
of the polygon. Are we likely to need more lights, fewer lights, or the same number of
lights? Explain your answer. Discuss what your answer means using the mathematical terms
necessary or sufficient.

3.2 Orthogonal Polygons

In this section we will discuss an important subclass of polygons called orthogonal polygons. Recall
from the definition (Section 2) that an orthogonal polygon is a polygon with adjoining sides that
are perpendicular. These types of polygons are sometimes referred to as isothetic and rectilinear
polygons in the mathematical literature. Orthogonal polygons arise in many applications because
of the ease in which they are created and manipulated. The first polygon shown in this module,
Median Bank’s main room in Figure 1.1, is an orthogonal polygon.

Again the problem is posed to find the minimum number of lights of a certain aperture that
will illuminate a polygon of a given type. The idea of illuminating orthogonal polygons with vertex
floodlights was first discussed in 1994 by Estivill-Castro and Urrutia in a paper called “Optimal
Floodlight Illumination of Orthogonal Art Galleries” [EU]. In that paper the following theorem
appears:
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Theorem 3.5 Every orthogonal polygon of n vertices can be illuminated with �3(n − 1)/8� vertex
lights of aperture π/2.

For example, any polygon of 20 vertices can be illuminated by 7 vertex lights of aperture π/2
since we have that:

�3(20 − 1)/8� = �3(19)/8� = �57/8� = �7 + 1/8� = 7.

Notice that Theorem 3.5 does not say that we will always need �3(n − 1)/8� π/2-lights to
illuminate an orthogonal polygon with n vertices. It simply says that �3(n − 1)/8� such lights will
always be enough to do the job. There are many orthogonal polygons with n vertices that do not
require �3(n−1)/8� of these lights. Theorem 3.6 below states that �3(n−1)/8� lights are necessary
for some particular orthogonal polygons with n vertices.

Exploratory Exercises

3.8 Draw several orthogonal polygons with

a. 4 sides,

b. 6 sides,

c. 10 sides.

3.9 Use the theorem to calculate the number of vertex π/2-lights sufficient to illuminate the
polygons that you have drawn with:

a. 4 sides,

b. 6 sides,

c. 10 sides.

3.10 Look at the polygons you have drawn for Exercise 3.8. How few vertex π/2-lights would
actually illuminate the polygons? For each polygon, find the minimum number of such lights
needed, and compare this number with the numbers you found in Exercise 3.9 above. Explain
your results.

We will see in the following example, which was originally produced by Abello, Estivill-Castro,
Shermer and Urrutia in [ACSU], that in some cases �3(n − 1)/8� vertex lights of aperture π/2 are
actually needed.

Theorem 3.6 �3(n− 1)/8� vertex lights of aperture π/2 are sometimes necessary to illuminate an
orthogonal polygon with n vertices.

Proof: Consider the polygons in Figure 3.3. These are orthogonal polygons that require one
π/2-vertex light for each prong. This sequence of examples shows that the bound is tight, i.e.,
sometimes necessary. ♦

n = 4 n = 12 n = 20

Figure 3.3
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The polygons of Figure 3.3 show that there are orthogonal polygons that do require the bound.
However, not all orthogonal polygons require �3(n− 1)/8� lights to illuminate them. Let us return
to the problem that motivated our discussion, the Median Bank’s main room that needs security
cameras (Figure 1.1). Let us also suppose that the cameras have a viewing angle of π/2. If you
check the specifications of some security cameras you will see that this is a reasonable assumption.

Exploratory Exercises

3.11 According to Theorem 3.6, how many security cameras with viewing angle of π/2 suffice to
ensure that all parts of the room in Figure 1.1 may be seen?

3.12 Examine Figure 1.1 of the bank’s main room, to determine the least number of cameras
necessary. Explain your answer.

Problems

3.3 Try to illuminate the polygon in Figure 3.4 with π/4-floodlights positioned at each vertex.
Can this be done? Explain.

Figure 3.4

3.4 Try increasing the floodlight aperture to π/3. Can you now illuminate the entire polygon?

3.5 Make a conjecture about how large the floodlights’ apertures must be to illuminate the entire
polygon. Explain your conjecture.

3.3 Arbitrary Polygons and Vertex π-Lights

Now we turn to some illumination problems that involve floodlights with aperture of π radians.
In these problems, we require that the floodlights be placed at vertices in a polygonal room and
that at most one floodlight be placed at each vertex. We consider arbitrary polygons, which are
polygons with no extra conditions imposed, and we ask two questions:

1. How many vertex π-lights are sufficient to illuminate every polygon? (*)
2. Are there polygons that require this many vertex π-lights? (**)
Some examples show that such a floodlight placed at a reflex vertex may be rotated to various

positions to illuminate different regions, but the light will be in a fixed position for any particular
solution. In each of the two polygons in Figure 3.5 a vertex π-light is located at the middle vertex
v on the left side of the polygon, and the region illuminated by that light is darkened. In the left
polygon, the light is pointed downward; in the right polygon, the light is pointed to the right.

v v

Figure 3.5
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These examples show that, in any solution to a vertex π-light problem, the direction of each
floodlight at a reflex vertex as well as its vertex must be specified.

Exploratory Exercise

3.14 In each polygon below, place as few vertex π-lights as possible so that the entire polygon is
illuminated. Indicate the region illuminated by each light. Count the number of vertices of
the polygon and the number of lights used.

Figure 3.6

We will use Gary Meisters’s Two Ears Theorem [M] in the proof of the theorem that answers
the first question (*) listed above: How many vertex π-lights are sufficient to illuminate every
polygon? A proof of the Two Ears Theorem appears in [O94] on page 15. We will give a different
proof in Section 4.

Suppose that vertices a, b, and c of a polygon are consecutive. Then the polygon has an ear
at vertex b whenever the line segment ac lies within the polygon. If the interiors of the triangles
formed by two ears are disjoint, we say that the ears are nonoverlapping. A polygon with two
shaded nonoverlapping ears and a polygon with two striped overlapping ears are shown in Figure
3.7. The overlap has the stripes of both ears.
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b c
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Figure 3.7

In fact, according to Meisters Two Ears Theorem, any polygon other than a triangle has at
least two nonoverlapping ears. Recall that this theorem is proved in Section 4.

Theorem 3.7 (Meisters Two Ears Theorem) Every polygon with more than three vertices has
at least two nonoverlapping ears.

Exploratory Exercises

3.15 Shade at least two nonoverlapping ears on each of the polygons below.

14



Figure 3.8

3.16 Sketch a polygon with five nonoverlapping ears.

The next theorem gives us an upper bound on the number of vertex π-lights required to cover
a polygon. This is the answer to the first question (*) posed at the beginning of this section.

Theorem 3.8 Every polygon P of n vertices can be illuminated by n − 2 vertex π-lights.

Proof: The proof is by mathematical induction on n. Let n = 3 so that P is a triangle. Then P
can be illuminated by a single vertex π-light placed at any vertex.

Now let k be an integer greater than 2, and assume that any polygon with k vertices can be
illuminated by k − 2 vertex π-lights. Let P be a polygon with k + 1 vertices. Then P has an
ear by Meisters Two Ears Theorem. Let x, y, and z be the three consecutive vertices of the ear.
Construct a polygon P ′ from P by removing vertex y, removing the two edges meeting y, and
adding the edge xz. Then P ′ is a polygon with k vertices, and thus by the induction hypothesis,
P ′ can be illuminated by k − 2 vertex π-lights. Add a vertex π-light at vertex y in P to illuminate
the removed ear. Then this light along with the k− 2 lights for P ′ illuminate all of P . Thus P can
be illuminated by k − 1 = (k + 1) − 2 vertex π-lights. This completes the proof of the theorem. ♦

Open Question The second question (**) is an open question: For every integer n > 2, are there
polygons of n vertices that require n − 2 vertex π-lights?

F. Santos, a Spanish mathematician at the University of Cantabria, discovered the polygons
in Figure 3.9. These polygons are examples in a family of polygons with 5j +1 vertices that require
3j vertex π-lights [U, Figure 21]

j = 1 j = 2

Figure 3.9

Exploratory Exercises

3.17 Count the vertices in each of the two polygons in Figure 3.9. Locate the 3j required floodlights,
and indicate the region illuminated by each floodlight.
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3.18 Sketch at least one other member of this family of polygons. Locate the 3j required floodlights,
and indicate the region illuminated by each floodlight.

You may be interested to know why vertex π-lights are considered rather than floodlights with
smaller aperture: there are certain polygons that cannot be illuminated by vertex floodlights with
smaller aperture even if a floodlight is placed at every vertex [EOUX]. For example, the polygon
in Figure 3.10 cannot be illuminated by vertex π/2-lights placed at every vertex.

Exploratory Exercise

3.19 Show that the polygon in Figure 3.10 cannot be illuminated by vertex π/2-lights placed at
every vertex.

Figure 3.10

4 Triangulation and Meisters Two Ears Theorem

Triangulation, subdividing a polygon into triangles whose vertices are the vertices of the polygon,
is a basic method used to study polygons inductively. In many cases, one triangle, such as an ear,
can be deleted from a polygon, or a polygon may be subdivided into triangulated subpolygons, so
that the inductive hypothesis can be applied. For example, deletion of an ear, whose existence is
guaranteed by Meisters Two Ears Theorem, results in a polygon to which the inductive hypothesis
can be applied. We used The Two Ears Theorem this way in the proof of Theorem 3.8.

Several lemmas are used in the proof that every polygon can be triangulated. [O94, pages 11
13]

Exploratory Exercises

4.1 Give names to the vertices of each of the three polygons in Figure 4.2 as follows. Find the
lowest vertices on the page (or the lowest vertex if there is only one such vertex), and write
an a beside the rightmost of these vertices. Then, as you go around the boundary of the
polygon in a counterclockwise direction, label the next vertex b, the vertex after that c, and
so on until all the vertices of the polygons have been labeled. An example is shown in Figure
4.1.

a

b

c
e

g i

f
hd

Figure 4.1
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Figure 4.2

4.2 In each of the three polygons of Figure 4.2, find any convex vertices that are not collinear
with their two adjacent vertices. (Recall that a vertex is convex if its interior angle is less
than or equal to π radians.) Is the vertex a convex in each polygon? Is it possible for the
interior angle at vertex a to be exactly π radians? Explain.

4.3 Sketch at least three other polygons. Is the vertex a strictly convex in each polygon?

Lemma 4.1 Every polygon P has a strictly convex vertex , i.e., a vertex with interior angle of less
than π radians.

Proof: Let a be the rightmost vertex of those vertices of the polygon P that are lowest. In a
counterclockwise traversal of the vertices of P , the next vertex b adjacent to a lies above vertex a,
and the other vertex adjacent to a either lies above or at the same level as a. Therefore vertex a
is a strictly convex vertex of the polygon P . ♦

The next exercises illustrate the method that is used to show that every polygon other than a
triangle has a diagonal, a line segment that joins two vertices and that lies in the polygon’s interior
except for its endpoints.

Exploratory Exercises

4.4 In each polygon of Figure 4.3, a strictly convex vertex v is indicated. Find the vertices
adjacent to v, and label them a and b. Sketch the line segment ab.

v v vv

Figure 4.3

4.5 In which polygons of Figure 4.3 is the line segment ab a diagonal of the polygon?

Answer questions 4.6-4.8 for each polygon of Figure 4.3 where the line segment ab is not a diagonal.
An example is given in Figure 4.4.
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4.6 Does the interior of the triangle avb contain any other vertices of the polygon? Explain your
answer.

4.7 Sketch a line through the vertex v that is parallel to the line segment ab. Think of moving
this line away from v towards the line segment ab without changing its slope, i.e., move the
line parallel to itself. Stop moving the line when you first encounter a vertex (or possibly
several vertices) within triangle avb. Label this vertex (or one of the vertices met) with an x.
Now sketch a line L parallel to the line segment ab and through vertex x. Is it possible that
the line L contains the line segment ab? If so, give an example.

4.8 Shade the half plane that has boundary the line L and that contains the vertex v. Further
darken the region R of the plane that is the intersection of this half plane with the interior
of triangle avb. Does the region R contain any points of the boundary of the polygon P? Is
the line segment vx a diagonal of the polygon P? Why?

a
L

b

v

x

Figure 4.4

4.9 Sketch four other polygons, each with a strictly convex vertex v and line segment ab that is
not a diagonal. Answer questions 4.6-4.8 for these polygons.

These examples illustrate a method for finding a diagonal in any polygon of at least four
vertices. Lemma 4.2 assures us that every polygon has a strictly convex vertex, and the next
lemma uses the method illustrated to find a diagonal with the strictly convex vertex as one of its
endpoints.

Lemma 4.2 Every polygon P with at least four vertices has a diagonal.

Proof: Suppose that P is a polygon of n vertices, where n > 3. Then, by Lemma 4.1, the polygon
P has a strictly convex vertex v. Let a and b be the vertices adjacent to v. If the line segment ab
is a diagonal, we are finished.

Now suppose that the line segment ab is not a diagonal. Then the closed triangle avb contains
at least one vertex of the polygon P other than the three vertices v, a, and b. We move the line
through vertex v and parallel to ab until a vertex x in the polygon p is encountered, as described
in Exercise 3.7.
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Let L be the line through the vertex x parallel to ab. Let R be the region of the plane that is
the intersection of the interior of triangle avb with the half plane containing v and bounded by L.
The region R does not contain any points of the boundary of the polygon P . Then vx intersects
the boundary of P only at v and x, and thus vx is a diagonal. ♦

Exploratory Exercises

4.10 In each polygon below, sketch a line segment between two vertices such that this line segment
lies entirely within the interior of the polygon except for the two vertices. Then sketch
another such line segment that does not cross the first line segment, except possibly at a
vertex. Continue drawing these noncrossing line segments between vertices until the polygon
is subdivided into triangles. (You have drawn diagonals to triangulate each polygon.) Count
the number of vertices of each polygon and, for each triangulation, the number of diagonals
used and the number of triangles.

Figure 4.5

4.11 Sketch and triangulate at least four other polygons. Make several copies of each of the
polygons and find different triangulations for each copy. Count the number of vertices of
each polygon and, for each triangulation, the number of diagonals used and the number of
triangles. What relationships do you observe among these three numbers?

Lemma 4.3 (Existence of Triangulations) Every polygon P can be triangulated by adding zero
or more diagonals.

Proof: Suppose that P is a polygon of n vertices. The proof is by induction on n > 2. If n = 3,
then P is a triangle, and thus P is already triangulated.

Now let k be an integer ≥ 3. Assume that any polygon with k or fewer vertices is either a
triangle or can be subdivided into triangles by adding diagonals. Let P be a polygon with k + 1
vertices. By Lemma 2, P has a diagonal ab. This diagonal partitions P into two subpolygons that
share the edge ab. Each of these subpolygons can be triangulated by the induction hypothesis, and
thus P can be triangulated. ♦

As you have seen with your own sketches, there may be several different ways to triangulate a
polygon. However, as you have observed, every triangulation of a given polygon involves the same
number of diagonals and the same number of triangles. The following lemma states the relationship
between each of these numbers and the number of vertices of a polygon.

Lemma 4.4 Every triangulation of a polygon P of n vertices requires n − 3 diagonals and results
in n − 2 triangles.
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Proof: Suppose that the polygon P has n vertices. As in the preceding lemma, the proof is by
induction on n > 2.

If n = 3, then the polygon is a triangle. The trivial triangulation requires zero diagonals and
results in one triangle. Thus the lemma is true in the case where n = 3.

Now let k be an integer ≥ 3, and assume that any polygon of k or fewer vertices satisfies the
lemma. Let P be a triangulated polygon of k + 1 vertices. A diagonal used in the triangulation
partitions the polygon P into two triangulated subpolygons, each with k or fewer vertices. Suppose
that these subpolygons have r and s vertices, respectively. Then since the subpolygons share two
vertices,

r + s = (k + 1) + 2 = k + 3.

By the induction hypothesis, one subpolygon’s triangulation requires r − 3 diagonals and results
in r − 2 triangles, and the other subpolygon’s triangulation requires s − 3 diagonals and results in
s − 2 triangles. Thus, since the two polygons use one of P ’s diagonals as their common edge, the
number of diagonals in P ’s triangulation is:

(r − 3) + (s − 3) + 1 = (r + s) − 5 = (k + 3) − 5 = (k + 1) − 3.

Furthermore, the number of polygons in P ’s triangulation is:

(r − 2) + (s − 2) = (r + s) − 4 = (k + 3) − 4 = (k + 1) − 2.

Therefore, the polygon P of k + 1 vertices satisfies the requirements of the lemma. ♦

Exploratory Exercises

4.12 Answer the following questions for the triangulated polygon P of Figure 4.6.

a. Count the number t0 of triangles that share no edges with P .

b. Count the number t1 of triangles that share exactly one edge with P .

c. Count the number t2 of triangles that share exactly two edges with P .

d. Count the number n of vertices of the polygon P .

e. Check that t0 + t1 + t2 = n − 2. Explain why this equation holds

f. Does each triangle that shares exactly two edges with the polygon P determine an ear of
this polygon? Are any two of these ears overlapping? Does the polygon have other ears?

Figure 4.6
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4.13 Triangulate the polygons in Figures 4.6 and 4.7 in several different ways. Then answer the
questions of the preceding exercise.

Figure 4.7

Now we apply the previous lemmas to prove the Meisters Two Ears Theorem, which we used
earlier in Section 3.

Theorem 4.5 (Meisters Two Ears Theorem) Every polygon with more than three vertices has
at least two nonoverlapping ears.

Proof: [M, pages 650-651] Let P be a polygon of n vertices with n > 3. Then there is a triangulation
T of P using diagonals by Lemma 4.3. Let t0 be the number of triangles in the triangulation T
that share no edge with P , let t1 be the number of triangles of T that share exactly one edge with
P , and let t2 be the number of triangles of T that share exactly two edges with P .

A triangle that shares exactly two edges with the polygon P is an ear of P , and no two triangles
in the triangulation overlap. We will show that there are at least two of these triangles in order to
show that there are at least two nonoverlapping ears.

Since by Lemma 4.4 the triangulation results in n − 2 triangles, we have the equation:

t0 + t1 + t2 = n − 2.

Also, since the polygon has n edges, we count edges shared with the triangles to find that:

0t0 + 1t1 + 2t2 = n, and thus t1 + 2t2 = n.

Then t1 + 2t2 = t0 + t1 + t2 + 2 so that

t2 = t0 + 2 ≥ 2.

Therefore, the number of triangles that share exactly two sides with the polygon is at least two,
and thus the number of non-overlapping ears is at least two. ♦

In his paper [M], Meisters provides another proof of the theorem as well as the proof above.
This second proof does not use triangulation of the polygon. This allows the use of the Two Ears
Theorem to inductively prove the existence of a triangulation for a polygon by removing an ear.

We have covered two very useful techniques in studying polygons: triangulating a polygon and
removing an ear from a polygon. The theorems assure us that we can apply these techniques to
every polygon other than a triangle, and usually triangles can be readily addressed.

Problems

4.1 What is the smallest number of ears possible for a polygon of 4 vertices? What is the largest
number of ears possible for a polygon of 4 vertices? Explain your answers and sketch examples.

4.2 Answer the same questions for a polygon of 5 vertices.

4.3 Answer the same questions for a polygon of n vertices.

21



5 Other Illumination Problems

In this section we present other questions that are in a league with the problems previously discussed
in that they ask for the most efficient way of illuminating an object given certain constraints on
the sources of light. In each case the object and the constraints must be clearly defined and the
term efficient must be made precise.

5.1 Illuminating a stage

We will consider a vertical section of a stage, in which the stage appears as the segment AB as
shown in Figure 5.1. Floodlights may be located at points P1, P2, . . ., Pn on one side of the line
segment AB that represents the stage. We indicate with α1, α2, . . ., αn the apertures of the wedges
of light of the available floodlights. Each of the lights can be placed at any of the points. In
particular, two lights may be placed at the same point. Each wedge can be rotated around its
apex. The stage illumination problem asks to illuminate the stage (object) in such a way that the
sum of the apertures:

n∑
i=1

αi

is a minimum. The illumination with a minimum aperture sum is called an efficient illumination.
The one-on-one stage illumination problem asks to find an efficient illumination with the data given
above, in such a way that exactly one light is placed at each point.

P
1

P
2

P
3

P
4

α
1

α
2

α
3 α

4

A B

Figure 5.1

Exploratory Exercise

5.1 We wish to illuminate the stage AB with lights placed somewhere on the segment RS, where
these line segments are both horizontal and have the same length. Furthermore RS lies
directly above AB. The proportions are as indicated in the Figure 5.2 below.
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Figure 5.2

a. Assume that only one floodlight is allowed, and it must be placed on the segment RS.
Where should the light be placed if we wish the aperture to be as small as possible, and what
is the minimum aperture?

b. Assume that two floodlights placed on the segment RS are allowed. Where should they
be placed if we want the sum α1 + α2 of their apertures to be a minimum? What is this
minimum value?

c. Show that a single floodlight placed on the segment RS with an aperture of π/10 radians
cannot illuminate the given stage.

d. Show that a single floodlight with aperture greater than 33 degrees can light AB when
placed at any position on the line segment RS.

The following Lemma gives a condition that guarantees the existence of a solution to the stage
illumination problem when many lights are involved.

Lemma 5.1 Let s be a line through the point A, and let r be a line through the point B such that
the points P1, P2, . . . , Pn lie above both s and r. Let θ be the angle AQB, where Q is the intersection
of the two lines. Assume that Q lies above the stage. If the apertures α1, α2, . . . , αn are such that:

n∑
i=1

αi ≥ θ,

then lights with the given apertures can be placed at the given points to light up the stage AB.
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Figure 5.3

This Lemma follows from the solution to the second problem in [SS]. While this Lemma gives
a sufficient condition for the existence of a solution to the illumination problem, the value of θ will
in general be larger than the sum of the apertures in an efficient solution. In fact, drawing the
diagonals of the rectangle ABSR in Figure 5.2 shows that θ > π/3 but we established in Exercise
5.1b that the minimum value of α1 + α2 is less than π/3.

Open Question There is an open question, a question that no one can answer yet: Is θ ever equal
to the sum of the apertures in an efficient solution?

Exploratory Exercise

5.2 You are given the stage AB, and the points P1, P2, and P3 as in Figure 5.4.

A B

P1

P2

P3

Figure 5.4

a. Find approximately the smallest value of the angle θ mentioned in Lemma 5.1 for this
particular configuration. (Use ruler and protractor.)

b. Cut out wedges of apertures α1 = 20◦, α2 = 15◦ and α3 = 10◦. By pinning the apexes
of the wedges to the points of your choice and rotating them, find a solution to the one-on-
one stage illumination problem for this set of data. Express your solution with the accuracy
afforded by your protractor.

c. Verify that in this case
∑n

i=1 αi < θ. Does this inequality contradict Lemma 5.1? Explain
your answer.

d. Assume that exactly one light must be placed at each point. How many ways can you
assign three apertures to three points? How many ways can you assign n apertures to n
points?
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We see that a one-on-one stage illumination problem with n points and n lights involves not
only checking n! cases, but also identifying the n angles that specify how each wedge of light is
positioned at each point.

5.2 Orthogonal polygons with holes

An orthogonal hole appears in the orthogonal polygon of Figure 5.5. This hole acts as a barrier;
light rays cannot go through it. From here on we will restrict light sources to π/2-lights placed
at the vertices of the polygon under consideration. What is the minimum number of these lights
needed to illuminate the polygon in Figure 5.5?

B

A

Figure 5.5

Two π/2-lights, one placed at vertex A and the other at vertex B, will suffice; one π/2-light
will not. So the minimum number is two. Are there any other locations from which two π/2-lights
suffice? The polygon in the figure has 12 vertices; the vertices of the hole count.

Although in this case we can prove that a minimum of two vertex π/2-lights is needed, there is
no known general method or algorithm to find the minimum number of vertex π/2-lights required
to illuminate a given polygon. But it is possible to find an upper bound for the number of vertex
π/2-lights that will be needed.

Exploratory Exercise

5.3 The polygon of Figure 5.6 has 32 vertices and one hole. Each of the corners is similar to those
of the polygons of Figure 3.3. A total of 12 π/2-lights is needed to illuminate the polygon.
Sketch a large version of this polygon, and show the placement and region illuminated by
each light.
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Figure 5.6

The illumination problem for orthogonal polygons with holes is to find the minimum number
of lights needed to illuminate any orthogonal polygon with n vertices and h holes. This minimum
number must be sufficient for any such polygon and necessary for at least one of these polygons.

The preceding examples illustrate the following theorem, which solves the stated illumination
problem for orthogonal polygons.

Theorem 5.2 For any orthogonal polygon with n vertices and h holes,
⌊
3n + 4(h − 1)

8

⌋

π/2-floodlights placed at vertices are always sufficient and sometimes necessary to illuminate the
polygon.

The proof of this theorem can be found in [ACSU ]. We will apply the theorem to each of the
two preceding examples. In the case of Figure 5.5,

⌊
3n + 4(h − 1)

8

⌋
=

⌊
3(12) + 0

8

⌋
= 4.

According to the theorem four lights will suffice, but we know we can do better.

Exploratory Exercise

5.4 Can you find an orthogonal polygon with 12 sides and one hole that requires four π/2-lights?

In the case of Figure 5.6,
⌊
3n + 4(h − 1)

8

⌋
=

⌊
3(32) + 0

8

⌋
= 12.

This shows that the given number of lights is sometimes necessary.

Problems

5.1 Sketch at least 3 orthogonal polygons with holes. Count the number of vertices and number
of holes in each of these orthogonal polygons, and then compute the upper bound M on the
number of vertex π/2-lights in each case according to Theorem 5.1. Show how each polygon
can be illuminated by at most M vertex π/2-lights.

5.2 Find the minimum number of vertex π/2-lights required to illuminate the polygon in Figure
5.7. Show the placement of the lights. Do your results contradict Theorem 5.1? Explain.

Figure 5.7
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We have answered the exercise questions by observing polygons. Theorem 5.1 gives information
about the number of vertex floodlights needed but not about the location of the vertices. There is
in [ACSU] an algorithm to find the location of a number of vertex floodlights for a given polygon
that satisfies the bounds of Theorem 5.1. This algorithm applies four rules. Each rule produces a
set of vertex floodlights. The set with the minimum number of floodlights is the one chosen by the
algorithm as a solution to the illumination problem. But there is no claim in the paper that this
algorithm produces the minimum number of vertex floodlights for a given polygon.

References

[ACSU] J. Abello, V. Estivil-Castro, T. Shermer, and J. Urrutia. “Illumination with Orthogonal
Floodlights”, International Journal of Computational Geometry and Applications 8, pp.
25-38, 1998.

[BGK] P. Bose, L. Guibas, A. Lubiw, M. Overmars, D. Souvaine, J. Urrutia. “The Floodlight Il-
lumination Problem,” International Journal of Computational Geometry and Applications
7, pp. 153-163, 1997.
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