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• Abstract: 

A linkage consists of a set of bars or rods which are connected by joints. In this module these 
are represented by line segments and the points that connect them. Background, hands on 
experience with the pantograph linkage, and basic terms and definitions of linkages are 
explained. These serve as a foundation for understanding Kempe’s Universality Theorem, 
modern linkages, and protein folding involving chains of links.  The exercises throughout this 
module will help the student solidify their knowledge of the key concepts and capabilities of 
linkages. In addition, certain open problems are provided for students interested in doing 
further research in classical linkages, modern linkages, and protein folding.  
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concepts of classical linkages, explore reachability issues associate with linkages, and apply 
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ABSTRACT 
 
A linkage consists of a set of bars or rods which are connected by joints. In this module these are 
represented by line segments and the points that connect them. Background, hands on experience 
with the pantograph linkage, and basic terms and definitions of linkages are explained. These 
serve as a foundation for understanding Kempe’s Universality Theorem, modern linkages, and 
protein folding involving chains of links.   
 
The exercises throughout this module will help students solidify their knowledge of the key 
concepts and capabilities of linkages. In addition, certain open problems are provided for 
students interested in doing further research in classical linkages, modern linkages, and protein 
folding.  
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Part I. An Introduction to Linkages 
 
1. Linkages: What They Are 
 
Background 
 
Linkages are simple structures that can be thought of as straight rigid sticks or rods hinged 
together at their endpoints to enable rotation with respect to each other. Linkages are important 
mechanisms that are widely used. Consider these familiar devices using linkages: the movement 
of a sewing machine needle, a windshield wiper, elevator doors, and the robotic arm used to 
assemble the International Space Station. Even your finger is an example of a linkage.  Figure 
1.1 illustrates examples of various linkages: (a) the linkage on a ladder controls the folding and 
unfolding of the ladder, (b) a sewing machine, (c) a windshield wiper, and (d) elevator doors. 
Animated linkages for (b), (c), and (d), can be found at the web reference site [1]. 
 

                        
    (a) Ladder Brace              (b) Sewing                  (c) Windshield Wiper                             (d) Elevator Doors                                   

                                                                                Figure 1.1 Linkages 

 
The study of linkages dates from before the time of Leonardo da Vinci through the time of James 
Watt to the present, including skeletal animation applied to computer games and movie special 
effects to give a natural movement to computer generated characters. James Watt (1784) began 
the modern era of mechanism in conjunction with his work on developing the steam engine. 
Charles-Nicolas Peaucellier (1832-1912), whose background was in engineering, developed a 
way to convert circular motion into true linear motion using a linkage. A major figure in 
investigating linkages was Alfred B. Kempe (1849-1922) who was a student of the famous 
mathematician Arthur Cayley and graduated in 1872 with distinction in mathematics from 
Trinity College, Cambridge, England. Although he chose law as his profession, Kempe 
formulated a very significant theorem known as the Universality Theorem, which states that 
given any algebraic curve a linkage can be constructed such that one of its joints will trace the 
curve. His proof was flawed but his basic ideas were sound. It was not until 2002, when the first 
complete and detailed proof, correcting the flaws in Kempe’s theorem, was published by 
Kapovich and Millson [KM]. This theorem stated that if one has a planar curve described by an 
algebraic equation, then a linkage can be designed which will generate this plane curve. 
Kapovich and Millson’s theoretical result that there is a planar linkage that traces out any given 
algebraic curve is very elegant, but unfortunately, the physical linkages suggested would be 
extremely complicated to realize. Because of developments in computer technology, electronic 
motors, and mechanical design, modern linkages which are less complex can be built [WK].    
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The Pantograph 
 
By building a linkage we can better understand how it works. Linkages can be constructed by 
using any number of rigid physical rods of various sizes, for example popsicle sticks, tinker-toy 
like components, pieces of cardboard, or graphically by using a software tool like Cinderella at 
the web reference site [8] or The Geometer's Sketchpad at the web reference site [9].    
 
The pantograph is a particularly interesting planar linkage that can give us some insight into how 
linkages work. This mechanism is used for copying, reducing, or enlarging a drawing’s size. 
Based on the principles of this device, Thomas Jefferson built a mechanism that allowed him to 
sign several documents at once [DO]. His signature was an exact duplicate on each document.  
 
See Figure 1.2, where a duplicate drawing twice the size of a drawing (at position y) is generated. 
The duplicate drawing (at position z) has a scale factor of two. In this figure, x, y and z are all on 
the same line. Line segment x to u is the same length as line segment u to z. The position x is 
stationary, but allows the rotation of line segment xu. The positions t, u, v, y and z are not 
stationary but are allowed to rotate. Notice that t, u, v, y form a parallelogram, i.e. a quadrilateral 
with opposite sides parallel. Also, note that t is half way between x and u and v is half way 
between u and z, where t, u, v, and y specifically form an equilateral parallelogram, i.e. a 
rhombus. By placing pencils at each position y and z, as y traces (or draws) a figure, z draws the 
same figure twice the size.  

 

                            

t

u

v

x z
y 

                    Figure 1.2 A Pantograph Mechanically Doubling the Size of a Drawing.   

 
We will now consider how a pantograph can copy, reduce, or enlarge the size of a drawing. The 
pantograph in Figure 1.3, consists of four rods with hinged joints at the corner points of the 
parallelogram ABCD, whose angles can vary in size. The linkage is pivoted at point O, which is a 
fixed position. The points O, D, and E remain collinear as the shape of the parallelogram 
changes. As a result, rods OA and BC are each scaled versions of rods OB and BE, respectively, 
by the same scale factor. If the scale factor is s, then s = OB/OA = BE/BC. Since, this scale 
relationship holds for any position of the pantograph, the movements of E are just s-times the 
movements of D. As D moves and a pencil is placed at position E, then E draws a copy of the 
figure that D traces. Depending on the scale factor s built into the particular linkage, the figure 
drawn by E is an exact copy, a reduced copy, or an enlarged copy (see Exercise 1.2).  
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Figure 1.3 – A Pantograph in Two Different Positions 

Exercise 1.1 Use an Internet applet of a pantograph to duplicate a figure. 
1. To get a feel for a pantograph’s movement, play with the applet at web referenced site 

[2].  
2. Notice that the pantograph at this website draws a duplicate figure that is larger but is not 

twice the size of the one drawn by the red point. Why?  
3. Determine the scale factor from the red drawing to the blue drawing?  

(Hint: Notice the dimensions on the pantograph at the top of the website page.) 
 
Exercise 1.2: What is the condition on the value of the scale factor s for a pantograph if  
       (a) an exact copy of a figure is drawn? 
       (b) a reduced figure is drawn? 
       (c) an enlarged figure is drawn? 
    
Exercise 1.3 (Hands-On Activity for Students):  Have a team of two or three students build 
three pantographs. One pantograph will make an exact copy of a drawing, another will reduce 
the drawing, and the last will enlarge the drawing.  
 
I. Required Materials for a Pantograph (Figure 1.4): 

1. Four links (Made from the drawings 
A.1 in Appendix A)  

7. Three push pins 
8. Two small sharpened pencil stubs 

2. A piece of small cardboard that all 
four links can fit on without overlap 

9. A ¼ ˝ diameter nail  
10. A piece of cork marked at the height 

of the push pin base  3. Glue stick 
4. Scissors 11. A large piece of heavy cardboard  
5. A piece of graph (grid) paper       for mounting the pantograph 
6. Two thumb tacks  
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Figure 1.4 – Required Materials for Building a Pantograph 

II. Instructions: 
A. Constructing a Pantograph (Figure 1.5): 

Step 1: Cut-out the four link strips in Figure 6.1 (Appendix A). Using the stick glue, 
            paste the links on the small piece of cardboard. Then cut out the links.  
Step 2: Lay the linkage on the graph paper so each angle is a right angle (90o) and you  
            satisfy your scaling factor. 
Step 3: Using one push pin (blue in Figure), attach the two largest links at one end  
            through the point in the square at the end of each link. Make sure the pin goes  
            through the corresponding point in each link. Using the other two push pins  
            (red in the Figure), attach the end of each small link to each of the large links.  

Take care, to make sure your scaling factor is maintained. Again, make sure 
the pin goes through the corresponding point in each link. 

                   Step 4: Find two points, one on each large link, that are collinear with the   
                               intersection point of the two small links. Then use a thumb tack to make a  
                               hole at each of these three points. Make sure the tack goes through the    
                               intersection point of each small link. 
                   Step 5: Use the nail to enlarge the hole in the end of the large upper link and the  
                                hole at the intersection point of the two small links.  
                   Step 6: Cut the cork so that it is the height of the base of a push pin.  
                   Step 7: Reinsert all push pins through the bottom of the linkage in their respective 

holes. Cut three pieces from the remaining cork so that each piece has a 
height greater than the point of the pin sticking through. Push each piece of 
cork on top of the point of each pin.  

                   Step 8: Push a thumb tack through the large link on the left into piece of cork under 
the link. This cork was made in Step 6. 

                   Step 9: Place one pencil through the intersection point of the two small links and 
the other pencil through the hole in the upper large link. Make sure each 
pencil point extends the length of a push pin base.  

                 Step 10: Push the other thumb tack through the bottom of the heavy piece  
cardboard into the cork. This will secure the position of the pantograph and 
allow it to rotate. 
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The pantograph is now complete and is ready to be used. Piece of paper can be slipped up the 
pantograph to draw on. It is a good idea to pin the paper to the heavy cardboard so it does not 
move.    
 

          
   (a) Step 1                                                                (b) Step 2 

                    
    (e) Step3                        (f) Step 4                                        (g) Step 5 

 

                             
       (h) Step 6                                                      (i) Step 7                                                       (j) Step 8 
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     (k) Step 9                        (l) Step 10 

Figure 1.5 Steps to Construct a Pantograph 

III. Experiment 
1. Make three different pantographs, each designed for a particular use: one to make an 

exact copy of a drawing, the second to enlarge a drawing by a scale factor of 1.5, and the 
third to reduce a drawing by a scale factor of 1/2. Explain why each works the way it 
does and demonstrate it. (Note: If you wish, the pantograph constructed above can be 
adjusted to make these three different pantographs by changing the positions of the push 
pins and the pencils. If you decide to use it in this way, to avoid extra adjustments, do 
both experiment 1 and 2 for on pantograph before converting it to a different use.)      

2. Now let us use each pantograph in a different way. For each of the three pantographs 
interchange the use of the two pencils (Figure 1.5, Step 10). Trace the drawing with 
pencil 2 and draw the duplicate drawing with pencil 1. In each case, what is the scale 
factor of the duplicate drawing relative to the traced drawing? Why is this true?  

 
2. Terminology for Linkages 
 
Basic Terms and Definitions 
 
A few concepts from graph theory will be useful in the following discussion. A graph is a set of 
points called vertices connected by line segments called edges. A path in a graph is a sequence 
of n vertices v1, v2, v3,…, vn, such that [v1, v2], [v2, v3],…, [vn-1, vn] are edges in the graph. A 
graph is connected if there is a path between every pair of vertices. A path is called a simple 
path, if there are no repeated vertices in the path. A cycle is a path that begins and ends at the 
same vertex. A tree is a connected graph with no cycles. Figure 2.1, illustrates the above 
concepts, (a) is a graph that is a single cycle a, b, c, a, where [a, b], [b, c],[c, a] are edges, (b) is a 
tree containing the simple path a, d, h, where [a, d], [d, h] are edges, and (c) is a general graph.  
 

a b 

c 
a

d
h

 
 
 
 
 
                 (a) Cycle                     (b) Tree and Simple Path                 (c) General Graph 

                                                                              Figure 2.1 
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A link, bar, or edge is a fixed-length one-dimensional segment.  The endpoint of a link is 
referred to as a vertex. As an example of a link and its endpoints see Figure 2.1 (a), having 
vertices a and b. If a particular vertex is fixed in a location it is referred to as pinned. A linkage 
is a set of links joined at their endpoints forming a graph. For an example, see Figure 2.2 (b), 
consisting of two links. Linkages can be classified in three ways: their graph structure (i.e. 
general graph, a tree, single cycle, or simple path), the dimension (i.e. 2D-space, 3D-Space, etc.) 
in which they reside, and if they intersect themselves or obstacles in their space. 
 
                                                                                                             
                                                                                                                                                   
                              

                        (a) A Link with Vertices a and b.                    (b)  Two Links Forming a linkage.       
                                           Figure 2.2 

When two links share a common endpoint, this vertex is often referred to as a joint. The type of 
joint affects the movement of the linkage. A universal joint is a joint that allows two adjacent 
links to rotate at any angle relative to each other depending only on the dimension in which they 
are defined. For example in 2D-space, each link can pivot between 0o and 360o in a planar circle 
about the universal joint. As an example see Figure 2.3(a). In 3D-space, each link can pivot 
about a sphere centered at the universal joint. As an example, see Figure 2.3(b), where one link is 
seen pivoting about a great circle, i.e. the intersection of a plane (passing through the universal 
joint) and the sphere.  
                             
                                              u  
               
                                                                                                      
 
            (a) Circular Rotation about Joint u in 2D-Space          (b) Circular Rotation about a Joint in 3D-Space 

                                                                                           Figure 2.3                                                                          

A fixed-angle linkage has a fixed angle at the joint between each pair of incident links (The 
fixed angle at different joints can differ.). As an example see Figure 2.4(a). Also, notice in a 
pantograph, Figure 2.4(b), that each pair of adjacent links, {[x, t], [t, u]} and {[u, v], [v, z]}, has a 
fixed angle of 180o, but this is not a fixed-angle linkage because all joints are not assigned a 
fixed angle. Some joints are allowed to vary in angle. Fixed-angle chains are of particular 
interest as models for proteins.         
                                                                                           
         

 

 

                                                                

 

(a)  Fixed-Angle Linkage                                                                                           (b) 

                                                                     Figure 2.4 

65° 

120°

a

b b

c 
a
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t
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v 
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Open and Closed Chains 
 
Note throughout this text, graph theory language is used but it is important to keep in mind that 
linkages are really metric objects in that the links have specific fixed lengths.  
 
An open chain or arc is a linkage whose underlying graph is a simple path that is not a cycle. 
The canonical (i.e. standard) form of an open chain is called a straight configuration if it can be 
reconfigured into a linkage where each adjacent link is connected by a joint with an angle of 
180o. Figure 2.5 shows two open chains on the far left and right that have been reconfigured into 
a straight configuration for an open chain.  
 
 
    
 
                                      
                                       

                                            

                                                 Figure 2.5  Straight Configuration for a Open Chain      

 
A closed chain is a linkage whose graph is a simple cycle. A cycle is convex if every line 
segment drawn between two points on or in the cycle has no point outside the cycle. Another 
way to describe a convex cycle is that all interior angles are less than or equal to 180o. The 
canonical form of a closed chain is called a convex configuration if it can be reconfigured into a 
linkage that is a convex simple cycle. Figure 2.6 shows two non-convex closed chains, on the far 
left and right, that have been reconfigured into a convex configuration.   
 
     
                                       
     

                                               Figure 2.6  Convex Configuration for a Closed Chain      

 
Exercise 2.1  If possible, reconfigure each linkage into a canonical form for a chain. 
 
 

 
 
              (a)                                       (b)                                   (c)                                                        (d) 
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An orthogonal chain is one in which all angles between adjacent links are 90o.  For an example, 
see Figure 2.7. 

 
Figure 2.7 An Orthogonal Chain 

Configuration and Configuration Space 
 
The configuration or placement of a linkage is a particular specification of all link endpoints of 
a linkage, including link orientations and joint angles. A reconfiguration occurs if a linkage can 
be continuously moved, satisfying its defining constraints, from an initial configuration to a final 
configuration. In a reconfiguration of a linkage all link lengths must remain the same, stay within 
their defining space, and not violate any imposed intersection conditions. As an example see 
Figure 2.8, a replication of Figure 1.1, which shows both the initial and final configurations 
occurring through the reconfiguration of a pantograph. 
 

                                              

t 

u 

v 

 
Figure 2.8 Two Configurations of a Pantograph 

                                                                                                                                             
The configuration space of a linkage is the set of all possible reconfigurations of the linkage. An 
example, Figure 2.9 shows all possible reconfigurations of the linkage as the circle is generated 
by a complete rotation )20( πθ ≤≤ of a single link, pinned at the universal joint x.   The point P 
can “reach” any point on the circle centered at x with a radius of the length of the link. The 
configuration space consists of the disk swept by the link centered at x.  

                         
                                                                                             

                                                                                                             x 

P 

 

Figure 2.9 – Configuration Space of a Pinned Link 
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Self-intersection 
 
The self-intersection of a chain occurs whenever two non-adjacent links of the chain share a 
point. Although a time physical chain would not allow self-intersection, for mathematical 
simplicity we will let this to occur unless stated otherwise. As an example, see Figure 2.10. 
  
                                                                                   e1 
                                                                                             e2 
                                                                                     e3 

                                                      Figure 2.10  Link e3 Intersects Link e1 

                                                                                       

Flattenable 
 
A chain is called a flattenable chain if it can be folded (without self-intersection) to lie entirely 
on a plane. For an example, see Figure 2.11. 
 

                                                          
 
                                                                         Figure 2.11 A Flattenable Chain 

 

Demaine, Connelly, and Rote have proven in [DCR] that all 2-D chains, and therefore all 
flattenable chains, can be straightened, i.e. moved to a linear configuration. 
 
Open Problems: There are many unsolved problems involving linkages. One of these is: 
 Can all motions be performed without linkages crossing themselves? (cf. [DO])     
 
 
3. Reachability, Linear Motion, and Kempe’s Universality Theorem 
 
Reachability 
 
The reachability of a linkage refers to whether a particular point (usually a link endpoint) of a 
linkage can reach a given point in a given space. It is often important to determine all the points 
that a particular link can reach. For example, in Figure 2.9 the circle illustrates all the points 
which that single link can reach. An internal joint vi, i = 1,…, n – 1 is said to be kinked if its two 
incident links ei and ei+1 are not collinear, i.e., the angle between them is not 0 or 180o (or a 
multiple of 180o). A linkage that is pinned is called an arm. For example, a pantograph is an arm, 
since it is pinned at one of its endpoints and the single link in Figure 2.9 is an arm. The median 
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link of an arm is the link em that includes the midpoint of the arm when all links are stretched out 
straight in a line (or either link incident to the midpoint if it falls at a joint).   
                                    
The Two-Kinks Theorem states if an n-link arm C can reach a point p, it can reach p with at most 
two internal joints kinked. The two kinked joints may be chosen to be at either end of the median 
link. Figure 3.1 is an example of 3-link arm pinned at O where the median link is the middle link.  
 
                                                                                                                  
 
 
   

p

O 

                                                          Figure 3.1  3-Link Arm Pinned at O 

 
Exercise 3.1 Experiment with how far a 2-arm linkage can reach.  
Given a 2-arm linkage where one vertex is free, the middle joint is universal, and the other vertex 
is pinned, but edge of the pinned vertex is allowed to move in any angle. What is the reachability 
of the free vertex for this linkage, i.e. the set of points that it sweeps out, given that the link with 
the pinned joint has: 
(a) a longer length than the other link? 
(b) the same length as the other link? 
(c) a shorter length than the other link?  
 
Approximate and True Linear Motion 
 
Some of the earliest work done in the study of linkages tracing curves began with James Watt in 
1784 when he developed a linkage that nearly traced out a straight line. In 1864, Charles-
Nicholas Peaucellier developed a linkage that traced a straight line by converting circular motion 
into true linear motion. Independently, Lippman Lipkin developed the same linkage and 
published a detailed solution in 1871. In 1875, A. B. Kempe published a proof of a theorem 
known as the Universality Theorem. Some important results in the development of useful 
linkages are Watt Parallel Motion, the Peaucellier Linkage, Kempe’s Linkage Parallelogram, 
the Contraparallelogram, and Kempe’s Multiplicator. These linkages lead to Kempe’s 
Universality Theorem, which stated that any algebraic curve can be traced by a linkage. We will 
now review these earlier developments to gain some knowledge of how these linkages work.  
 
The Watt Parallel Motion (Figure 3.2) converts circular motion to nearly linear motion. Note 
joints A and C are pinned, the joints B and D are free to move, and joint E, the mid-point of BD, 
is a joint whose incident links at fixed at 180o. As B and D move on their respective circles, E 
traces the locus of points which looks like a figure eight. Notice part of the figure eight is nearly 
straight compared to the line segment BD. For more careful examination, an animation of this 
motion can be found at the web reference site [3].  
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Figure 3.2 Watt Parallel Motion 

 
The Peaucellier linkage (Figure 3.3) converts circular motion to true straight line motion. It was 
the first straight-line mechanism to be discovered. Note joints x and y are pinned, the joints a, b, 
and c are free to move, and joint d draws the straight line L. An animation showing the 
movement of this linkage can be found at the web reference site [4].  For a proof that the 
Peaucellier linkage is exactly linear motion see [DO]. 

                                                  

d

a

b

c

y x 

                                                                 Figure 3.3 The Peaucellier Linkage 

 
Kempe’s Linakges and Universality Theorem  
 
A. B. Kempe’s Universality Theorem is one of the most significant results in the study of 
linkages. 
 
Kempe’s Universality Theorem [KM]  
Let C be a bounded portion of an algebraic curve in the plane. Then there exists a planar linkage 
such that the orbit of one joint is precisely C. 
 
An algebraic curve, over the real or complex numbers, is an equation of the form 0),( =yxf

0=

, 
where is a polynomial in x and y with real or complex coefficients. The following are 
examples of algebraic curves: , xy2 = 0, . 

),( yxf
0132 =++ xx 5)32(32 ++++ iyixyyx
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The phrase “orbit of one joint” refers to the curve traced by the movement of the joint. We saw 
this type of tracing earlier when using the pantograph. The parallelogram linkage (Figure 3.4) 
developed by Kempe is fundamental to the proof of his theorem. This linkage uses joint p to 
draw an algebraic curve. An animation motion of this linkage can be found at the web reference 
site [5].                                                                                                                                                                        

                                                              

β

α

a

b

p

                                                             Figure 3.4 The Linkage Parallelogram       

The following reasoning explains how the parallelogram can be used to draw an algebraic curve 
[DO]. Let the algebraic curve be defined by the polynomial equation А(x, y) = 0 and traced out 
by the joint p, which is located on the parallelogram as shown in Figure 3.4. Note that the 
coordinates of p = (x, y) can be represented in terms of the cosines of angles: 
 
                                   x = a cos α + b cos β                                                              (3.1) 
                                   y = a cos (α – 90o) + b cos (β – 90o) 
 
Substituting (3.1) into А(x, y) and repeatedly applying the trigonometric identity 
 
                          cos θ cos Ψ = ½[cos(θ + Ψ) + cos(θ – Ψ)]                                      (3.2) 
 
converts powers and products of x and y into cosines of the sums of angles, resulting 
in the following general form for the polynomial А(x, y):  
 

                            А(x, y) = c + Σi ci cos(ri α + si β + δi)                                           (3.3) 
 
where c and ci are constants, ri and si are integers, and δi is 0, - 90o, or 90o. The i-term in the 
summation in Equation 3.3 is achieved by a link of length ci at a suitable angle. The summation 
across all i is then shifted by the value c. Thus the problem reduces to constructing an angle of 
the form ri α + si β + δi from α and β.    
 
As an example, the term xy2  in  А(x, y) = 3 + xy2  expands and reduces to 
 
¼ [(a3 + 2ab2) cos α – a3 cos(3α) + ab2 cos(α – 2β) + a2b cos(2α – β) +                 (3.4) 
     (2a2b + b3) cos β – b3 cos(3β) –  3a2b cos(2α + β) – 3ab2 cos(α + 2β)] 
 
Therefore, 
 
 А(x, y) = 3 + xy2  

                   = 3 + ¼ [(a3 + 2ab2) cos α – a3 cos(3α) + ab2 cos(α – 2β) + a2b cos(2α – β) +                  
                            (2a2b + b3) cos β – b3 cos(3β) –  3a2b cos(2α + β) – 3ab2 cos(α + 2β)] 
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Exercise 3.2 Understanding the general form of the polynomial А(x, y).  
(a) Use trigonometry to show that the equations in (3.1) are correct. 
(b) Determine the specific values in Equation 3.3, where А(x, y) = – 2 + xy2. (Use Expression 
(3.4) to find the value c, the range of i, and the corresponding values ci , ri , and si.) 
 
Kempe showed that the planar linkage in the Universality Theorem can be constructed with three 
linkages: a multiplicator for multiplying an angle by a positive integer; an additor for adding any 
two angles; and a translator for translating a motion.  
 
The first linkage to be examined will be the multiplicator. This linkages depends on the 
contraparallelogram linkage, Figure 3.5(a), which is a four-bar linkage formed by flipping two 
adjacent sides of a parallelogram across the diagonal they determine. Note there is no joint at the 
point at which the links xy and ab cross. The contraparallelogram is an example of a self-
intersecting linkage. An animation of the contraparallelogram  motion can be found at the web 
referenced site [6]. The multiplicator, Figure 3.5(b), was created by Kempe when he joined two 
similar contraparallelograms sharing the same angle β at joint a, effectively multiplying the 
angle α by 2. An animation of the motion of a two-angle multiplicator and a three-angle 
multiplicator can be found at the web reference site [7].   
                                                

                       
              (a) The Contraparallelogram                                                 (b) The Multiplicator 

                                                                                Figure 3.5 
 
Now examine the additor and the translator. The additor linkage, which adds two angles 
together, relies on the multiplicator, but only in its times-2 version. The details of the additor 
construction can be found in [DO]. The translator is the simplest linkage. Its purpose is to copy a 
link to a different location maintaining the same orientation. Basically, the translator is the 
action of a pantograph, discussed in Section 1. The details of the translator construction can be 
found in [DO]. Note that Kempe’s version of the translator had a flaw in its design which was 
later corrected by Kapovich and Millson [KM]. 
 
The overall design can be understood in terms of Equation 3.3, which is repeated below:  
                                         
                                           А(x, y) = c + Σi ci cos(ri α + si β + δi)                  
 
By the multiplicator any angle can be multiplied by an integer ri. Angles can be added by using 
the additor. Terms in the sum are combined by the translator. Applying these linkages in an 
appropriate structure yields a joint p′ that remains a distance А(x, y) – c from the y-axis. The joint 
p′ is forced, using a Peaucellier linkage, to stay on the vertical line x + c = 0. This in turn forces p 
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to stay on the curve А(x, y) = 0. Thus, this complex linkage has the joint p follow the equation 
А(x, y) = 0 within the range of x-values provided by the parallelogram linkage in Figure 3.4. See 
Figure 3.6 which shows how the pieces fit together. Note, in this figure all joints labeled O are 
the same.  
 
 
 
                     

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 O   

 O   

 O   

 
                       Figure 3.6 The Design of Kempe’s Construction 

 
Kempe’s basic ideas were correct, but there were some flaws in his proof. As mentioned in the 
introduction, Kapovich and Millson [KM], in 2002, published the first complete and detailed 
proof correcting the flaws. Their proof follows the spirit of Kempe’s theorem but employs 
modified versions of many of Kempe’s linkages, and avoids his multiplicator in favor of a more 
complex linkage for multiplication. This linkage incorporates three translators, a pantograph, 
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three inversors (which are modified Peaucellier linkages), and a modified additor. The properties 
of this last linkage are more easily controlled than was Kempe’s multiplicator.   
 
In the 1970's William Thurston (U. California, Davis) investigated Kempe’s ideas and suggested 
that: One can design a linkage that will sign your name! The idea was that as long as the 
signature is the union of continuous curves, one can approximate the pieces by algebraic 
equations and then use Kempe's approach to realize these pieces with a linkage. Although this is 
theoretically possible, no one has built such a complicated linkage to do this. In fact, by using the 
new linkages introduced by Kapovich and Millson the situation became even more complicated. 
But, in geometric modeling there do exist certain spline curves, called B-splines, that can draw a 
person’s signature. These spline curves have structural definitions that are strikingly similar to 
links. To begin investigating this similarity, we will now examine a modified linkage that will 
give us more flexibility and allow us to draw a certain class of curves known as Bézier curves, 
which are a special case of the B-spline class of curves.  In G. Farin’s book listed in the Further 
Reading section below, one can find more information on splines and Bézier curves.  
 
4. Designing a Modern Linkage: Relaxing Constraints on the Linkage 
 
A Modern Linkage 
 
So far we have seen examples using the joint of a linkage to draw a curve. The links in these 
“classical” linkages must always remain the same length and each joint remains at the endpoint 
of a link through all movements. Classical linkages have been based on a single force, like a 
crank, with all links mechanically coordinated by the linkage design. Now we will modify these 
linkage constraints by allowing telescoping links and sliding joints. Telescoping links are rigid 
links that can continuously change from one length to another within a finite range. Sliding joints 
are joints that are allowed to move along a link from one end to the other. This type of linkage 
will be referred to as a modern linkage. Modern linkages are possible because of modern 
developments in computer technology, electronic motors, and mechanical design [WK]. 
Movements of a modern linkage are often coordinated electronically. A modern linkage will 
allow us to simplify the drawing mechanism, reducing the complexity of the linkage used by 
Kempe, Kapovich, and Millson in the proof of the Universality Theorem.   
 
The following constraints will be applied to the modern linkage construction of an nth degree 
Bézier curve defined by n + 1 points, where n > 0. This construction follows the de Casteljau 
algorithm for constructing a Bézier curve [PW]. Each step of the construction will be illustrated 
by the development of a 2nd degree (quadratic) Bézier curve.  
     1. Choose any n + 1 distinct points, n > 0. Through these points connect n distinct line 
segments to form a simple path where each point is shared by one or at most two line segments. 
These given points correspond to the pinned joints and the line segments joining them 
correspond to the links. Together these joints and links form the frame which is by itself a fixed-
angle linkage. For a quadratic Bézier curve, let n = 3, where the initial three points (pinned 
joints) are A, B, and C and the line segments (links) are AB and BC. See Figure 4.1. 
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A

B

C

 
 
 
 
 

 
Figure 4.1  Frame for Quadratic Bézier Curve Construction 

 
2. Following the de Casteljau algorithm, the overall construction process generates one 
point at a time on the curve. To begin this construction, let a point be placed at a specific 
position on each initial line segment. The location depends on the length of each of the n 
segments and a common ratio r times the segment’s length, giving the distance of that point 
from the start of the link. Point placement will always be from the relative start position, 
going from left to right, of each segment along the path. After each new point is placed on 
the n segments, lines are drawn between each consecutive pair of new points on each pair 
of consecutive lines, creating a new set of n-1 line segments. Again the common ratio r is 
used to place new points in each of these newly generated lines, a process that is repeated 
until the final line segment is drawn and the final point is placed on that segment 
maintaining the same common ratio r of distance along its length. The final point placed is 
a point on the curve. This entire process is then repeated for as many ratios 0 ≤ r ≤ 1 as 
necessary to determine the shape of the curve. See Figure 4.2 (a) , where points P1and P2 
are placed at a distance satisfying the common ratio of r = ¼ = |AP1|/|AB| = |BP2|/|BC|, line 
P1P2 is drawn, and then the point P3 is placed ¼ the distance along P1P2, satisfying r = ¼ = 
|P1P3|/| P1P2|. Consequently, the point P3 is on the Bézier curve. 
 

P1 

P2 

P3 
A

B 

C

                                                                                                                      
A

B

C A

B

C

   
(a) One Point Generated                  (b) Three Points Generated            (c) Curve Traced Through Points 
 
                              Figure 4.2 Generating Points on a Quadratic Bézier Curve  

 
Following the same process a different common ratio is used to generate another set of new 
lines, resulting in another point being placed on the curve. In this way, as many points as 
desired can be constructed on the curve. See Figure 4.2 (b) where two additional point are 
placed on the quadratic curve for different ratios r = ½ and r = ¾. After enough points are 
drawn, a smooth curve is traced through the points forming the line. The curve would look 
similar to the one in Figure 4.2 (c).  
3. Note all the line segments constructed to generate points on the curve are of a fixed 
length.  Unfortunately, there would need to be an uncountable number of these 
corresponding to an uncountable number of ratios between 0 and 1 in order to generate 
every point on the continuous curve. To avoid this impossible process, we can use           
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n(n – 1)/2 telescoping links and n(n + 1)/2 sliding joints to create a linkage to draw the 
curve [Fact05b]. To see how this works in this modern linkage, first place a sliding joint at 
the beginning of each of the (n + 1)(n + 2)/2 links generated by Step 1 and the first 
application of the process in step 2. In general, the construction will allow the 
corresponding sliding joint Pi  to move from the start to end on each link Li, always 
maintaining the same ratio r on all links Li  as r varies continuously from 0 to 1. As an 
example consider the quadratic Bézier curve in Figure 4.2 (a), where the fixed-length link 
AB has length |AB|, the fixed-length link BC has length |BC|, and P1P2 is a telescoping 
link. P1 is a sliding joint on AB, P2 is a sliding joint on BC, and P3 is a sliding joint on P1P2. 
For all links r = |AP1|/|AB| = |BP2|/|BC| = | P1P3|/| P1 P2| as r varies continuously from 0 to 
1. 
4. The final sliding joint placed on the final telescoping link in the construction traces the 
curve as the joint moves from start to end on the link, while r varies continuously from 0 to 
1. See the following examples in Figure 4.3 constructed with the Cinderella software [8]. 
In Figure 4.3, all the red dots are pinned joints, (a) is a 1st degree (linear) Bézier curve, (b) 
is a 2nd degree (quadratic) Bézier curve, and (c) is a 3rd degree (cubic) Bézier curve with a 
point of inflection.  

 

                                
(a) One Link Defines a Linear Bézier Curve        (b) Two Links Define a Quadratic Bézier Curve 

 

 
                                       (c) Three Links Define a Cubic Bézier Curve  

                                                  Figure 4.3  Linkages Tracing Bézier Curves  
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This modern linkage construction can be applied to trace any nth-degree Bézier curve in two or 
three dimensional space. The mathematical details for constructing this modern linkage are given 
in [Fact05a]. 
 
Exercise 4.1 Understanding the construction of the modern and classical linkages.  
(a) Using the de Casteljau algorithm, construct eight points on a cubic Bézier curve defined by 
three points and four links positioned similar to this:  
 
 
 
         
(b) Based on the curve constructed in (a), draw the modern linkage at the specific ratio r = ½ and 
identify the pinned joints, the fixed-length links, the telescoping links, the sliding joints, and the 
joint that traces the curve. Do the links in this modern linkage cross? Explain your answer. 

A

B
C

D 

(b) In Figure 4.3 (c), do the links cross in this modern linkage of a cubic Bézier curve?  
Explain your answer. 
(c) Create a linkage that can trace only one letter in the alphabet or a number.   
(d) Create a linkage that can draw one geometric figure.  
(For (c) and (d), build a physical model or use a software tool like Cinderella at the web 
reference site [8] or Geometer’s Sketchpad at the web reference site [9] to make the linkages.)  
                                
Open Problems: Here are some interesting unsolved problems involving both classical and 
modern linkages.  
1. Can you create a classical linkage that will 
                  a.  draw a 1st degree Bezier curve? (This one is solved.) 
                  b.  draw a 2st degree Bezier curve?  
2. Can a modern linkage, based on the B-Spline underlying structure, be constructed to write a  
    person’s name?  
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Part II. An Application of Linkages: Protein Folding 
 
5. Protein Folding 
 
Introduction 
 
Dubbed ‘Nature’s Robots1’, proteins are the building blocks of cells and organs.  They act as 
biological workhorses to perform many of our body’s vital tasks, from contracting muscles to 
pumping salts through membranes.  They also play the more heroic role of antibodies, fighting 
off disease that may attack our body.  On the other hand, we have recently seen that proteins can 
also be villainous by assuming a different shape to become prions (pronounced pree-ahns), 
which attack brain cells.  One such disease, dubbed bovine spongiform encephalopathy (BSE), 
was first observed in cows raised in England and has become more widely known as ‘mad cow’s 
disease’2.  
 
The fact that proteins by themselves can cause disease came as quite a shock to the scientific 
community.  This is because proteins were never thought to be infectious on their own, unlike 
larger agents such as viruses or bacteria, which are composed of proteins.  According to R. L. 
Guyer [10], ‘Prions enter cells and apparently convert normal proteins found within the cells into 
prions just like themselves. The normal cell proteins have all the same "parts" as the prions--
specifically the same amino acid building blocks--but they fold differently’.  This is because a 
protein, acting like a chain, normally folds into a tight helical shape and the final form 
determines its function, but a prion on the other hand maintains a more open structure.  And the 
process of how a healthy protein refolds into a prion is unclear.  However, what is clear is the 
need to accurately understand protein folding.  
 
Structure of Proteins 
 
A protein is a large polymeric molecule consisting of a peptide chain of amino acids (monomers) 
linked together by amide (carbon-nitrogen) bonds and folded into a tight organized structure 
(Figure 5.1).  The final structure depends on amino acid interactions with water, intra-molecular 
hydrogen bonds and salt links.  The amino acids involved and their linear sequence largely 
determine the structure and thus function of the protein.   
 
Proteins are produced by ribosomes, which are tiny granules that translate messenger RNA 
molecules into amino acid chains (see the web reference site [11]).  Once a protein chain 
completely exits the ribosome, it begins to coil into a state that minimizes the energy of 
interaction with water, which may be either hydrophilic (attractive) or hydrophobic (repulsive).   
Minimization of intra-molecular hydrogen bonds between neighboring or distant amino acids is 
also a major consideration.  However, no algorithm exists for describing this folding. 
 

                                                 
1 Nature's Robots, Charles Tanford and Jacqueline Reynolds 
2 http://www.pbs.org/wnet/nature/holycow/madcow.html  
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Figure 5.1 

 
The fact that such protein chains are never knotted has lead O’Rourke et al (cf. [DO]) to develop 
a corresponding mathematical model for describing protein production involving two symmetric 
cones, known as the conical model (Figure 5.2).  Here, the region where proteins are 
manufactured is modeled by the interior a cone Cα  with conical angle α  and radius r.  Each 
amino acid link is assumed to emerge one by one out through the tip of Cα  and into the interior 
of its inversion, i.e. a cone Bα  symmetric to and having the same conical angle and radius as Cα .  
The exiting of a single link  is described in the series of illustrations in Figure 5.3.  In the 
first frame vertex  makes its exit through the tip of the cone at initial time .  The second 
frame represents the exiting of the link  during 

0v v1

0v 0t

0 1v v 0t t t1< <

1t
 and the third frame shows the 

completion of this process in which  exits at final time .  The process then repeats for the 
next adjacent link .  Since it is assumed that during this transition that links  and  are 
confined to the cones 

1v

1v v2 0 1v v 1v v2

Bα  and Cα , respectively, it follows that every dihedral angle between 
adjacent links must be at least 180 2α−  degrees.   
 

Figure 5.2  Figure 5.3 
 
Chains constructed from the conical model are calledα -producible chains.  The fact that the 
conical angle cannot exceed 90o restricts the kinds of proteins chains that can be manufactured.  
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In particular, it has been established that α -producible chains can always be flattened (cf. [DO], 
[DLO]), i.e. they always permit a flat  (planar) reconfiguration, meaning that one can reposition 
them (without self-intersection) to lie flat along a plane.  This is because every α -producible 
chain configuration can be moved to a canonical (helical) α -CCC configuration and therefore to 
any other α -producible configuration (cf. [DO]).   To visualize aα -CCC configuration, we 
reconsider the manufacture of a protein using the conical model but now assume the cones Cα  
and Bα  to be confined inside a square column having sides of width 2r and infinite length in 
both directions (Figure 5.4).  As a result, only protein chains whose links are positioned in an 
open helical configuration will fit inside the square column as it exits cone Bα  (Figure 5.5).  If a 
link produced in cone Cα  (say  in Figure 5.3) does not allow this fitting, then it can be 
reconfigured to permit this by pivoting itself about .  This intuitively reveals why every 

1 2v v

1v α -
producible chain configuration can be moved to a α -CCC configuration.  Moreover, from this 
α -CCC configuration it is then possible to straighten, and therefore flatten, the chain by simply 
pulling the ends along opposite directions. 

 

      
Figure 5.4     Figure 5.5 α -CCC Configuration 

 
A chain that cannot be flattened is said to be a locked chain.  Therefore, α -producible chains 
based on the conical model can never lock, a property shared by proteins.  However, it is not 
known if the conical model provides an accurate description of protein production as instructed 
by Nature.  
 
In general however not all chains are flattenable.  The classic example is the ‘knitting needles’ 
chain, a 5-chain that is locked in space, as illustrated in Figure 5.6.   
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Figure 5.6 

 
Any attempt to unlock the chain  will require straightening the three middle links as far 
as possible.  However, their combined length, denoted by

0 1 2 4 5v v v v v

1 2 2 3 3 4r v v v v v v= + + , is shorter than 
either of the end links,  and .  This is demonstrated in Figure 5.7, which shows both end 
links extending past the circle of radius r centered at v1.  It follows that neither of these end links 
can be pulled back completely through the knot to untie the chain.  As a result, the chain cannot 
be flattened since it cannot even be unknotted.  

0 1v v 4 5v v

 

 
Figure 5.7 

 
Chains can also lock if their links are restricted to dihedral motions, i.e. each link is forced to 
pivot at a fixed-angle about a joint.  For example, if the 2-chain in Figure 5.8 is a fixed-angle 
chain, then edge  is restricted to pivoting about vertex  at angle 1 2v v 1v α  (its full motion is 
represented by the circle centered at  shown in the same figure). 0v
 

 
Figure 5.8 
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Note: Recall from Section 2, Part I, that a 2-D chain without fixed angles can always be 
straightened (and hence can never lock) (cf. [DCR], [DO]).  Some results concerning the 
straightening of 3-D chains appear in [B et al].  Some interesting animations of chains being 
unlocked can be found in [12]. 
 
Exercise 5.1 (Hands-On Activity For Students):  Students can build their own models of protein 
molecules and ‘manufacture’ them based on the conical model.  Teams of 2-3 students should be 
formed. 
 
I. Required Materials (Figure 5.9): 

11. Paper cones (available from cut-out drawings of 30-degree and 45-degree cones 
appearing in A.2 of the Appendix or use drinking cones located at water fountains in your 
school if available) 

12. Plastic straws with flexible joints 
13. Scissors 
14. Tape 

 

 
Figure 5.9 

II. Instructions: 
B. Constructing a Protein Chain (Figure 5.10): 

Step 1: Taper the long end of each straw to create a symmetric joint 
Step 2: Make a half-inch slit at one end of each straw 
Step 3: Slide the non-slit end of one joint into the slit end of another joint 
Step 4: Tape the two joined ends to form a chain (Figure 5.11) 
 

To make a longer chain with additional links, repeat steps 1-4 (Figure 5.12). 
 

  
(a) Step 1    (b) Step 2 
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(c) Step 3    (d) Step 4 

Figure 5.10 

 

  
Figure 5.11    Figure 5.12 

 
B. Constructing a Cone (Figure 5.13) 

Step 1: Cut out drawings of 30-degree and 45-degree cones (Figure 5.13) 
Step 2: For each drawing align edge AO with edge BO and tape them together to 

form a cone resembling those in Figure 5.14. 
Step 3: Cut off the tip of each cone to form a 1/4-inch exit hole (Figure 5.15). 

 

 
(a) 30-Degree Cone    (b) 45-Degree Cone 

Figure 5.13 

 28



   

  
Figure 5.14    Figure 5.15  

 
III. Experiment 

3. Manufacture two different types of chains: one where every dihedral angle between 
adjacent links is greater than 180 2α−  (α  is the conical angle, i.e. either 30 or 45 
degrees) and a second where at least one dihedral angle is less than 180 2α−  (Figure 
5.16) 

4. Try feeding each chain link by link through the exit hole as illustrated in Figure 5.17 and 
record which chain meets obstruction (do not force the chain through).  Note: Be sure to 
keep all dihedral angles fixed at their original values. 

5. Which chains are producible, i.e. are able to pass through the exit hole entirely without 
obstruction?  Make a report of your results. 

 

  
(a) Producible Chain    (b) Non-Producible Chain 

Figure 5.16 
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Figure 5.17 

 
Exercise 5.2: Determine whether or not the following 3-D chains with universal joints can be 
flattened without self-intersection, i.e. links are not allowed to cross each other during and after 
the unfolding.  If so, then describe the unfolding.  If not, then explain why not. 
 
Note: Each chain illustrated below is drawn inside a box that is delineated to provide the viewer 
with some perspective.  Large black dots indicate nodes (with ( , , )x y z -coordinates listed) and 
bold line segments connecting them indicate edges of the chain. 
 

(a) 3-chain 0 1  2 3v v v v

 
(b) 4-chain 0 1 2  3 4v v v v v

 
(c) 5-chain  0 1 2 3 4 5v v v v v v
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Exercise 5.3: Assume now that the three chains in Exercise 5.2 above are fixed-angle so that 
each link is only allowed to pivot at a fixed angle (as determined by the drawn positions) about a 
joint.  Determine whether or not each of these chains can still be flattened.  If so, determine its 
flat (planar) configuration state by specifying the positions of each node.  If not, then explain 
why not. 
  
Exercise 5.4:  

(a) Is every 4-chain in 3-D with universal joints flattenable? 
(b) Is every orthogonal 4-chain in 3-D flattenable?  (Note: Recall that an orthogonal chain is 

one in which all of its dihedral angles are 90o.) 
(c) Is every orthogonal 5-chain in 3-D flattenable? 

  
Open Problems: There are some interesting open problems relating to whether or not equilateral 
chains, i.e. those with equal link lengths, can lock (cf. [DO]). 

a. Can all 3D equilateral chains be straightened? 
b. Locked Length Ratio: What is the smallest value of 1L ≥ for which there exists a 

locked open polygonal chain in 3D, all of whose link lengths are in the interval 
[1, ]L ?  The value L is called the length ratio of the chain.  Note: The knitting 
needles example shows that L is no bigger than 3. 

c. Locked Fixed-Angle Chains: For which triples ( , , )n Lα  does there exist a fixed-
angle α -chain of n links and length ratio L? 

 
6. Molecule Rings 
 
Many organic molecules are known to form interesting ring configurations of carbon atoms, 
which can be modeled as closed fixed-angle chains.  Due to their confined energy levels, any two 
adjacent bonds (edges) between carbon atoms must all have the same fixed angle of 
approximately 109.5 degrees, called the tetrahedral angle; however, each bond is free to rotate.  
These tetrahedral angles obviously limit the number of distinct closed fixed-angle equilateral 
chains that can exist and explains why nature only exhibits certain kinds of molecule rings.  For 
example, cyclohexane molecules (rings of six carbon atoms with all single bonds) are known to 
possess two non-planar configurations, referred to as the boat and chair forms (Figures 6.1(a) 
and 6.1(b), respectively). 
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(a) Chair (b) Boat (c) Does not exist 

Figure 6.1 

 
Surprisingly, the simple hexagonal planar configuration shown in Figure 5.1(c) does not exist in 
nature.  This again is due to the inherent property of single carbon-carbon bonds to form 
tetrahedral angles as explained by the theory of hybrid orbitals.  On the other hand, alternating 
double bonds between carbon atoms allow the planar hexagonal configuration found in benzene 
molecules where all dihedral (interior) angles are 60o (Figure 6.2). 
 

 
Figure 6.2 

 
Exercise 6.1: A closing of an open chain is a reconfiguration without self-intersection where the 
end nodes are connected to form a closed chain.  An orthogonal chain is a fixed-angle chain with 
all dihedral angles equal to 90o.  Is it possible to close an orthogonal 3-chain?  4-chain?  5-chain?  
How many different closings are possible? 
 
Exercise 6.2: A perfect closing of an orthogonal chain is one in which the resulting closed chain 
has all dihedral angles equal to 90o.  Which orthogonal n-chains have perfect closings?  For 
which integers n? 
 
Concluding Remarks 
 
Linkages are important structures with diverse physical applications.  As man-made mechanisms 
they have produced many useful devices ranging historical from pantographs to steam engines 
and more modern tools such as windshield wipers and robotic arms.  As natural mechanisms they 
take on the form of limbs and protein molecular chains.  Mathematically, linkages are essentially 
graphs with many interesting properties.  For example, the Two-Kinks Theorem states that any 
point reached by a given linkage can also be reached with at most two internal joints kinked.   
The most significant result is Kempe’s Universality Theorem, which guarantees that every 
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algebraic planar curve can be traced by one joint of a suitable linkage.  The difficulty of 
constructing such linkages is simplified through modern linkages. On the other hand, there are 
questions involving the locking, flattening, and straightening of 3-D chains that are still open, 
some with crucial ramifications towards the folding and unfolding of proteins and their 
manufacture based on the conical model.  The authors do hope that readers will be fascinated 
enough with linkages to tackle some of the elementary open problems.  Also, for the student 
interested in further reading and other open problems, we provide the following list.  Good 
hunting! 
 
 
Further Reading 
 
Chan, Hue S. and Dill, Ken A, “The Protein Folding Problem”, Physics Today, February 1993, 
24-32. 
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Demaine, Erik D. and O’Rourke, Joseph, “A Survey of Folding and Unfolding in Computational 
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University Press, 2005, pp. 167-211 
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Source of Certain Figures 
 
Figure 1.1(b, c, d) (with copyright permission): Mechanical Linkages in Java: 
http://mathforum.org/sketchpad/java_linkages.html 
 
Figures 1.2, 2.4 (b), 2.7, 2.8, 2.12, 3.2, 3.5 (a,b), 3.6, 5.2-5.7 (with copyright permission): 
Demaine, Erik D. and O’Rourke, Joseph, Folding and Unfolding in Computational Geometry, 
Cambridge University Press, 2006.  Available at: www.fucg.org 
 
Figure 5.1: National Human Genome Research Institute: 
http://www.genome.gov/Pages/Hyperion/DIR/VIP/Glossary/Illustration/amino_acid.cfm?key=a
mino%20acids (with copyright permission: http://www.genome.gov/10003803) 
  
Figure 6.2 (with copyright permission): Wikipedia:     
http://commons.wikimedia.org/wiki/Image:Benz1.png 
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Appendix A 
 
A.1 Cut-Out Drawings for a Pantograph 
 

 

Components of a Pantograph
                 

 
 

A.2 Cut-Out Drawings of Cones 
 

 
(a) 30-Degree Cone 

 36



 
(b) 45-Degree Cone 
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