Algorithm	s for k-SAT	 				
Variables	× ₁₁ ,× _N					
Assignment:	$\alpha \in \{0,1\}^N$					
Lituels	$X_i / \overline{X_i}$	satisfied	if a	; = 1 /.	x;=0	
k Clange	$l_1 v - v l_k$	satified	if so	me lit	is set.	
k-CNF:	$C_{\eta} \wedge \cdots \wedge C_{M}$	sortis fied	if all	clause	5 an Sa	H.
L-SAT Pro	blen					
Input: A and Output: Is	k-CNF foru 1 M clauses there a satisf	aing assign	n N vi	x.2	· · ·	
P + NP	<⇒ 3-SAT	is not	n ti	me p	soly(N)	
Trivial algo => time (orithm: Test all D(2 ^N poly(N))	l aseijn mer	vts i			
Can we d These fuest Complexity	tions wher? At le tions where aske existed in the	-st for <u>3</u> ed betor 1990's - 200	-SAT ? fine DO'S	let's Graine	q tuði	

Algorithm 1 Take an arbitrary clause (= (l, vl, vl3) Try all 7 satisfying assignments of C, and recur on the rest $T(N) \leq T(N-3) + pol_{\mathcal{J}}(N)$ $= O(7^{N_3} \operatorname{pol}_3(N)) \leq O(1.913^{N_3} \operatorname{pol}_3(N))$ Algorithm 2 [Monien Speckenneger '85] Take an arbitrary clause $C = (l_1 \vee l_2 \vee l_3)$ Guess the first satisfied literal. $T(N) \leq T(N-1) + T(N-2) + T(N-3)$ By induction: $T(N) \leq O(\alpha^{N} \operatorname{pol}_{2}(N)) \leq O(1840^{N} \operatorname{pol}_{2}(N))$ where $\chi^{N} \leq \chi^{N-1} + \chi^{N-2} + \chi^{N-3}$ $\iff \chi^{3} \leq \chi^{2} + \chi + \chi + \chi \implies \chi \leq 1.840$

Algorithm 3' Random Walk [Subning ' 1] Repeart (4/3) poly (W) times Start with <u>random</u> assignment x ∈ {0,1}^N Repeat 3N times If a is sortisfying done Take an unsatisfied danse (Randomly flip h, h, or h, in a $C=(l_1 \cup l_2 \cup l_3)$ Intuition We perform a random walk on assignments that is biased towards satisfying clauses. Analysis distance d = Hamming distance from the initial & to closest satisfying assignment

Claim: P(algo finds sat. assignment) > 2-d Proof to satisfying is a random walk. Distance Playo finds sat assignment in SDN steps) $\geq \mathbb{P}(algo finds sat. assignment in = 3d steps)$ ≥ P(2d steps left and d steps right) $= \left(\begin{array}{c} 3d \\ d \end{array} \right) \cdot \left(\begin{array}{c} 1/3 \\ 3 \end{array} \right)^2 d \left(\begin{array}{c} 2/3 \\ 3 \end{array} \right)^d$ $\begin{pmatrix} n \\ \alpha_{n} \end{pmatrix} \approx \begin{pmatrix} \frac{1}{\alpha_{n}} \end{pmatrix}^{\alpha_{n}} \begin{pmatrix} \frac{1}{1-\alpha_{n}} \end{pmatrix}^{\alpha_{n}}$ $\approx 3^{d} \cdot \left(\frac{3}{2}\right)^{2d} \cdot \left(\frac{1}{3}\right)^{2d} \left(\frac{1}{3}\right)^{2d} \left(\frac{2}{3}\right)^{d}$ = 2^{-d} to repeat the algorithm => Nud

First try Distance $d \leq \frac{N}{2}$ with prob $\geq \frac{1}{2}$ \Rightarrow Then succeeds with prob $\geq 2^{-d} \geq 2^{-N/2}$ $\Rightarrow 100 \quad 2^{N/2} \quad \text{Mpetitions Suffice}$ $\Rightarrow \text{Time } O(2^{N/2} \text{ poly}(N)) = O(1.415^{N} \text{ poly}(N))$ Optimization P(algo succeeds) $\geq \sum_{k=1}^{N} \mathbb{P}(distance d = k) \cdot 2^{-k}$ $= \sum_{k=0}^{N} \frac{\binom{N}{k}}{2^{N}} \frac{1}{2^{k}}$ Binomial theorem! $= \frac{1}{2^{N}} \left(\frac{1}{2} + 1 \right)^{N}$ $(a+b)^{N} = \sum_{k=0}^{N} {N \choose k} a^{k} b^{N-k}$ $= (3/4)^{N}$ =) 100 (4/3) repetitions suffice =) Time O((4/3)^N poly(N))

Literature on 3-SAT Algorithms 1.619^N [Monien, Speckenmeyer '85] Branching-1421^N [Rodošek '96] based

1976^N [Rodošek '96] 15^N [Suöning '99] 1333^N [Suöning '02] 1308^N [Paturi, Pudlak, Zane '97] [Paturi, Pudlak, Salus, Zane '98] Resolutionbased [Hertli '11]

Take-away There are non-trivial algorithms for 3-SATI But: Even though we have tried many techniques. And the algorithms become very complicated... We are still stude at exponential time! So perhaps 3-SAT is truly exponential time - hard?

Exponential Time Hypotlesis (ETH) There is some 8>0 s.t. 3-SAT cannot be solved in time $O(2^{8N})$

What about K-SATZ · Branching - based techniques $O\left(2^{\left(1-\frac{1}{2^{k}}\right)N}\right)$ (for some constant c) · Local search, · Random walks fine-grained algorithms technique Resolution - based techniques Polynomial Method K $O\left(2^{\left(1-\frac{1}{4}\right)N}\right)$ (for some constant c) not know nontrivial Take-away: For k -> 00 algorithms for k-SAT! we do Strong Exponential Time Hypothesis (SETH) For any 200 there is some $k \ge 3$ such that k-SAT cannot be solved in time $O(2^{(1-\epsilon)N})$ Exercise' SETH =) ETH