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Lecture O: Welcome and Overview

» Welcome & Logistics
»Intro and quick overview

» Remarks about the tutorial



Complexity Theory

k-SAT

Travelling Salesman

Independent Set

Subset Sum

Protein Folding

In P

Linear Programming

All Pairs Shortest Paths

Fourier Transform

Edit-Distance

Context-Free Grammar Parsing

What about the problems inside P?




Complexity Theory

Popular since 1970’s Popular since 2010’s
(Traditional) Complexity: . Fine-Grained Complexity:
“Polynomial Time = Efficient” “Near-linear Time = Efficient”

Polynomial vs. exponential? :  O(n), O(n'?), O(n?), ...?

A theory for Small Data A theory for Big Data



Longest Common Subsequence (LCS)

Input: two sequences of length n

S = cddcabbabcbaa

/// |1\
T =adbdbbcabacdd

Output: the length of the longest common subsequence

Dynamic Programming: O(n?)
[Masek - Paterson ’80]

Mt — 1,5 — 1] + (S]i| == Tj]), O(n2/ log?n)
M|, j] = max < MJ[i — 1, j],

Can we do better?



Why care about n vs. n’vs. n...?

Here’s one example where it matters...

Local Alignment

Input: two (DNA) sequences of length n and a scoring matrix.

AGC{ICGTCCGGCAACCGGGAAATTA

AAACGTGACGAGAGAGAA$CCATT g/

Output: The optimal alignment of two sustrmgs 14 41 05 A

-1.8 05 +1 =il | =

CC T T ACAG 07 -1 -19 +1
CC T T ACG - ST NS B
+1+1-05-1+1 -1 +1 +1 +1+1 = +4.5

-0

Typically: n >> 106

[Smith-Waterman '81] O(n?) with dynamic programming - too slow!



BLAST: A heuristic, linear time algorithm for Local Alighment.

Go gle Scholar local alignment n

Articles

Any time Basic local alignment search tool
Since 2024 - Journal of molecular ..., 1990 - Elsevier

Since 2023 . local allgnment search tool (BLAST), d|rectly approximates allgnments that optimize a measure
Since 2020 of local ... well as the statistical significance of alignments it generates. The basic algorithm ..

Custom range... dlated articles  All 43 versions

Are there fast algorithms with optimality guarantees?



The Class P

/\

RNA foldmg Context-Free Grammar Parsing

Frechet distance Dynamic reachablllty

Goal: Understand the time complexity of important problems.




Fine-Grained Complexity
or: Hardness in P

Take a problem X in P, say in O(n2) time.

And prove that:
“X probably be solved in O(n%~%) time. ”



How do we get n2 and n3 lower bounds?

Unconditional polynomial lower bounds?
“Any Turing Machine has to spend Q(n?) time...”

Time Hierarchy Thm (1965): Some (artificial) problems require Q(n?) time.

But Q(nz) for natural problems, even for SAT, is far out of reach of
current techniques. Best lower bound is 3. 1n.

Lower bounds for restricted algorithms?

e.g. Q(n logn) for sorting in the comparisons-only model.

Not general enough, and only gives partial answers.

NP-hardness is not fine-grained enough...



Complexity Theory

How do we prove hardness results?

Popular since 1970’s Popular since 2010’s
(Traditional) Complexity: . Fine-Grained Complexity:
Polynomial vs. exponential? O(n), 0(n'>), 0>, ...?
Reductions!
P NP:

“k-SAT cannot be solved
in polynomial time.”



Complexity Theory

How do we prove hardness results?

Popular since 1970’s Popular since 2010’s
(Traditional) Complexity: . Fine-Grained Complexity:

Polynomial vs. exponential? O(n), 0(n'>), 0>, ...?
Reductions! Fine-Grained Reductions!

' My problemisin P

». \ |
. P=NP T |



Complexity Theory

How do we prove hardness results?

Popular since 1970’s Popular since 2010’s
(Traditional) Complexity: . Fine-Grained Complexity:

Polynomial vs. exponential? O(n), O(n'>), 0n?), ...7

Reductions! . Fine-Grained Reductions!
il I T
P £ NP: P SETH:
“k-SAT cannot be solved | .| “k-SAT cannot be solved

in polynomial time.” | .| evenin 0(1.99") time.” '



Complexity Theory

How do we prove hardness results?

Popular since 1970’s Popular since 2010’s
(Traditional) Complexity: . Fine-Grained Complexity:

Polynomial vs. exponential? O(n), O(n'>), 0n?), ...7

Reductions! Fine-Grained Reductions!

. My problemisinP | ' My problem is linear |

P = NP ﬁ ,, SETHis false ‘® |



An Example of a Fine-Grained Lower Bound

Theorem [AVW’ 14 ]:

“If for some € > 0, we can solve Local Alignment in O(n%~%) time, then
we can solve k-SAT in O((2 — 6)") time forsome 0 > Oand allk > 0.

Faster Faster SETH
Local Alignment k-SAT 77 is false
e.g. e.g.
O(n'?) 0(1.99")

P #+ NP: "k-SAT cannot be solved in polynomial time.”

ETH: “k-SAT cannot be solved even in 2°™ time.”

SETH (The Strong Exponential Time Hypothesis).

“k-SAT cannot be solved even in O(1.99") time."



SETH

k-SAT: given a k-CNF formula
on n variables and m clauses, is it satisfiable?

d =0 VI VGVIA - A VEVI

Fastest algorithms: A
«=3: 1.308"

o (2t

k= o0 2"

The Strong Exponential Time Hypothesis (SETH):

[Impagliazzo-Paturi’Ol ]
There is no € > O such that for all k > 2,

k-SAT can be solved in O((2 — €)") time.

SETH: “k-SAT cannot be solved in 0(1.99") time.”



The Class P (before)
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RNA foldmg Context-Free Grammar Parsing

Frechet distance Dynamic reachablllty
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The Class P (after)

Problem domains:
Graph Algorithms
Pattern Matching
Bioinformatics
Computational Geometry
Data Structures
Machine Learning

Subtree Isomorphism Formal Languages
Stable Matching

Diameter

Closest Pair

Local Alignment

Dynamic Reachability

Single-Source Max-Flow

Edit-Distance

Frechet
LCS

Many problems remain unclassified...

bigranlvacalinlal..
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The Class P (after)

or=0) ﬁﬂ =0

SETH 3SUM

Closest Pair
Local Alighment Polygon Containment Z el iaA atE s
: .y _ Stochastic Context-Free
Dynamic Reachability Strips Cover Rectangle

Grammar Parsing

Single-Source Max-Flow _ ,
Triangle Enumeration

Negative Triangle

Subtree Isomorphism

Compressed Inner Product

Stable Matching Dynamic Max Flow

Edit-Distance Dynamic Max Matching

Frechet
LCS

Replacement Paths

Set Intersection Median

Many problems remain unclassified...

jaranfivaralans
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3SUM

3SUM: Given nintegers, are there 3 that sum to 07

(5D B3 £ (€0 N EI KN 3 ) B

A famous conjecture in computational geometry:

“3-SUM cannot be solved In time.”



Diameter
Closest Pair

Local Alignment

Dynamic Reachability

Single-Source Max-Flow

Subtree Isomorphism

Stable Matching

Edit-Distance

Frechet
LCS

The Class P

(Gr0)
i

3SUM

!

Colinearity

Polygon Containment

Strips Cover Rectangle

Triangle Enumeration

Compressed Inner Product

Dynamic Max Matching

Set Intersection

faranivaraBinial i
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All Pairs Shortest Paths

APSP: Given a weighted graph on n nodes and n? edges,
compute the distance between every pair of nodes.

Classical Algs: O(n3)

Author Runtime Year

Fredman n3 log log!/3 n / log!/3 Bellman-Ford, Dijkstra,...
Takaoka n3 log log!/2 n / log!/2

Dobosiewicz n3 / log!/2 n

Han n3 log log5/7 n / log5/7 Conjecture:

APSP cannot be solved

Takaoka n3 log logz n / log n

Zwick n3 log log!’2n / log n

in O(n3-¢) time.

Chan n3/logn

Han n3 log logs/4 n / log5/4
Chan n3 log log3 n / log2 n
Han, Takaoka n3loglogn/log?2n
Williams n3 / 29(Vlogn)




The Class P (before)
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RNA foldmg Context-Free Grammar Parsing

Frechet distance Dynamic reachablllty
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Diameter
Closest Pair

Local Alignment

Dynamic Reachability

Single-Source Max-Flow

Subtree Isomorphism

Stable Matching

Edit-Distance

Frechet
LCS

The Class P (after)

(Gr0)
i

3SUM

!

Colinearity

Polygon Containment

Strips Cover Rectangle

Triangle Enumeration

Compressed Inner Product

Dynamic Max Matching

Set Intersection

Radius

Dynamic Max Matching

Stochastic Context-Free
Grammar Parsing

Negative Triangle

Dynamic Max Flow
Replacement Paths

Median

Many problems remain unclassified...

faranivaraBinial i
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Technical Remarks

. We will ignore log n, log?M n, 21987 or any n°W factors.

» Many reductions have such overheads.

» We allow randomness.

» The conjectures are assumed to holds against randomized algorithms too.

» Many reductions use randomness.

» We use the (standard) Word RAM model with w = O(log n).

> You can do any operations on words in constant time: addition,
multiplication, random access, hashing, etc.

» Since we allow log factors and randomness, this is not too important.

» Numbers are assumed to be in a polynomial range.

> Integers in {—n

O(1) .

..,

- n%W real numbers with precision 1/n%M.




Fine-Grained Reductions

Thm:If A , =, B andBisin O(n”~%) time then A is in O(n%~%) time.
Thm:IfA ,—, B and B, —_. C thenalsoA , —_. C.

Definition: A , —, B

A fine-grained (a, b)-reduction from A to B is an

algorithm </® for A with oracle access to B, such that:
Ve>0: 46> 0: forallinputx of size n: / \
1. AB(x)is correct  w.p. >1—1/n'"
2. oB(x) runs in O(n*=°) time. yyE€B? .. YEDB?
3. Letyy, ..., y, be the oracle calls, then:

[
D 1y l77 = 0
=

[Vassilevska & Williams "10]



Tutorial Objectives

» Goal 0: The ability to understand FGC results.
» Goal 1: The ability to prove your own FGC results.

» We will highlight the simplest hard problems



k-SAT

Diameter

Closest Pair

Local Alignment
Dynamic Reachability

Single-Source Max-Flow

Subtree Isomorphism

Stable Matching
Edit-Distance
Frechet

Wed + Thu

3SUM

Colinearity

Polygon Containment

Strips Cover Rectangle

Triangle Enumeration

Compressed Inner Product
Dynamic Max Matching

Set Intersection

I\/Ioﬁday

APSP

y

Negative-Triangle

v

Dynamic Max Matching

Stochastic Context-Free
Grammar Parsing

Negative Triangle

Dynamic Max Flow
Replacement Paths

Median

Tuesd ay




Tutorial Objectives

» Goal 0: The ability to understand FGC results.
» Goal 1: The ability to prove your own FGC results.
» We will highlight the simplest hard problems

» Goal 2: Intimacy with the theory and with current research.
» This is the purpose of the afternoon lectures (and Friday).

» Most importantly: To have fun thinking about basic problems!



