Tutorial on Fine-Grained Complexity

DIMACS, July 15-19, 2024

<u>Lecturers:</u> Amir Abboud Nick Fischer

Organizers:

Karthik C.S. + Amir & Nick Teaching Assistants: Shyan Akmal Mursalin Habib Ron Safier Nathan Wallheimer

Institute for Computer Science, Artificial Intelligence and Technology

Lecture O: Welcome and Overview

Welcome & Logistics

Intro and quick overview

Remarks about the tutorial

What about the problems inside P?

Popular since 1970's (Traditional) Complexity: "Polynomial Time = Efficient" Polynomial vs. exponential?

A theory for Small Data

Popular since 2010's Fine-Grained Complexity: "Near-linear Time = Efficient" $O(n), O(n^{1.5}), O(n^2), ...?$

A theory for Big Data

Dynamic Programming: O(n²)

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + (S[i] == T[j]), \\ M[i-1,j], \\ M[i,j-1] \end{cases}$$

[Masek - Paterson '80] $O(n^2 / log^2 n)$

Can we do better?

Why care about n vs. n^2 vs. n^3 ...?

Here's one example where it matters...

Local Alignment

Input: two (DNA) sequences of length n and a scoring matrix.

AGCCCGTCTACG GCAACCGGGGAAAGTATA AAACGTGACGAGAGAGAGAACCCATTACGAA

<u>Output</u>: The optimal alignment of two substrings.

C C G - T C T A C G C C C A T - T A C G +1+1-0.5-1+1-1+1+1+1+1=+4.5

Typically: *n* >> 10⁶

[Smith-Waterman '81] $O(n^2)$ with dynamic programming - too slow!

Why care about n vs. n^2 vs. n^3 ...?

BLAST: A heuristic, linear time algorithm for Local Alignment.

≡	Google Scholar	local alignment Q
•	Articles	About 4,600,000 results (0.10 sec)
	Any time Since 2024 Since 2023 Since 2020 Custom range	Basic local alignment search tool SF Altschul, W Gish, W Miller, EW Myers Journal of molecular, 1990 - Elsevier local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local well as the statistical significance of alignments it generates. The basic algorithm ☆ Save DD Cite Cited by 110181 Related articles All 43 versions

110k citations!

Are there fast algorithms with optimality guarantees?

The Class P

<u>Goal:</u> Understand the time complexity of important problems.

Fine-Grained Complexity or: Hardness in P

Take a problem X in P, say in $O(n^2)$ time. And prove that: " X probably cannot be solved in $O(n^{2-\varepsilon})$ time."

But how?

How do we get n^2 and n^3 lower bounds? Unconditional polynomial lower bounds? "Any Turing Machine has to spend $\Omega(n^2)$ time..." <u>Time Hierarchy Thm (1965):</u> Some (artificial) problems require $\Omega(n^2)$ time. But $\Omega(n^2)$ for natural problems, even for SAT, is far out of reach of current techniques. Best lower bound is 3.1*n*.

Lower bounds for restricted algorithms?

e.g. $\Omega(n \log n)$ for sorting in the comparisons-only model. Not general enough, and only gives partial answers.

NP-hardness is not fine-grained enough...

How do we prove hardness results?

Popular since 1970's (Traditional) Complexity:

Polynomial vs. exponential?

Reductions!

Popular since 2010's Fine-Grained Complexity:

 $O(n), O(n^{1.5}), O(n^2), \dots$?

How do we prove hardness results?

Popular since 1970's (Traditional) Complexity:

Polynomial vs. exponential?

Reductions!

My problem is in P \downarrow P = NP Popular since 2010's Fine-Grained Complexity:

 $O(n), O(n^{1.5}), O(n^2), \dots$?

Fine-Grained Reductions!

How do we prove hardness results?

Popular since 1970's (Traditional) Complexity:

Polynomial vs. exponential?

Reductions!

Popular since 2010's Fine-Grained Complexity:

 $O(n), O(n^{1.5}), O(n^2), \dots$?

Fine-Grained Reductions!

How do we prove hardness results?

Popular since 1970's (Traditional) Complexity:

Polynomial vs. exponential?

Reductions!

Popular since 2010's Fine-Grained Complexity:

 $O(n), O(n^{1.5}), O(n^2), \dots$?

Fine-Grained Reductions!

An Example of a Fine-Grained Lower Bound

Theorem [**A**VW'14]:

"If for some $\varepsilon > 0$, we can solve Local Alignment in $O(n^{2-\varepsilon})$ time, then we can solve k-SAT in $O((2-\delta)^n)$ time for some $\delta > 0$ and all k > 0."

 $P \neq NP$: "k-SAT cannot be solved in polynomial time."

ETH: "k-SAT cannot be solved even in $2^{o(n)}$ time."

SETH (The Strong Exponential Time Hypothesis):

"k-SAT cannot be solved even in $O(1.99^n)$ time."

SETH

<u>k-SAT</u>: given a k-CNF formula on *n* variables and *m* clauses, is it satisfiable?

 $\phi = (x_1 \lor x_2 \lor \bar{x_3} \lor x_{10}) \land \dots \land (x_2 \lor \bar{x_1} \lor x_4)$

Fastest algorithms:

$$O\left(2^{\left(1-\frac{1}{ck}\right)\cdot n}\right) \qquad \begin{array}{l} \mathsf{k=3:} \ 1.308^{n} \\ \mathsf{k=4:} \ 1.504^{n} \\ \mathsf{k=5:} \ 1.592^{n} \\ \ldots \ \mathsf{k} \to \infty : 2^{n} \end{array}$$

The Strong Exponential Time Hypothesis (SETH): [Impagliazzo-Paturi'01] There is no $\varepsilon > 0$ such that for all k > 2, **k-SAT** can be solved in $O((2 - \varepsilon)^n)$ time.

SETH: "k-SAT cannot be solved in **O(1.99ⁿ)** time."

The Class P (before)

The Class P (after)

Diameter Closest Pair Local Alignment Dynamic Reachability Single-Source Max-Flow Subtree Isomorphism Stable Matching Edit-Distance Frechet LCS

SETH

Problem domains: Graph Algorithms Pattern Matching Bioinformatics Computational Geometry Data Structures Machine Learning Formal Languages

...

Many problems remain unclassified...

The Class P (after)

SAT on *n* variable formulas requires $\Omega((2 - \varepsilon)^n)$ time.

Closest Pair Local Alignment Dynamic Reachability Single-Source Max-Flow Subtree Isomorphism Stable Matching Edit-Distance Frechet LCS Finding 3 that sum to zero among *n* numbers requires $\Omega(n^{2-\varepsilon})$ time.

3SUM

Polygon Containment Strips Cover Rectangle

Triangle Enumeration

Compressed Inner Product

Dynamic Max Matching

Set Intersection

Computing all distances in *n* node graphs requires $\Omega(n^{3-\varepsilon})$ time.

Dynamic Max Matching

Stochastic Context-Free Grammar Parsing Negative Triangle

Dynamic Max Flow

Replacement Paths

Median

...

Many problems remain unclassified...

3SUM

3SUM: Given *n* integers, are there 3 that sum to 0?

A famous conjecture in computational geometry:

<u>The 3-SUM Conjecture:</u> "3-SUM cannot be solved in *O(n^{1.99})* time."

The Class P

Diameter **Closest Pair** Local Alignment Dynamic Reachability Single-Source Max-Flow Subtree Isomorphism Stable Matching Edit-Distance Frechet LCS

SETH

All Pairs Shortest Paths

<u>APSP</u>: Given a weighted graph on n nodes and n² edges, compute the distance between every pair of nodes.

Author	Runtime	Year
Fredman	n ³ log log ^{1/3} n / log ^{1/3}	1976
Takaoka	n ³ log log ^{1/2} n / log ^{1/2}	1992
Dobosiewicz	n³ / log1/2 n	1992
Han	n ³ log log ^{5/7} n / log ^{5/7}	2004
Takaoka	n³ log log² n / log n	2004
Zwick	n³ log log1/2 n / log n	2004
Chan	n³ / log n	2005
Han	n ³ log log ^{5/4} n / log ^{5/4}	2006
Chan	n³ log log³ n / log² n	2007
Han, Takaoka	n³ log log n / log² n	2012
Williams	n³ / 2 Ω(√log n)	2014

Classical Algs: O(n³)

Bellman-Ford, Dijkstra,...

Conjecture: APSP cannot be solved in $O(n^{3-e})$ time.

The Class P (before)

The Class P (after)

Diameter Closest Pair Local Alignment Dynamic Reachability Single-Source Max-Flow Subtree Isomorphism Stable Matching Edit-Distance Frechet LCS

SETH

Radius Dynamic Max Matching Stochastic Context-Free Grammar Parsing Negative Triangle Dynamic Max Flow Replacement Paths Median

...

APSP

Many problems remain unclassified...

Technical Remarks

- We will ignore $\log n$, $\log^{O(1)} n$, $2^{\sqrt{\log n}}$ or any $n^{O(1)}$ factors.
 - Many reductions have such overheads.
- We allow randomness.
- The conjectures are assumed to holds against randomized algorithms too.
- Many reductions use randomness.
- We use the (standard) Word RAM model with $w = O(\log n)$.
 - You can do any operations on words in constant time: addition, multiplication, random access, hashing, etc.
 - Since we allow log factors and randomness, this is not too important.
- Numbers are assumed to be in a polynomial range.
 - Integers in $\{-n^{O(1)}, ..., +n^{O(1)}\}$, real numbers with precision $1/n^{O(1)}$.

Fine-Grained Reductions

<u>Thm:</u> If $A_a \rightarrow_b B$ and B is in $O(n^{b-\varepsilon})$ time then A is in $O(n^{a-\delta})$ time. <u>Thm:</u> If $A_a \rightarrow_b B$ and $B_b \rightarrow_c C$ then also $A_a \rightarrow_c C$. <u>Definition:</u> $A_a \rightarrow_b B$

A fine-grained (a, b)-reduction from A to B is an algorithm \mathscr{A}^B for A with oracle access to B, such that: $\forall \varepsilon > 0 : \exists \delta > 0 :$ for all input x of size n: 1. $\mathscr{A}^B(x)$ is correct w.p. $\geq 1 - 1/n^{10}$ 2. $\mathscr{A}^B(x)$ runs in $O(n^{a-\delta})$ time. 3. Let y_1, \ldots, y_t be the oracle calls, then:

$$\sum_{i=1}^{t} |y_i|^{b-\varepsilon} = O(n^{a-\delta})$$

[Vassilevska & Williams '10]

Tutorial Objectives

- Goal 0: The ability to understand FGC results.
- ► Goal 1: The ability to prove your own FGC results.
 - We will highlight the simplest hard problems

Diameter **Closest Pair** Local Alignment **Dynamic Reachability** Single-Source Max-Flow Subtree Isomorphism Stable Matching **Edit-Distance** Frechet LCS Wed + Thu

k-SAT

0\

Tutorial Objectives

- Goal 0: The ability to understand FGC results.
- ► Goal 1: The ability to prove your own FGC results.
 - We will highlight the simplest hard problems
- Goal 2: Intimacy with the theory and with current research.
 - This is the purpose of the afternoon lectures (and Friday).
- Most importantly: To have fun thinking about basic problems!