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Lecture 0: Welcome and Overview

‣ Intro and quick overview

‣Remarks about the tutorial

‣Welcome & Logistics



Complexity Theory

NP-hard in P

Context-Free Grammar Parsing

All Pairs Shortest Paths

Edit-Distance

Fourier Transform

Linear Programming

Protein Folding

Travelling Salesman

Subset Sum

k-SAT

… …

What about the problems inside P?

Independent Set



(Traditional) Complexity: 
Popular since 1970’s 

“Polynomial Time = Efficient”

Fine-Grained Complexity: 
Popular since 2010’s 

“Near-linear Time = Efficient”
O(n), O(n1.5), O(n2), …?Polynomial vs. exponential?

A theory for Big DataA theory for Small Data

Complexity Theory



S = cddcabbabcbaa

T = adbdbbcabacddT = adbdbbcabacdd

S = cddcabbabcbaa

Dynamic Programming: O(n2)

M [i, j] = max

8
><

>:

M [i� 1, j � 1] + (S[i] == T [j]),

M [i� 1, j],

M [i, j � 1]

Longest Common Subsequence (LCS)

Can we do better? 

Input: two sequences of length n

Output: the length of the longest common subsequence

[Masek - Paterson ’80]  
O(n2 / log2n)



[Smith-Waterman ’81] O(n2) with dynamic programming - too slow!

Typically: n >> 106

Local Alignment
Input: two (DNA) sequences of length n and a scoring matrix.

Output: The optimal alignment of two substrings.

AGCCCGTCTACGTGCAACCGGGGAAAGTATA 
AAACGTGACGAGAGAGAGAACCCATTACGAA A" C" G" T" –"

A" +1# $1.4# $1.8# $0.7# $1#

C" $1.4# +1# $0.5# $1# $1#

G" $1.8# $0.5# +1# $1.9# $1#

T" $0.7# $1# $1.9# +1# $1#

'" $1# $1# $1# $1# $∞#

C   C   G   –   T   C   T   A   C   G 
C   C   C   A   T   –   T   A   C   G 
+1 +1 -0.5 -1 +1  -1  +1  +1  +1 +1  =  +4.5

Here’s one example where it matters…

Why care about  vs.  vs. …?n n2 n3



Are there fast algorithms with optimality guarantees?

BLAST: A heuristic, linear time algorithm for Local Alignment.

110k citations!

Why care about  vs.  vs. …?n n2 n3



Goal: Understand the time complexity of important problems.

Context-Free Grammar Parsing

Longest Common Subsequence

All Pairs Shortest Paths

Median

Edit-Distance3SUMOrthogonal Vectors

Polygon containmentLocal Alignment

Dynamic reachabilityFrechet distance

Diameter

RNA folding

Maximum Matching

Linear Programming

…

Nearest Neighbors

The Class P



“ X probably cannot be solved in  time. ” O(n2−ε)

Take a problem X in P, say in O(n2) time.

And prove that:

Fine-Grained Complexity  
or: Hardness in P

But how?



How do we get n2 and n3 lower bounds?

Lower bounds for restricted algorithms?

NP-hardness is not fine-grained enough…

Not general enough, and only gives partial answers.

e.g.  for sorting in the comparisons-only model.Ω(n log n)

Unconditional polynomial lower bounds? 

But  for natural problems, even for SAT, is far out of reach of 
current techniques. Best lower bound is .

Ω(n2)
3.1n

“Any Turing Machine has to spend Ω(n2) time…”

Time Hierarchy Thm (1965): Some (artificial) problems require  time.Ω(n2)



P ≠ NP:  
“k-SAT cannot be solved 

in polynomial time.” 

Complexity Theory
How do we prove hardness results?

(Traditional) Complexity: 
Popular since 1970’s 

Fine-Grained Complexity: 
Popular since 2010’s 

O(n), O(n1.5), O(n2), …?Polynomial vs. exponential?

Reductions!



P ≠ NP:  
“k-SAT cannot be solved 

in polynomial time.” 

Complexity Theory
How do we prove hardness results?

My problem is in P

P = NP

(Traditional) Complexity: 
Popular since 1970’s 

Fine-Grained Complexity: 
Popular since 2010’s 

O(n), O(n1.5), O(n2), …?Polynomial vs. exponential?

Reductions! Fine-Grained Reductions!



P ≠ NP:  
“k-SAT cannot be solved 

in polynomial time.” 

 SETH:  
“k-SAT cannot be solved 
even in  time.” O(1.99n)

Complexity Theory
How do we prove hardness results?

(Traditional) Complexity: 
Popular since 1970’s 

Fine-Grained Complexity: 
Popular since 2010’s 

O(n), O(n1.5), O(n2), …?Polynomial vs. exponential?

Reductions! Fine-Grained Reductions!



P ≠ NP:  
“k-SAT cannot be solved 

in polynomial time.” 

 SETH:  
“k-SAT cannot be solved 
even in  time.” O(1.99n)

Complexity Theory
How do we prove hardness results?

My problem is linear

SETH is false

My problem is in P

P = NP

(Traditional) Complexity: 
Popular since 1970’s 

Fine-Grained Complexity: 
Popular since 2010’s 

O(n), O(n1.5), O(n2), …?Polynomial vs. exponential?

Reductions! Fine-Grained Reductions!



Faster  
Local Alignment

e.g. 
O(n1.99)

SETH  
is false

Faster  
k-SAT

e.g. 
O(1.99n)

Theorem [AVW’14]: 
“If for some , we can solve Local Alignment in  time, then 
we can solve k-SAT in   time for some  and all .”

ε > 0 O(n2−ε)
O((2 − δ)n) δ > 0 k > 0

An Example of a Fine-Grained Lower Bound 

: “k-SAT cannot be solved in polynomial time.” P ≠ NP

SETH (The Strong Exponential Time Hypothesis):  

“k-SAT cannot be solved even in  time.” O(1.99n)

ETH: “k-SAT cannot be solved even in  time.” 2o(n)



k-SAT: given a k-CNF formula 
 on n variables and m clauses, is it satisfiable?

The Strong Exponential Time Hypothesis (SETH): 
[Impagliazzo-Paturi’01] 

There is no  such that for all ,  
k-SAT can be solved in  time.

ε > 0 k > 2
O((2 − ε)n)

ϕ = (x1 ∨ x2 ∨ x̄3 ∨ x10) ∧ ⋯ ∧ (x2 ∨ x̄1 ∨ x4)

SETH: “k-SAT cannot be solved in O(1.99n) time.”

SETH

Fastest algorithms:
k=3:  
k=4:  
k=5:  
…  

1.308n

1.504n

1.592n

k → ∞ : 2n

O (2(1− 1
ck )⋅n)



The Class P (before)

Context-Free Grammar Parsing

Longest Common Subsequence

All Pairs Shortest Paths

Median

Edit-Distance3SUMOrthogonal Vectors

Polygon containmentLocal Alignment

Dynamic reachabilityFrechet distance

Diameter

RNA folding

Maximum Matching

Linear Programming

…

Nearest Neighbors



The Class P (after)

SETH

Problem domains: 
Graph Algorithms 
Paaern Matching 

BioinformaKcs 
ComputaKonal Geometry 

Data Structures 
Machine Learning 
Formal Languages 

…

Many problems remain unclassified…

Diameter

Dynamic Reachability

Frechet
Edit-Distance

Single-Source Max-Flow

Local Alignment

Stable Matching

LCS
…

Subtree Isomorphism

Closest Pair



The Class P (after)

3SUMSETH APSP

Diameter

Dynamic Reachability

Frechet
Edit-Distance

Single-Source Max-Flow

Local Alignment

Stable Matching

LCS
…

Subtree Isomorphism

Closest Pair
Polygon Containment

Colinearity Radius

Negative Triangle

Median

…

Dynamic Max Matching

Triangle Enumeration

Dynamic Max Flow

…

Dynamic Max Matching Replacement Paths

Stochastic Context-Free  
Grammar Parsing

Strips Cover Rectangle

Set Intersection

Compressed Inner Product

Many problems remain unclassified…

SAT on  variable 
formulas requires

 Kme.

n

Ω((2 − ε)n)

Finding 3 that sum to 
zero among n numbers 
requires  Kme.Ω(n2−ε)

CompuKng all 
distances in  node 

graphs requires 
 Kme.

n

Ω(n3−ε)



3SUM

3SUM: Given n integers, are there 3 that sum to 0?

The 3-SUM Conjecture:
“3-SUM cannot be solved in O(n1.99) time.”

A famous conjecture in computational geometry:

-15 -6 33 8 1 -21 4 -30 7 … 107



The Class P

3SUMSETH

Diameter

Dynamic Reachability

Frechet
Edit-Distance

Single-Source Max-Flow

Local Alignment

Stable Matching

LCS
…

Subtree Isomorphism

Closest Pair
Polygon Containment

Colinearity

Triangle Enumeration

…

Dynamic Max Matching

Strips Cover Rectangle

Set Intersection

Compressed Inner Product



All Pairs Shortest Paths

Author Runtime Year
Fredman n3 log log1/3 n / log1/3 

n
1976

Takaoka n3 log log1/2 n / log1/2 
n

1992

Dobosiewicz n3 / log1/2 n 1992

Han n3 log log5/7 n / log5/7 
n

2004

Takaoka n3 log log2 n / log n 2004

Zwick n3 log log1/2 n / log n 2004

Chan n3 / log n 2005

Han n3 log log5/4 n / log5/4 
n

2006

Chan n3 log log3 n / log2 n 2007

Han, Takaoka n3 log log n / log2 n 2012

Williams n3 / 2Ω(√ log n) 2014

Conjecture:
APSP cannot be solved

in O(n3-e) time.

APSP: Given a weighted graph on n nodes and n2 edges,  
compute the distance between every pair of nodes.

Classical Algs: O(n3)

Bellman-Ford, Dijkstra,…



The Class P (before)

Context-Free Grammar Parsing

Longest Common Subsequence

All Pairs Shortest Paths

Median

Edit-Distance3SUMOrthogonal Vectors

Polygon containmentLocal Alignment

Dynamic reachabilityFrechet distance

Diameter

RNA folding

Maximum Matching

Linear Programming

…

Nearest Neighbors



The Class P (after)

3SUMSETH APSP

Diameter

Dynamic Reachability

Frechet
Edit-Distance

Single-Source Max-Flow

Local Alignment

Stable Matching

LCS
…

Subtree Isomorphism

Closest Pair
Polygon Containment

Colinearity Radius

Negative Triangle

Median

…

Dynamic Max Matching

Triangle Enumeration

Dynamic Max Flow

…

Dynamic Max Matching Replacement Paths

Stochastic Context-Free  
Grammar Parsing

Strips Cover Rectangle

Set Intersection

Compressed Inner Product

Many problems remain unclassified…



Technical Remarks
‣We will ignore  or any  factors.log n, logO(1) n, 2 log n no(1)

‣We allow randomness.

‣We use the (standard) Word RAM model with .w = O(log n)

‣Numbers are assumed to be in a polynomial range.

‣ The conjectures are assumed to holds against randomized algorithms too.

‣ Many reductions use randomness.

‣ Many reductions have such overheads.

‣ Since we allow log factors and randomness, this is not too important.

‣ You can do any operations on words in constant time: addition, 
multiplication, random access, hashing, etc.

‣ Integers in , real numbers with precision .{−nO(1), …, + nO(1)} 1/nO(1)



Fine-Grained Reductions

A fine-grained -reduction from A to B is an  
algorithm  for A with oracle access to B, such that:

(a, b)
𝒜B

for all input x of size n:∀ε > 0 : ∃δ > 0 :
1.  is correct𝒜B(x)
2.  runs in  time.𝒜B(x) O(na−δ)
3. Let  be the oracle calls, then:y1, …, yt

w.p. ≥ 1 − 1/n10

Definition: A a →b B

Thm: If    and B is in  time then A is in  time.A a →b B O(nb−ε) O(na−δ)

Thm: If   and    then also .A a →b B B b →c C A a →c C

x ∈ A?

y1 ∈ B? yt ∈ B?…

t

∑
i=1

|yi |
b−ε = O(na−δ)

[Vassilevska & Williams ’10]



Tutorial Objectives

‣Goal 1: The ability to prove your own FGC results.

‣Goal 0: The ability to understand FGC results.

‣We will highlight the simplest hard problems



OV

Diameter

Dynamic Reachability

Frechet
Edit-Distance

Single-Source Max-Flow

Local Alignment

Stable Matching

LCS
…

Subtree Isomorphism

Closest Pair

3SUM

Polygon Containment

Colinearity Radius

Negative Triangle

Median

APSP

…

Dynamic Max Matching

Triangle Enumeration

Dynamic Max Flow

…

Dynamic Max Matching Replacement Paths

Stochastic Context-Free  
Grammar Parsing

Strips Cover Rectangle

Set Intersection

Compressed Inner Product

k-SAT

Negative-Triangle

Monday TuesdayWed + Thu



‣Goal 1: The ability to prove your own FGC results.

‣We will highlight the simplest hard problems

‣Goal 0: The ability to understand FGC results.

‣Most importantly: To have fun thinking about basic problems!

‣ This is the purpose of the afternoon lectures (and Friday).

‣Goal 2: Intimacy with the theory and with current research.

Tutorial Objectives


