DIMACS Tutorial on
Fine-Grained Complexity

Prep Sheet

This is a preparatory exercise sheet with some basic exercises on asymptotics and
randomness in algorithm design. It is not strictly necessary to solve these exercises
before the tutorial, but we recommend that you give it a try.

Asymptotics

Recall thatin theoretical computer science we typically state the running time (and
space complexity, etc.) of algorithms in terms of the O-notation. That is, instead of
stating that an algorithm takes at most 12n + 10 basic operations, we simply say
that the algorithm runs in time O(n). (See https://en.wikipedia.org/wiki/
Big_0_notation for the formal definition.)

Problem 1 (Asymptotics). Order the following running times according to their
asymptotic growth (e.g., nlogn = 0(n?)):
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Probability Theory

We recap some basic definitions from probability theory which we will be useful
throughout the tutorial. A random variable X is a number or object measuring the
outcome of some random experiment. Some relevant examples include throwing
a coin (X € {heads, tails}), throwing a die (X € {1, 2, 3,4, 5, 6}), indicator variables
of events such as “is it going to rain today” (X € {0, 1}) or the running time of an
algorithm (X € Z). For numeric random variables, the expectation E[X] is defined

E[X] = Zx P(X =x),

where we sum over all values x that the random variable can take. For instance,
the expected outcome of throwing an unbiased die (X € {1, 2, 3,4, 5, 6}) is
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Recall that the expectation is linear, i.e. for random variables X, ..., X, it holds
that E[2}; Xi] = 2; E[X;].

Let us finally recap two useful bounds that are generally useful in the design
of randomized algorithms:

Theorem (Markov’s Inequality). Let X > 0 be a random variable that only takes
nonnegative values. Then for all t > 0:

P(X>1) < itx]
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Theorem (Chernoff’ Inequality). Let X3,...,X, € {0,1} denote independent ran-
dom variables, and let X = X; + - - - + X;,. Then for all € > 0:

P(|X — E[X]| > eE[X]) < 2¢ ¢ EIXI/3,

Problem 2 (Boosting I). Consider a decision problem P (i.e., for each input the
answer to P is either YES or NO). We say that an algorithm for P has one-sided error
probability § if for a given YES instance the algorithm always returns YES and for
a given NO instance the algorithm returns NO with probability at least 1 — &.

Suppose that there is an algorithm for P with one-sided error probability %
that runs in time T'(n). Give an algorithm for P with arbitrarily small one-sided
error probability § > 0 that runs in time O(T (n) log(1/6)).

Problem 3 (Boosting II). Consider a decision problem P. We say that an algorithm
for P has two-sided error probability § if for any given instance the algorithm re-
turns the correct answer with probability at least 1 — 6.

Suppose that there is an algorithm for P with one-sided error probability %
that runs in time T'(n). Give an algorithm for P with arbitrarily small two-sided
error probability § > 0 that runs in time O(T (n) log(1/6)).

Hint: Apply Chernoff’s bound.



