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ABSTRACT

The module touches on several topics of mathematical interest. Mathematical modeling in general
is discussed briefly at the start, and then some details regarding traffic models are given. Cellular
automata (CA), both deterministic and probabilistic, are introduced as a method for modeling
traffic flow. The software package Mirek’s Cellebration (MCell) is presented as a way of handling
the long-run forecasting of different CAs.
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1 Introduction

What comes to mind when you hear the term “traffic jam?” Congestion, brake lights, aggravation,
road rage, horn blowing — the list goes on and on. Traffic jams are indeed unpleasant.

What causes traffic jams? Accidents, construction work, lane closings, and incompetent
drivers are often to blame. But why is it that some jams just seem to appear out of nowhere? In
this module we will use mathematics to help us to understand — that is, to model — this highway
phenomenon.

Before beginning, let us first discuss mathematical models in general. A mathematical model
is a type of mathematical construction that is used to simulate real world phenomena. The mathe-
matical model can then be analyzed in the hope that the information obtained from the model will
give some information about the real world phenomena. Mathematical models are used in a wide
variety of situations, from weather forecasting and financial markets to epidemiology, medicine, and
traffic.

Mathematical models can be used for many different purposes. Often they are used to make
predictions about the future, as is the case in weather and economic forecasts. Sometimes they
are used not to make predictions but rather to try to understand the phenomena being modelled.
This is often the case in epidemiology where analyzing data about the number of people that have
a disease at a given time can give some information about how the disease is spread. While many
people have made mathematical models of traffic flow for forecasting purposes, our model will be
of the second type. We will try to build a model to help us understand how traffic jams form and
then maybe what can be done to help alleviate them.

A mathematical model may be as simple as a single equation or a system of equations or
something much more complex. Typically, the more complex the model the better it simulates the
real world situation being modelled. However complex models tend to be more difficult to analyze
so simpler models are used instead. Often there are trade-offs to be made between complexity
and accuracy. In our situation, we will be trying to come up with the simplest model we can that
exhibits the desired phenomena.

1.1 Modeling Traffic

Several different mathematical models for traffic have emerged in recent years. Physicists and
mathematicians alike have applied numerous methods to the study of traffic flow [2]. One model
relates traffic to liquid. Think about how traffic flow looks from an airplane — at times, the traffic
down below almost looks like fluid flowing down the highway. Kinetic theories, Newtonian mechan-
ics, and differential equations are sophisticated mathematical elements of other investigations. An
August, 1999 Washington Post article [7] described results of recent traffic research in the following
way.

Scientists have identified “phase changes” in traffic, similar to the sudden transitions
that occur when steam turns to water or water to ice. Understanding the timing and
dynamics of phase changes in traffic, like those in nature, poses a challenge for physicists.
. . .

Phase 1. When traffic is light, motorists drive much as they like, moving at the
speed they want and changing lanes easily. Motorists are comparable to steam particles
with great freedom of movement.

Phase 2. As the road becomes crowded, motorists suddenly lose much of their
freedom and are forced to drive as part of the overall traffic stream, moving at the
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speed of the general flow and often unable to change lanes. This phase, similar to
water, has been called “synchronized” flow.

Phase 3. In heavy congestion, traffic is stop-and-go. Like water freezing into ice,
the motorists are stuck in place.

In 2001 Larry Gray and David Griffeath [3] developed the first simple, discrete model in
which each of the three phases mentioned in the Post article can be observed. We will investigate
their model in this module. Their model uses one dimensional cellular automata. We will study
cellular automata in the next section.

1.2 One Dimensional Cellular Automata

Let’s begin this section by looking at some examples.

Example 1.1. Think about a number line which extends infinitely in both directions, and imagine
that there is a little light bulb situated on the top of every whole number. Here is a small piece of
the number line.

1211 13 1514 16 17

1211 13 1514 16 17

1211 13 1514 16 17

12:00

12:01

12:02

Light Bulbs

At 12:00 noon, some of the light bulbs are on and some are off. At 12:01, the lights have
switched states. Again at 12:02, the lights have switched again. Do you see the pattern developing?
Can you predict how the lights will look at 12:03?

In this example, the lights are really following two simple rules:

• Rule 1: If a light bulb is on during the present time unit, then it will switch to off one time
unit later.

• Rule 2: If a light bulb is off during the present time unit, then it will switch to on one time
unit later.

Note: our time units are represented by minutes in this example.

These two rules can be altered to form other interesting sequences of lights. The next example
illustrates this idea.
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Example 1.2. Consider the following figure. Again, there are light bulbs on top of each number
along the infinite number line. We are shown only a small piece of the line.

1211 13 1514 16 17

1211 13 1514 16 17

1211 13 1514 16 17

1211 13 1514 16 17

? ? ? ? ?

? ? ?

?

12:00

12:01

12:02

12:03

Light bulbs turning on and off.

Notice that with each passing minute, some lights switch states, and some do not. Why is
this? Can you detect the pattern?

Again, there are just two simple rules that govern the action of the lights in this example.
Notice how Rule 2 has a bit of a new look.

• Rule 1: If a light bulb is on during the present time unit, then it will switch to off one time
unit later.

• Rule 2: If a light bulb is off during the present time unit, then it will switch to on one time
unit later only if exactly one of the two adjacent lights is presently on. Otherwise, the light
stays off.

Let’s examine this particular example more closely. At 12:00, the lights at 12, 14, and 17
were on. So, according to Rule 1, at 12:01, each of these lights switched to off. The light at 13
was off at 12:00, and both of its adjacent lights (neighbors), 12 and 14, were on at that time. Thus
according to Rule 2, 13 stayed off at 12:01. (The only way that a light which is off can switch to
on is if exactly one of the two adjacent lights (neighbors) is on). The light at 15 was also off at
12:00, and exactly one of its neighbor lights, namely 14, was on. Therefore, according to Rule 2,
the light at 15 switches on at 12:01.

So why the question marks? Take for example the light at 11, which is off at 12:00. Since we
cannot see the light at 10, there is no way for us to know how many of 11’s neighbor lights are on.
For this reason, we don’t know how the light at 11 will look at 12:01 — hence the question mark.
The other question marks in the figure arise from similar reasons. See if you can figure out why
they are there.

There is an interesting difference to note between these two examples. In Example 1.1, the
future status of a particular light bulb depended only on the current status of that light bulb. In
Example 1.2, however, a light bulb’s future status depends not only on its own current status, but
also on the current status of light bulbs near it.

Example 1.3. In this example, we will use 0’s and 1’s to denote off light bulbs and on light bulbs
respectively. We will use the same rule as we used in Example 1.2 but with a different configuration
of on and off light bulbs.
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t = 0 0 1 0 1 1 0 0 0
t = 1
t = 2
t = 3

Notice how we don’t know where on the number line these light bulbs are sitting - but we
actually don’t care! Now, we can use the rule to fill in the rest of the table.

t = 0 0 1 0 1 1 0 0 0
t = 1 ? 0 0 0 0 1 0 ?
t = 2 ? ? 0 0 1 0 ? ?
t = 3 ? ? ? 1 0 ? ? ?

Example 1.4. In this example, we again use 0’s and 1’s to denote off light bulbs and on light
bulbs respectively. We will use the same rule as we used in Example 1.3 but the only difference is
the series of dots before the initial 0 and after the last 0. These dots mean that the 0’s continue
infinitely to the left and to the right (i.e. no more 1’s).

t = 0 · · · 0 1 0 1 1 0 0 0 · · ·
t = 1
t = 2
t = 3

Now, we can use the rule to fill in the rest of the table. The dots (or knowing that 0’s continue
infinitely to the left and the right) allows us to completely fill in the table.

t = 0 · · · 0 1 0 1 1 0 0 0· · ·
t = 1 1 0 0 0 0 1 0 0
t = 2 0 1 0 0 1 0 1 0
t = 3 1 0 1 1 0 0 0 1

Example 1.5. Again, in this example, we will use 0’s and 1’s to denote off light bulbs and on light
bulbs respectively. Our rules are the following:

• Rule 1: If a light bulb is on during the present minute, then it will switch to off in the next
minute only if its right neighbor is off during the present minute.

• Rule 2: If a light bulb is off during the present minute, then it will switch to on in the next
minute only if its left neighbor is on during the present minute.

Now, consider the following initial configuration of on and off light bulbs.

t = 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0

After the first time step, our table will look like the following.

t = 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0
t = 1 ? 1 1 0 1 0 1 0 0 1 1 1 0 1 0

And now we see what happens at time steps 2 and 3.
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t = 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0
t = 1 ? 1 1 0 1 0 1 0 0 1 1 1 0 1 0
t = 2 ? 1 0 1 0 1 0 1 0 1 1 0 1 0 1
t = 3 ? 0 1 0 1 0 1 0 1 1 0 1 0 1 ?

These examples are illustrations of a mathematical construction called cellular automata
(or CA for short). A CA can be thought of as an intricate collection of identical objects, each of
which is said to be in some particular state (on or off, for example). As distinct time periods pass,
the objects (or cells), may change from state to state according to a particular set of rules. These
rules and the list of possible states are the same for each object.

These examples are very simple examples of a cellular automata. There are several aspects
of these CAs that can be varied to form other CAs. Here are some examples.

• The set of possible states could be different. Instead of two (off and on), there could be three
(say, off, dim, and bright), or more.

• The rule can vary in terms of the neighboring cells’ status. For instance, the 0’s might change
to 1’s if one or two neighboring (adjacent) cells have 1’s in them.

• The rule could be different in that the relevant neighborhood might be larger. In the example
above, it was just the status of the two closest neighbors that affected the center cell. It very
well could be that this “range” of cells is bigger.

• The playing field might be different. Instead of the one dimensional number line, grids of
higher dimensions could be used. The most famous two dimensional cellular automata is
John Conway’s “Game of Life”.

For more information about cellular automata, we refer the reader to S. Wolfram’s book [9].

1.3 Exercises

As in the examples in this section, · · · 0 means that 0’s continue infinitely to the left and 0 · · · means
that 0’s continue infinitely to the right. If no dots are present, it is unknown what is happening to
the left and/or the right.

(1) Consider the following rule: An off light turns on if it has at least one on neighbor. An
on light bulb goes off if it has exactly 2 on neighbors. The following represents an initial
configuration (at t = 0). Fill in the boxes for t = 1, 2, 3. Use 1 to denote an on light and 0 to
denote an off light.

t = 0 0 0 0 1 1 0 0 0
t = 1
t = 2
t = 3

(2) Using the same rule as in Exercise (1), fill in the boxes for t = 1, 2, 3. Use 1 to denote an
on light and 0 to denote an off light. The dots that appear next to the zeros mean that 0’s
continue to the left and to the right (i.e. no more 1’s).
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t = 0 · · · 0 0 0 1 1 0 0 0 · · ·
t = 1
t = 2
t = 3

(3) Using the same rule as in Exercise (1), fill in the boxes for t = 1, 2, 3. Use 1 to denote an
on light and 0 to denote an off light. The dots that appear next to the zeros mean that 0’s
continue to the left and to the right (i.e. no more 1’s).

t = 0 · · · 0 0 0 1 1 0 0 0 1 0 0 0· · ·
t = 1
t = 2
t = 3

(4) Using the rule from Example 1.2, fill in the boxes for t = 1, 2, 3, 4, 5, 6, 7. Use 1 to denote an
on light and 0 to denote an off light. The dots that appear next to the zeros mean that 0’s
continue to the left and to the right (i.e. no more 1’s).

t = 0 · · · 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0· · ·
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7

Note: These rules, together with this initial configuration, give rise to a CA called “Pascal’s
Triangle”. Can you see why?

(5) Use the rule from Example 1.2 with the following exception: If a light is on and both of its
neighbors are off, the light remains on. Fill in the boxes for t = 1, 2, 3, 4, 5, 6, 7. Use 1 to
denote an on light and 0 to denote an off light. The dots that appear next to the zeros mean
that 0’s continue to the left and to the right (i.e. no more 1’s).

t = 0 · · · 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0· · ·
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7

How does this CA differ from the one in the previous exercise?

(6) Can traffic lights and/or digital clocks be thought of as cellular automata? Explain!
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2 MCell

In Section 1 we calculated how certain initial configurations behave under a given rule for a few
time periods. It is easy to see how difficult it would be to calculate what happens “in the long run,”
or as time increases. Fortunately, there is an amazing software program available called Mirek’s
Cellebration, or MCell, for short, created by Mirek Wojtowicz [8]. It can be downloaded for free
from http://psoup.math.wisc.edu/mcell/. You will need internet access to download the program
and once it is installed, you will not need the internet. In this section we will introduce the reader
to some of the features of MCell.

We will use MCell to explore Example 1.2. The rules used in the example were as follows:

• Rule 1: If a light bulb is on during the present time unit, then it will switch to off one time
unit later.

• Rule 2: If a light bulb is off during the present time unit, then it will switch to on one time
unit later only if exactly one of the two adjacent lights is presently on. Otherwise, the light
stays off.

We could represent these rules in another way. Let us begin by exploring rule 1: If the light
bulb is on at the present time unit then it will switch to off one time unit later. Suppose a light
bulb is on and both of its neighbors are off. Using 0’s and 1’s as before we can denote this situation
in the following way:

left neighbor light bulb right neighbor
0 1 0

Or simply: 010

If exactly one neighbor light is on, the situation would be: 110 or 011. And if both neighbor
lights are on we have 111. In each of these situations, the middle light (the light of interest) will
go off. So we can denote this occurrence in the following way:

present time unit next time unit
0 1 0 → 0

Then the other scenarios are
present time unit next time unit

0 1 1 → 0
1 1 0 → 0
1 1 1 → 0

We can extend this idea to include rule 2 - If a light bulb is off during the present time, then it
will switch to on in the next time only if exactly one of the two adjacent lights is presently on.
Otherwise, the light stays off. We can write both of the rules in one table in the following way.
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initial time unit next time unit
010 0
011 0
110 0
111 0
000 0
001 1
100 1
101 0

This table shows the cell in question and each of its two neighbors. We can see that all of the on
lights go off and the off lights come on only when exactly one of its neighbors is on. This is the way
our computer software represents the rule. Recall, we mentioned in the exercises in the previous
section, that these rules were called “Pascal’s Triangle”.

2.1 To find this rule in MCell:

Recall, MCell is available to download for free from http://psoup.math.wisc.edu/mcell/. Once
installed, it does not require internet access to run.

• Open up MCell

• You will see a list of folders in the upper left-hand corner of the screen. Click on the MCell
folder and then open the folder called “1D Binary.”

MCell Screen

• Below the list of folders, there is now a list of *.mcl files - open the one called “Pascal’s
Triangle.mcl.”

• Go to the ‘Rules’ menu (along the top of the screen) and open ‘Rules - setup’

10



Mcell - Setting - Rules Screen

• On the left-hand side of the dialog box will be the rules, in a format similar to the table we
just created above. Click OK after you’ve looked at the rule. It is possible to change the
rules here.

• Press the “continuous play” button and see MCell run the rule! If you want to see one step
at a time, press the “slow play” button which is located immediately to the right of the
“continuous play” button.

Continuous Play Button

• You can enlarge and shrink the viewing area by using the magnifying glass buttons (+ to
enlarge, - to shrink). The button on the far right is a “Shrink to fit” button which picks a
nice size for you.

• To stop MCell from drawing, press the “stop” button (the square).

Stop Button

Example 2.1. Using MCell, 1D Binary, try out Pascal’s Triangle and see if you get the following
picture. (Use “Shrink to fit”.) Note - you may have colors other than black and white in your
screen - it is OK!
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MCell - Pascal’s Triangle

Example 2.2. Using MCell, 1D Binary, try out Kites.mcl and see if you get the following picture.
(Use “Shrink to fit”.)

MCell - Kites

2.2 Exercises

Note: once you have run a rule, to reset the screen, click on that rule again.

(1) Run the rule “SolitonsA.mcl”. Look at the rules and change the first rule so that you have
the light turning on instead of staying off. Does the picture look different now? Describe.

(2) Run the rule “SolitonsA.mcl”. Look at the rules and change the fourth rule so that you have
the light turning off instead of staying on. Does the picture look different now? Describe.

(3) Run the rule “SolitonsD1.mcl”. Look at the rules and change the first rule so that you have
the light turning on instead of staying off. Does the picture look different now? Describe.

(4) Run the rule “SolitonsD1.mcl”. Look at the rules and change the fifth rule so that you have
the light turning off instead of staying on. Does the picture look different now? Describe.

(5) Run the rule “Brownian motion.mcl”. Look at the rules. These rules can also be stated as: If
a light has both neighbors off, then the light does not change. Otherwise, the light changes.
Change the rule to one that can be stated as: If a light has both neighbors off, then the
light turns on. Write down the rule in the form of a table. Run the rule and describe the
differences.
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(6) Run the rule “Brownian motion.mcl”. Look at the rules. These rules can also be stated as: If
a light has both neighbors off, then the light does not change. Otherwise, the light changes.
Change the rule to one that can be stated as: If a light has both neighbors off, then the
light turns off. Write down the rule in the form of a table. Run the rule and describe the
differences.

3 The Slow Lane: Deterministic Traffic Model

Back in Section 1, we saw that

• Cellular automata are collections of identical objects having one of a finite number of states
and a set of rules for determining how the state of an object changes from one moment to
the next.

• An example of a cellular automata is a sequence of light bulbs which can have one of two
states on or off.

One of the goals of modelling is to find a mathematical representation of a real-life situation
that we wish to study. The model must also be simple enough to be easily analyzed. No one will
argue that our light bulb example is simple, and in this section, we show that we can use the same
ideas to model traffic flow on a one-lane highway. We will study the model built by Gray and
Griffeath [3]. There are other models of traffic out there (see [1], [4], [5], [6]).

Our one-lane highway will not include on-ramps, off-ramps, or other ways for cars to enter
or exit the road. This assumption may seem unrealistic, but our goal is to find the simplest
“interesting” model which contains traffic jams. We will also assume our highway is infinitely long.

Let us represent our highway by the infinite real number line with the integers denoting the
possible locations of the cars. At each integer, we will assign a value of either 0 or 1. Assigning
a value of 1 will indicate a car occupies that location, and a 0 will indicate the location is empty.
Notice the similarities between the highway example and the light bulb example. The light bulbs
correspond to the locations on the highway and each has two possible states: on/off for the light
bulbs and car/no-car for the highway example.

Example 3.1. This is an example of a possible configuration of a highway.

4 5 76 8 93 1021 11 12 13

Cars

We will assume cars are located in locations 2, 3, 6, 10, 11, and 12 while locations 1, 4, 5, 7,
8, 9, 13, 14, and 15 are empty. We will represent our highway with the following table (note: the
picture only goes up to location 13, however, our table representation goes up to location 15):

location 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t = 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0

As seen in the picture, each car is traveling to the right (towards higher numbers).
From here on out, we assume that the cars will be traveling to the right.
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Being infinitely long, our highway is difficult to represent. We will get around this by using
a loop to represent the highway and have the cars move continuously around the loop. Thus, in
the previous example, position 15 and 1 are adjacent and the 6 cars represented will move within
the 15 positions. MCell allows one to specify the length of the loop - by default it is 600 positions.

3.1 “Move if you can”

We need to decide how our cars will move. What goes through your mind when you are deciding
whether or not to press on the accelerator and move ahead? The distance between you and the
next car? The tempo of the music on the radio? How late you are?

There are many factors that determine your driving habits but we want to keep our model
simple. Therefore, we establish one rule:

“Move if you can” rule: A car will move to the next (to the right) location if and only if
the next location is empty (has no car in it).

Let us see what our rule implies about the cars in Example 3.1 above. Remember that
locations 15 and 1 are adjacent — so using the “Move if you can” model, a car in cell 15 will
move to cell 1 if there is no car in cell 1. Here is a table representing the flow of traffic for time
t = 0, 1, 2, 3, 4. Note that the car in position 15 at time t = 3 moves to position 1 at time t = 4.

location 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t = 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0
t = 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0
t = 2 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0
t = 3 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
t = 4 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0

Notice that Example 1.5 is exactly the “Move if you can” model applied to light bulbs.
Now we have a model of the highway set up and would like to see what happens to cars as

time proceeds. Specifically, we are interested in seeing if traffic flows freely or if it “jams” up. We
need first to define these terms.

Definition 3.2. For the “Move if you can” model, if n ≥ 2, we will define a jam of size n to be
n consecutive 1’s with a 0 in the location immediately before and after the sequence of 1’s.

A jam will be a group of cars in adjacent locations. In Example 3.1, notice that initially
there is a jam of size 2 in locations 2-3 and a jam of size 3 in locations 10-12. In the “Move if you
can” model, the lead car in a jam will automatically move ahead at the next time step while the
other cars in the jam remain stationary. In the course of driving, a specific car may be a member
of many different jams. For example, it could encounter the back end of a jam while driving along,
have to wait for the cars ahead to move out, proceed driving again only to encounter the back of
a new jam and start the process over again.

These initial jams may have been caused by an accident, a police officer with radar, an animal
running across the road, or many other possible reasons. We are not interested in why the jams
occurs but in how they dissipate and if they reform.

Looking back at table above, we see that the initial jam at locations 2-3 was gone at t = 1
and the jam at locations 10-12 was completely gone at t = 2. In fact, at t = 2 every car has an
open space in front of it and proceeds forward at t = 3. This situation where every car continues to
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move forward will happen at every future time step; the cars are flowing freely from one location
to the next. (You will be asked to explain why this occurs in the exercises.) This jam-free behavior
will be given a special name.

Definition 3.3. A configuration for the “Move if you can” model is said to be in free flow if every
car has an open space in front of it at the end of a time step.

3.2 Modeling Traffic Using MCell

One question we have been trying to answer is, “When do we get jams?” It takes SO long to do
each step and this makes it difficult to see what will happen in the long run - will a jam occur?
Fortunately, MCell helps us with this. We will now begin a brief introduction to MCell and talk
about some of its features.

• Open up MCell.

• You will see a list of folders in the upper left-hand corner of the screen Click on the MCell
folder and then open the folder called “Special Rules.”

• Below the list of folders, there is now a list of *.mcl files - open the one called “Traffic CA.mcl.”

• Go to the ‘Color’ menu (along the top of the screen) and click on the ‘color bar’. On the left
side of the color bar window are left/right buttons with ‘1/25’ underneath the buttons. Press
on the left button until it reads ‘1/2’ underneath the buttons. The will allow you to use 2
states - on or off, occupied or empty.

• Go to the ‘Rules’ menu (along the top of the screen) and open ‘Rules setup’

• You will see the words ‘Accelerating’, ‘Braking’, Congested’, and ‘Driving’. The numbers in
the white box represent the rules. We will talk about their exact meaning in Section 4.

MCell - Traffic Rules

• Press the “Play” button and see MCell run the rule!
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MCell - Play button

• You can enlarge and shrink the viewing area by using the magnifying glass buttons (+ to
enlarge, - to shrink) The button on the far right is a “Shrink to fit” button which picks a nice
size for you.

• To stop MCell from drawing, press the “stop” button (the square).

MCell - Stop button

• You can clear the screen and put your own initial conditions in there. Press the “new screen”
button and then click on the spots where you would like to put cars. Remember, only put
cars on the first row! It will help immensely if you enlarge the viewing area.

MCell - New screen button

Now, the “Rules...” screen looks very different from the ones we have used up to now. The
difference is due to the fact that MCell allows the user to insert various probabilities into this
model. The probabilities relate to different possible driving methods, and we will talk more about
them in Section 4. For now, let us set each of the four probabilities to 1 (which is actually the
defining feature of the “Move if you can” model).
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MCell - Traffic Rules screen with Probabilities set at 1

MCell will allow us to look at MANY cars at a time, and that is certainly helpful. Next to
the play button is another play button with a 1 next to it. Clicking this button once will show one
time period passing. We’ll call this button the slow play button. If you enlarge the viewing area
many many times, you will be able to see each distinct car. Clicking successively will allow you to
see each car over several distinct time periods. This is MUCH faster than doing it by hand!

MCell - Slow play button

Example 3.4. Think back to Example 1.5. As we mentioned before, the rules we used for the
lights turning on and off are the same rules for the “Move if you can” model. In this example, we
will use MCell to look at how the traffic moves through multiple time periods. Recall the initial
conditions:

t = 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0

Since we have only 20 locations, we will need to adjust the board size for MCell. To do this
we go to “Settings - Board...” and the Board Size will be in the upper left hand corner. Click
on “Other” and set the board size to be 20 by 20. (Mcell forces the size to be a square and the
lengths/widths must be multiples of 20.) When we put this into MCell, we get:
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MCell - “Move if you can” initial configuration

For clarity, let us reiterate a few points. First, the black squares in the first row of the above
figure represent cars, and the white squares represent spaces without cars. Second, cars move from
left to right. Third, as a car moves off of the right side of the screen, it reappears on the left side
of the screen.

In this example, the initial configuration contains 3 distinct “jams” of cars. Reading from
left to right, there are jams of size 3, 4, and 3 respectively.
Using the “slow play” button we get the following picture after 9 time periods. Notice that the
number of cars on each line remains the same. This is because when a car exits the screen on the
right hand side, it reappears on the left hand side of the screen.

MCell - “Move if you can” after 9 time periods

Look at the big picture here. At the beginning there are three jams, and over time they
seem to (more or less) work themselves out. Why is it that the jams themselves look like they are
moving backward? Maybe we can answer that question after looking at another example.
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Example 3.5. In this example, we let MCell itself randomly choose the initial configuration of
cars. To do this, simply press the “random” key. (Our board size is 600 by 500.)

MCell - Random button

Before setting up the initial configuration, MCell asks us to choose the percentage of spots that
will be occupied by cars.

MCell - How to chose a certain density

For our example, we will choose 80% (think of this as the first row of spots being 80% filled with
cars). Make sure that you have clicked the button to the left of “Mono, one state”. Press the Apply
and then Close buttons and the screen will have the cars it. Now play the rule and look at the long
term behavior.

MCell - long term behavior of the rule above
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So what is this figure showing? Each horizontal slice represents one time period, and the solid
black sections are the “jams.” Notice again that it appears the jams are moving backwards!

To understand what is happening, let us take a smaller version of this example and concen-
trate on a single jam. We make our board 20 by 20. To do this, go to the ‘Settings’ menu and
open ‘Settings - board”. Then make the board 20 x 20. We will begin with the following initial
conditions:

t = 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0

We have a jam of size 8 and a jam of size 5. As we look what happens over time, we again see that
the jams tend to move to the left. One way to think of why this occurs is that the car in the front
of the jam leaves because there is an empty space ahead of it. The rest of the jam does not move,
and another car catches up with the jam and then becomes part of the jam (and thus creating a
jam that is the same size as the one during the previous time period).

MCell - Traffic Jams

Example 3.6. Now that we have seen a bit about the behavior of jams, let us consider another
situation. Again we will be using a 20 by 20 board and the “Move if you can” rule. But this time
our initial configuration will have fewer cars in it:

t = 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

We have a jam of length 8. As we run MCell we see that the jams dissolves and we are in
free flow.
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MCell - Free Flow

What makes Example 3.2 and 3.6 different is the number of cars in the initial configuration
(the density). In the next section we will talk about the role on the initial densities.

3.3 Densities in the move-if-you-can model

In the last section, we looked at the long range behavior of the “move if you can” model under
different initial conditions. In Example 3.1, we had 15 locations and 6 cars and noticed that no
matter where the 6 cars were initially placed, eventually all cars would be in free flow. Then we
used MCell and started with 20 locations and 11 cars and found that again, eventually the cars
would go into free flow. In Example 3.5 we changed the initial number of cars so that 80% of the
locations were filled. Even after many iterations of MCell, traffic jams existed at every time step.
We would like to determine how the number of cars affects the long range behavior of the traffic
pattern. First, let us give a definition for this initial number of cars.

Definition 3.7. If ρ ∈ [0, 1], we say the initial configuration has density ρ if the percentage of
locations filled with carsin the initial configuration is ρ.

For example, if ρ = 1
2 , then exactly half of the locations will have a car assigned to it. In

Example 3.1, we had 15 locations and 6 cars so ρ = 6/15 = 40%. If the density is less than or equal
to ρ = 1

2 (or 50%), the traffic will eventually be in free flow, otherwise there will be at least one
jam.

3.4 Exercises

(1) The following table was built in the Example 3.1. (Recall that the right end of the table
wraps back around to the left end!)

location 1 2 3 4 5 6 7 8 9 10
state t = 0 0 1 1 0 0 1 0 1 0 0
state t = 1 0 1 0 1 0 0 1 0 1 0

Determine the status of the 10 locations for t = 2 and t = 3 in the “Move if you can” model.
Determine the density of the initial configuration.

location 1 2 3 4 5 6 7 8 9 10
state t = 0 0 1 1 0 0 1 0 1 0 0
state t = 1 0 1 0 1 0 0 1 0 1 0
state t = 2
state t = 3

(2) Determine the status of the 10 locations for t = 1, t = 2 and t = 3 in the “Move if you can”
model. Determine the density of the initial configuration.

location 1 2 3 4 5 6 7 8 9 10
state t = 0 0 1 1 1 1 1 0 1 1 0
state t = 1
state t = 2
state t = 3
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(3) Consider the following initial conditions. Without using MCell, fill in the rest of the table
using the “Move if you can” Model. Determine the density of the initial configuration.

t = 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0
t = 1
t = 2
t = 3
t = 4
t = 5

(4) Consider the initial conditions from the previous model. Using MCell, fill in the rest of the
table using the “Move if you can” rules. (Use a 20 by 20 board.) Determine the density of
the initial configuration.

t = 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10
t = 11
t = 12
t = 13
t = 14
t = 15
t = 16
t = 17
t = 18
t = 19

(5) Consider the initial conditions from the previous model. Using the play button, look at the
long term behavior. Write a paragraph describing what you see. Make sure to comment on
jams and free flow. Is free flow ever attained?

(6) Using MCell and a 20 by 20 board, randomly place cars on the screen with a 40% density.
Write down your initial configuration:

t = 0

Will you attain free flow? If so, how many time periods until it occurs.

Do this 5 more times:

t = 0
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t = 0

t = 0

t = 0

t = 0

(7) Using MCell and a 20 by 20 board, randomly place cars on the screen with a 70% density.
Write down your initial configuration:

t = 0

Will you attain free flow? If so, how many time periods until it occurs.

Do this 5 more times:

t = 0

t = 0

t = 0

t = 0

t = 0

(8) Explain why if a system is in free flow in the “Move if you can” model, then every car would
move forward at the next time step.

(9) Explain why if a system is in free flow in the “Move if you can” model, then every car would
move forward at every future time step. (Hence the name: free flow.)

(10) Argue that if ρ > 50%, then there must be a jam in the initial configuration.

(11) The previous exercise implies that if ρ > 50%, then there must be a jam at every time step.
Explain why.

(12) Run MCell with various densities ρ < 50% and look at the long term behavior. Describe
what you eventually see. Make a conjecture about the long term behavior of the “Move if
you can” model with ρ < 50%. Use a 40 by 40 board and remember to use the “shrink to fit”
button.

(13) Use a table to write down all possibilities for the status of a location and its immediate
neighbors, then determine the status of the location at the next time step using the “Move if
you can” model.
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4 The Expressway: Probabilistic Traffic Model

4.1 Introduction

Recall the descriptions of the three phases of traffic mentioned at the beginning of this module.

Phase 1. When traffic is light, motorists drive much as they like, moving at the
speed they want and changing lanes easily. Motorists are comparable to steam particles
with great freedom of movement.

Phase 2. As the road becomes crowded, motorists suddenly lose much of their
freedom and are forced to drive as part of the overall traffic stream, moving at the
speed of the general flow and often unable to change lanes. This phase, similar to
water, has been called “synchronized” flow.

Phase 3. In heavy congestion, traffic is stop-and-go. Like water freezing into ice,
the motorists are stuck in place.

The model developed in the last section was certainly a simple model of traffic flow that we
were able to analyze fairly well. However it did not demonstrate the three phases of traffic that
we wished to see. Rather, we only got the first and third types of traffic, free flow and persistant
traffic jams. Before we go on and develop a more complex model, let’s first discuss the three phases
a bit more.

Consider the first MCell screen shot shown below.

Example Free Flow

This gives a more realistic example of free flow than we saw in the “Move if you can” model.
Here cars move, for the most part, independently of one another. While traffic jams do occasionally
appear, they quickly dissipate and return to free flow. Notice that our definition of free flow given
in Definition 3.3 does not fit this situation. A mathematically precise definition of free flow is quite
technical and is beyond the scope of this module [3].
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Second Phase of Traffic

The above screen shows the second phase of traffic. Here traffic is moving fairly well and
there are no very long traffic jams although virtually every car spends most of its time in contact
with the cars adjacent to it. While traffic jams do form in this situation, they tend to eventually
go away as new ones form in a different place.

Third Phase of Traffic

Finally, we have the third phase shown in the above screen is a definite traffic jam. Long
jams that move backwards along the road with only brief escapes into small pieces of free flow
typify this phase.

These are the three phases of traffic flow that we would like to model. We will look at various
attempts to do this in the next sections.
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4.2 A Simple Probabilistic Model

We will attempt to improve our model by adding some randomness to the process. In Section 3,
our model made the assumption that all drivers who had an opening ahead of them moved forward
immediately. Anyone who has ever watched a long line of cars start after being stopped at a traffic
light knows that this is certainly not the case. In this section we will assume that there is some
randomness as to whether a person who can move ahead does by saying that any car with a space
ahead of them will move ahead with probability p. Let us first consider the case where p = 1

2 . In
this case we can think of each driver with a space ahead of them flipping a coin at each time period.
If the coin comes up heads, they move ahead one space, if it comes up tails they stay where they are
for that time period. (A more realistic model might consider whether the driver is dialing their cell
phone or adjusting the radio, but we will stick to flipping coins.) Now hopefully in reality drivers
move ahead more often than half of the time there is an open place in front of them so we will have
p greater than 1

2 . In this case, say with p = .9, we can just think of flipping a coin weighted so that
it comes up heads 90% of the time and tails only 10% of the time. Hopefully it is intuitive to the
reader that in this situation the cars would move more quickly down our infinite highway.

MCell also does a nice job of simulating this model. To see this, open MCell and in the
Special Rules folder open the Traffic CA rules. Then, under the Settings menu, open the Settings -
Rules dialog box. In this box, change the numbers next to Accelerating, Braking, Congested, and
Driving to all be the same. Whatever number is placed in the boxes is the probability p that a car
with a space ahead of it will move forward. Let us look at what happens with p = .8. Recall that
to set the initial seeding you press the random key and select one of the percentages given as the
percentage of available cells to be filled. Let’s look at how the picture changes as we go from a low
density to a high density. In the figure below we see screen shots with densities 20%, 40%, 60%,
and 80%.

Density 20% Density 40%
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Density 60% Density 80%

While the third picture with 60% density seems to be the “synchronized” flow of phase 2, a
longer look at this model in motion shows that the jams eventually work themselves out. Hence
this is just a special case of Phase 1. In fact, a lot of research has been done on this model and
it has been proven that synchronous flow never occurs [3]. As this model does not exhibit the
behavior we are looking for, we will move once again to a more complex model.

4.3 The Probabilistic Traffic CA

In an attempt to further refine the probabilistic model of the last section, Gray and Griffeath [3]
noticed that drivers were concerned with more than just if there was an empty space in front of
them, they were also concerned about the situation further ahead of them and behind them. Hence
they came up with four different scenarios that a driver with an empty space directly ahead of
them can face and assigned the car a different probability of advance for each of the scenarios.
These scenarios are acceleration, braking, congestion, and driving. Here is a table describing the
four situations for a driver in position x:

transition type x − 1 x x + 1 x + 2 probability of advance
acceleration 1 1 0 0 α

braking 0 1 0 1 β

congestion 1 1 0 1 γ

driving 0 1 0 0 δ

Let’s clarify this table a bit. The acceleration row tells us that if an initial situation is 1100,
then in the next time interval, the second car will advance with probability α. Similarly, the braking
row tells us that if an initial situation is 0101, then in the next time interval, the second car will
advance with probability β.

The four scenarios can be thought of in driving terms in the following manner:

• acceleration — In this situation, the car has reached the front of a jam and is accelerating
off.

• braking — In this situation, the car is coming up behind some congestion and needs to
brake.

• congestion — In this situation, the car has found an opening in the middle of some conges-
tion.

• driving — Here the car is away from other cars and driving on its own.
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It is important to note that when β, the braking probability, gets larger, the car is less likely
to brake — β is actually the probability of moving forward in a braking situation.

This model finally seemed to be getting at what the researchers desired. The three MCell
screen shots at the beginning of this section are pictures of MCell running this model with (α, β, γ, δ)
set to (.5, .4, .3, .9) with ρ taking on the values of .2, .5, and .8 in each of the three pictures respec-
tively. So Gray and Griffeath finally had a fairly simple model that captured the aspects of traffic
flow they wanted to analyze. Now all they had to do was analyze the model to determine which
values of the parameters gave rise to which of the three phases. Unfortunately, this model proved
to be too complex a task. After all, there are five different parameters α, β, γ, δ, and ρ that can
all change. Trying to determine exactly which values of which of these parameters put the traffic
flow in which phase was a very complex task. So they tried to simplify the model in a way that
preserved the behavior they were looking for while at the same time made it easier to analyze.
They achieved this by considering the special case of symmetric cruise control.

A traffic CA is said to be in cruise control if δ = 1 . This is the familiar situation of cars on
the open road moving at top speed. This is a nice assumption to have for the analysis as it takes
one bit of randomness out of the model.

We say that a traffic CA is symmetric if γ = δ. This may seem like a strange assumption to
make at first. It says that we advance in traffic as fast as we do on the open road. It would certainly
make sense to think that drivers would be more cautious and advance more slowly in congestion
(although there are freeways in many metropolitan areas where this behavior is exhibited daily).
This is a simplification that makes the mathematics much easier. The reason for this comes from
considering anti-cars. An anti-car is simply a place in the CA that does not contain a car (a blank
space). Notice that as cars move down our infinite highway to the right, anti-cars move down it to
the left. In the case of a symmetric traffic CA, the probability of a car moving to the right is the
same as an anti-car moving to the left. Thus the behavior of cars in a traffic CA with density ρ is
the same as the behavior of anti-cars in a traffic CA with density 1 − ρ. (Assuming that α, β, γ,
and δ all remain the same.) This essentially cuts the amount of work that needs to be done in half.

Even with this simplified model, a complete analysis of traffic behavior is not known. As a
matter of fact, as of the writing of this module, only the behavior on the boundaries of this model,
when both α and β are set to either 0 or 1, is completely understood, and some of these cases
were even hard to analyze. We will examine how this model behaves for several different sets of
parameters in the exercises and see that it does, in fact, exhibit all three phases.

4.4 Exercises

(1) Recall Example 3.1 where the initial conditions were:

location 1 2 3 4 5 6 7 8 9 10 11 12 13
t = 0 0 1 1 0 0 1 0 0 0 1 1 1 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6

Complete the table using the simple probabilistic model which allows a car to move forward
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if there is room, with probability 1
2 . Use a coin to determine if the car will move ahead.

(2) Let ρ = 0.75 and assume an initial configuration

location 1 2 3 4 5 6 7 8 9 10
t = 0 0 1 1 0 0 1 0 1 0 0
t = 1
t = 2
t = 3

Let the probability that a car moves ahead to an open stop be 0.75. To determine if a car
moves ahead to a vacant location, flip two fair coins and move if you get at least one head
(the probability of getting at least 1 head is 0.75 with two fair coins). Fill in the table above.

(3) Recall Example 3.1 where the initial conditions were:

location 1 2 3 4 5 6 7 8 9 10 11 12 13
t = 0 0 1 1 0 0 1 0 0 0 1 1 1 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6

Complete the table using the simple probabilistic model which allows a car to move forward
if there is room, with probability 1

6 . Have the car move ahead if a 1 is rolled on a die and
there is room. Otherwise the car will stay put.

(4) In the “Move if you can” model, the initial configuration in Exercises 1 and 3 resulted in
free flow after 2 time steps (see Example 3.1). In paragraph form, describe your results from
Exercises 1 and 3. How does the probability change the outcome? Is there free flow? If so,
after how many time periods?

(5) Let’s consider the Symmetric Cruise Control model with α = .6 and β = .6. To set the model
up this way in MCell, we need to open Mcell and then in the ’Rules’ menu at the top open
the ’Rules setup’ dialog box. In this dialog box, α is the number next to Accelerating and β
is the number next to Braking. Recall that since this is the symmetric cruise control, both γ
and δ, the numbers next to Congestion and Driving, should be set to 1. Set these numbers
and click the OK button.

(a) Run this model with initial densities set to 30%, 50%, and 70%. Describe what you see
in each case and determine which of the three phases is represented.

(b) Now look at initial densities 40% and 60%. What do you see here? Be sure to let the
model run for a while so you are viewing the long term behavior.

(6) Now let’s look at the Symmetric Cruise Control model with α = .2 and β = .6

(a) Before we begin, think about what this set of parameters has changed about our driver’s
driving habits. How should this model differ from the one in the previous exercise?
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(b) Now set up MCell to run this rule and run it with density 40%. Describe what you see.
How does this differ from what we saw in the last exercise? Once again, make sure to
let the model run for a while before making your observations.

5 Concluding Remarks

Automobile traffic affects almost everyone. As the number of cars on public roads increases, learning
more about the nature of traffic becomes even more beneficial. The models discussed in this module
are attempts to describe traffic patterns mathematically.

The “Move if you can” model was straightforward — any car that had an open space in front
of it would move into that space. In this model the traffic pattern evolved into a freely moving state
— as long as there were not too many cars on the road. If the road was more than 50% covered
with cars, though, then jams were always present.

In Section 4 we increased the complexity of the model a bit by incorporating some randomness.
First we fixed it so that a car would move into an open space ahead of it with probability p.
This variation produced both Phase 1 and Phase 3 traffic flows. We then increased the model’s
complexity once more by assigning probabilities to the four possible actions of a car on the road:
acceleration, braking, moving in congestion, and driving. This model finally did show all three
phases of traffic flow.

These models, and other similar ones, have helped researchers to learn about traffic patterns.
By varying probabilities and initial road conditions, the researchers have shown that “phantom
traffic jams” can just appear out of nowhere — even if all drivers are driving similarly to one
another. It is interesting to note that the models described here started simple and gradually got
more complex. This is typical of mathematical modeling — the more you would like to learn about
a phenomenon, the more complex the model needs to be.

What else can be learned about traffic? Is there something that can be done to reduce the
number of traffic jams? Is there a way to make the roads safer for drivers? These questions may
be very difficult, and solving them just may require us to develop better models.
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