Tutorial on Fine-Grained Complexity

DIMACS, July 15-19, 2024

Lecturers: Amir Abboud Nick Fischer

Organizers:

Karthik C.S. + Amir & Nick Teaching Assistants: Shyan Akmal Mursalin Habib Ron Safier Nathan Wallheimer

Institute for Computer Science. Artificial Intelligence and Technology

Lecture 0: Welcome and Overview

‣Welcome & Logistics

‣Intro and quick overview

‣Remarks about the tutorial

What about the problems inside P?

(Traditional) Complexity: Popular since 1970's "Polynomial Time = Efficient" *Polynomial* vs. *exponential?* \vdots $O(n)$, $O(n^{1.5})$, $O(n^2)$, ...?

A theory for Small Data A theory for Big Data

Fine-Grained Complexity: Popular since 2010's "Near-linear Time = Efficient"

Dynamic Programming: *O(n2)*

$$
M[i,j] = \max \begin{cases} M[i-1,j-1] + (S[i] == T[j]), \\ M[i-1,j], \\ M[i,j-1] \end{cases}
$$

[Masek - Paterson '80] *O(n2 / log2n)*

Can we do better?

Why care about n vs. n^2 *vs.* $n^3...$ *?*

Here's one example where it matters…

Local Alignment

Input: two (DNA) sequences of length n and a scoring matrix.

AGCCCGTCTACGTGCAACCGGGGAAAGTATA AAACGTGACGAGAGAGAGAACCCATTACGAA **A" C" G" T" –"**

Output: The optimal alignment of two substrings.

C C G – T C T A C G C C C A T – T A C G $+1$ +1 -0.5 -1 +1 -1 +1 +1 +1 +1 = +4.5

Typically: *n >> 106*

[Smith-Waterman '81] *O(n2)* with dynamic programming - too slow!

Why care about n vs. n^2 *vs.* $n^3...$ *?*

BLAST: A *heuristic, linear time* algorithm for **Local Alignment**.

110k citations!

Are there fast algorithms with optimality guarantees?

The Class P

Goal: Understand the time complexity of important problems.

Fine-Grained Complexity or: Hardness in P

Take a problem X in P, say in *O(n2)* time. And prove that:

" X $\mathit{probably}$ cannot be solved in $O(n^{2-\varepsilon})$ time. "

But how?

How do we get *n2* and *n3* lower bounds? Unconditional polynomial lower bounds? But $\Omega(n^2)$ for natural problems, even for SAT, is far out of reach of current techniques. Best lower bound is $3.1n$. *"Any Turing Machine has to spend Ω(n2) time…"* $\overline{\rm{Time~Hierarchy~Thm~(1965):}}$ Some (artificial) problems require $\Omega(n^2)$ time.

Lower bounds for restricted algorithms?

Not general enough, and only gives partial answers. e.g. Ω(*n* log *n*) for sorting in the comparisons-only model.

NP-hardness is not fine-grained enough…

How do we prove hardness results?

(Traditional) Complexity: Popular since 1970's

Polynomial vs. *exponential?* \vdots $O(n)$, $O(n^{1.5})$, $O(n^2)$, ...?

Reductions!

Fine-Grained Complexity: Popular since 2010's

How do we prove hardness results?

(Traditional) Complexity: Popular since 1970's

Polynomial vs. *exponential?* \vdots $O(n)$, $O(n^{1.5})$, $O(n^2)$, ...?

P $\frac{1}{2}$ "k-Sat cannot be solved be solved be solved be solved by the solve $P = NP$ in P My problem is in P

Fine-Grained Complexity: Popular since 2010's

Reductions! Fine-Grained Reductions!

How do we prove hardness results?

(Traditional) Complexity: Popular since 1970's

Polynomial vs. *exponential?* \vdots $O(n)$, $O(n^{1.5})$, $O(n^2)$, ...?

Fine-Grained Complexity: Popular since 2010's

Reductions! Fine-Grained Reductions!

How do we prove hardness results?

(Traditional) Complexity: Popular since 1970's

Polynomial vs. *exponential?* \vdots $O(n)$, $O(n^{1.5})$, $O(n^2)$, ...?

Fine-Grained Complexity: Popular since 2010's

Reductions! Fine-Grained Reductions!

An Example of a Fine-Grained Lower Bound

Theorem [**A**VW'14]:

"If for some $\varepsilon > 0$, we can solve Local Alignment in $O(n^{2-\varepsilon})$ time, then we can solve k-SAT in $O((2 - \delta)^n)$ time for some $\delta > 0$ and all $k > 0$."

 $P \neq NP$: "k-SAT cannot be solved in polynomial time."

ETH: "k-SAT cannot be solved even in $2^{o(n)}$ time."

SETH (**The Strong Exponential Time Hypothesis)**:

"k-SAT cannot be solved even in $O(1.99ⁿ)$ time."

SETHEL

k-SAT: given a k-CNF formula on *n* variables and *m* clauses, is it satisfiable?

 $\phi = (x_1 \vee x_2 \vee \overline{x_3} \vee x_{10}) \wedge \cdots \wedge (x_2 \vee \overline{x_1} \vee x_4)$

Fastest algorithms:

$$
O\left(2^{\left(1-\frac{1}{ck}\right)\cdot n}\right) \qquad \begin{array}{l} k=3:1.308^n\\ k=4:1.504^n\\ k=5:1.592^n\\ \dots k \to \infty:2^n \end{array}
$$

The Strong Exponential Time Hypothesis (SETH): [Impagliazzo-Paturi'01] There is no $\varepsilon > 0$ such that for all $k > 2$, **k-SAT** can be solved in $O((2 - \varepsilon)^n)$ time.

SETH: "k-SAT cannot be solved in *O(1.99n)* time."

The Class P (before)

The Class P (after)

Diameter Dynamic Reachability Frechet Edit-Distance Single-Source Max-Flow Local Alignment Stable Matching LCS … Subtree Isomorphism Closest Pair

SETH

Problem domains: Graph Algorithms Pattern Matching Bioinformatics **Computational Geometry** Data Structures Machine Learning Formal Languages

…

Many problems remain unclassified…

The Class P (after)

 $\Omega((2-\varepsilon)^n)$ time. SAT on *n* variable formulas requires

Dynamic Reachability Frechet Edit-Distance Single-Source Max-Flow Local Alignment Stable Matching LCS … Subtree Isomorphism Closest Pair

Finding 3 that sum to zero among *n* numbers requires $\Omega(n^{2-\varepsilon})$ time.

Polygon Containment Triangle Enumeration Dynamic Max Matching $\left\{\right.\right.$ Replacement Paths Grammar Parsing Strips Cover Rectangle Set Intersection Compressed Inner Product

…

S SZ(*n*) unie.
O($n^{3-\epsilon}$) + Computing all distances in n node graphs requires $\Omega(n^{3-\varepsilon})$ time.

Dynamic Max Matching

Negative Triangle Dynamic Max Flow Stochastic Context-Free

Median

…

Many problems remain unclassified…

3SUM

3SUM: Given *n* integers, are there 3 that sum to 0?

A famous conjecture in computational geometry:

The 3-SUM Conjecture: "3-SUM cannot be solved in *O(n1.99)* time."

The Class P

Diameter Dynamic Reachability Frechet Edit-Distance Single-Source Max-Flow Local Alignment Stable Matching LCS … Subtree Isomorphism Closest Pair

All Pairs Shortest Paths

APSP: Given a weighted graph on n nodes and n² edges, compute the distance between every pair of nodes.

Classical Algs: *O(n3)*

Bellman-Ford, Dijkstra,…

Conjecture: APSP cannot be solved in *O(n3-e)* time.

The Class P (before)

The Class P (after)

Diameter Dynamic Reachability Frechet Edit-Distance Single-Source Max-Flow Local Alignment Stable Matching LCS … Subtree Isomorphism Closest Pair

Negative Triangle Median … Dynamic Max Matching Dynamic Max Flow Stochastic Context-Free

Many problems remain unclassified…

Technical Remarks

 \triangleright We will ignore $\log n$, $\log^{O(1)} n$, $2^{\sqrt{\log n}}$ or any $n^{O(1)}$ factors.

- ‣ Many reductions have such overheads.
- ‣ We allow randomness.
- ‣ The conjectures are assumed to holds against randomized algorithms too.
- ‣ Many reductions use randomness.
- \triangleright We use the (standard) Word RAM model with $w = O(\log n)$.
	- ‣ You can do any operations on words in constant time: addition, multiplication, random access, hashing, etc.
	- ‣ Since we allow log factors and randomness, this is not too important.
- \triangleright Numbers are assumed to be in a polynomial range.
	- \triangleright Integers in $\{-n^{O(1)}, ..., + n^{O(1)}\}$, real numbers with precision $1/n^{O(1)}$.

Fine-Grained Reductions

<u>Definition:</u> $A_a \rightarrow_b B$ $\underline{\text{Thm:}}$ If A $_{a}$ \rightarrow $_{b}$ B and B is in $O(n^{b-e})$ time then A is in $O(n^{a-\delta})$ time. Thm: If $A_a \rightarrow B_a$ *B* and $B_b \rightarrow C_c$ *C* then also $A_a \rightarrow C_c$ *C*.

A fine-grained (a, b) -reduction from A to B is an $\overline{}$ algorithm \mathscr{A}^B for A with oracle access to B, such that: $\forall \varepsilon > 0: \exists \delta > 0:$ for all input x of size n: 1. $\mathscr{A}^B(x)$ is correct *w.p.* $\geq 1 - 1/n^{10}$ 2 . $\mathscr{A}^B(\mathfrak{x})$ runs in $O(n^{a-\delta})$ time. 3. Let y_1, \ldots, y_t be the oracle calls, then:

$$
\sum_{i=1}^{t} |y_i|^{b-\varepsilon} = O(n^{a-\delta})
$$

[Vassilevska & Williams '10]

Tutorial Objectives

- ‣ Goal 0: The ability to understand FGC results.
- ‣ Goal 1: The ability to prove your own FGC results.
	- ‣ We will highlight the simplest hard problems

Diameter Dynamic Reachability Frechet Edit-Distance Single-Source Max-Flow Local Alignment Stable Matching LCS … Subtree Isomorphism Closest Pair

OV

k-SAT

Tutorial Objectives

- ‣ Goal 0: The ability to understand FGC results.
- ‣ Goal 1: The ability to prove your own FGC results.
	- ‣ We will highlight the simplest hard problems
- ‣ Goal 2: Intimacy with the theory and with current research.
	- ‣ This is the purpose of the afternoon lectures (and Friday).
- ‣ *Most importantly: To have fun thinking about basic problems!*