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Hydrodynamics of Binary Fluid Phase Segregation
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Starting with the Vlasov-Boltzmann equation for a binary fluid mixture, we derive an equation for
the velocity field u when the system is segregated into two phases (at low temperatures) with a sharp
interface between them. u satisfies the incompressible Navier-Stokes equations together with a jump
boundary condition for the pressure across the interface which, in turn, moves with a velocity given by
the normal component of u. Numerical simulations of the Vlasov-Boltzmann equations for shear flows
parallel and perpendicular to the interface in a phase segregated mixture support this analysis. We
expect similar behavior in real fluid mixtures.
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namic equations we obtain for the bulk mixture are where Fi�r; �� � �rrVi�r; �� with Vi the self-consistent
When a fluid is quenched from a high temperature to a
low temperature inside the miscibility gap, it evolves
from its initial homogeneous state which is now unstable
into a final equilibrium state consisting of two coexisting
phases separated by an interface. The phase segregation
process, involving hydrodynamical velocity fields u�x; t�,
is more complicated than the corresponding diffusive
processes in quenched binary alloys [1]. In a seminal
work [2] Siggia pointed out that in the late stages of phase
segregation sharp interfaces develop between domains of
the two phases, and the coarsening process is mainly due
to hydrodynamic flows driven by these elastic interfaces.
Following Siggia, there has been much work to investi-
gate the time evolution of this coarsening process [3–5],
and this is still going on [6,7].

There has been much less work on the derivation of a
quantitative description of the velocity field involving the
interface between two phases of macroscopic size, a prob-
lem of considerable interest in its own right [8]. To do this,
one should start from a microscopic description of the
transition region in which the composition varies
smoothly on the microscopic scale and end up with
boundary conditions on the ‘‘membrane’’ representing
this transition layer on the macroscopic scale (the sharp
interface limit). This is a difficult task for the case in
which the two phases have widely different densities,
viscosities, etc., since a reasonable microscopic descrip-
tion valid for both phases is hard to find.

To overcome this difficulty, we consider here a situation
in which both the equilibrium and kinetics are as simple
as possible. This is a binary fluid model introduced in [9]
which provides a description of phase segregation kinetics
at the mesoscopic level via the Vlasov-Boltzmann (VB)
equations. These equations can be obtained from the
microscopic dynamics (in a convincing but not rigorous
manner) and in turn allow a derivation, in a suitable limit,
of bulk hydrodynamical equations [10]. The hydrody-
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similar but not identical to the heuristic macroscopic
equations previously proposed for describing phase seg-
regation in an energy and momentum conserving system
[11]. In the present Letter, we consider the case in which
the fluid is already well segregated with sharp interfaces
between the different phases. We derive hydrodynamic
equations involving the interface motion directly from
the VB equations and carry out direct simulations for the
time evolution of simple hydrodynamical flows, in the
presence of such an interface. The resulting free boundary
problem was considered phenomenologically, in the con-
text of interface oscillations, by Harrison [12]. We com-
pare our results, with good agreement, with the behavior
based on the linearized version [13] of the hydrodynamic
equations, recently considered for studying coarsening
dynamics [6]. Both the derivation and the numerical
analysis are new and we believe that the results have, as
is the case of the Navier-Stokes equations of a one com-
ponent fluid, a universal validity even though their rig-
orous derivation from microscopic models can be carried
out currently only from the Boltzmann equation [14]. In
fact, preliminary calculation using the Enskog equation
instead of the Boltzmann equation (more appropriate for a
dense fluid) leads to the same hydrodynamics.

The model we consider is a mixture of two species
of hard spheres with diameter d and unit mass labeled
by 1; 2, with a long-range positive potential ‘�3V�‘�1r�
between particles of different species; ‘ is the range of
the interaction. The latter causes phase segregation at
temperatures lower than a critical temperature Tc, into
phases I and II: I is rich in species 1 and II in species 2
[15]. Let n be the total particle density. It was shown
in [10] that, when nd3 � 1, while ‘ � d, this system is
well described by coupled VB kinetic equations for the
one-particle distributions fi�r;v; ��, i � 1; 2

@�fi � v � rrfi � Fi � rvfi � J
fi; f1 � f2�; (1)
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Vlasov potentials Vi�r; �� �
R

R3 ‘�3V�‘�1jr � r0j� �
nj�r0; ��dr0, i � j, nj�r; �� �

R
R3 fj�r; v; ��dv, and

J
f; g� is the Boltzmann collision operator for hard
spheres [16]. We are interested in an equilibrium state at
a fixed total density in which the system is split into two
regions, one consisting of phase I and the other of phase II.
These regions are separated by a transition layer whose
local form can be obtained by considering particular 1D
stationary ‘‘solitonic’’ (actually kink) solutions of (1): set
fi � �i�z�M�v� where M�v� is the Maxwellian with
unit mass, zero mean velocity and temperature T, M�v� �
�2�kBT�

�3=2 exp
�v2=2kBT�. Moreover, �i�z� � �i�z=‘�
with �i�q� smooth functions satisfying the equations

kBT log�i�q� �
Z

R

dq0 ~VV �jq� q0j��j�q
0� � Ci; (2)

where ~VV �q� �
R

R2 dwV�
�����������������
q2 � w2

p
� and Ci is a constant.

For T < Tc, Eqs. (2) have nonhomogeneous solutions with
asymptotic values �I

i and �II
i as q ! �1, corresponding

to the densities in phases I and II, respectively: by sym-
metry �I

1 � �II
2 , �I

2 � �II
2 . The solutions are not explicit

but their existence and properties are studied in [9,15].
These are similar to those observed in realistic mixtures,
such as oil and water.

We are interested in studying hydrodynamical flows
when the width of the interface, which is of order ‘, is
small compared to the mean-free path � which is, in turn,
small compared to L, the characteristic length of the
domains occupied by the pure phases. Setting r � ��1x,
� � ��2t, where � � �=L� ‘=� and x; t are the macro-
scopic position and time, we wish to study the small �
behavior of a solution f�

i �x;v; t� � fi��
�1x;v; ��2t� of

Eqs. (1), in the incompressible regime, corresponding to
low hydrodynamic velocity [14]. We assume far from the
interface a solution of the form [14]

f�
i �x;v; t� � ���i�x�M�v� �

X1
s�1

�sgs
i �x;v; t�; (3)

where ���i�x� is either �I
i or �II

i depending on which re-
gion x is in. Note that by symmetry �I

1 � �I
2 � �II

1�
�II
2 � ���, i.e., the total density is the same in both phases

but varies in the interface region. Putting f� � f�
1 � f�

2 ,
we have for the hydrodynamic velocity field

��� �1
Z

R3
vf��x;v; t�dv � �u�x; t� �O��2�;

so that the Mach number is of order � (incompressible
regime). Far from the interface the temperature T and the
densities are constants, coinciding for T < Tc with the
asymptotic values of the solitonic solutions.

To understand what happens near the interface, con-
sider the situation in which the interface is flat. Then
fi�r;v; �� � �i�z�M�v� with �i�z� � �i�z=‘� a stationary
solution of the Vlasov-Boltzmann equations. If the inter-
face is not flat this is not exactly true, but because of the
tendency of the solitonic profile to keep its form and just
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translate, one expects that the solution is locally close
to the solitonic profiles multiplied by the Maxwellian. On
the other hand, the force due to the surface tension acts on
the particles of the fluid which start to move with some
average velocity u and the surface moves accordingly, so
that its normal velocity is at any point u �N, N being the
normal to the surface. To implement this picture, we write
the solution near the interface as

f�
i �z; ~xx;v; t� � �i�z�M�v� �

X1
s�1

�s~ggs
i �z; ~xx;v; t�: (4)

The notation is as follows: given a point x, we call z �
��1d�x;
t�, where d�x;
t� is the distance of x from the
interface 
t and ~xx the component of x tangential to the
interface; �i�z� � �i�z=‘� is the solitonic solution cen-
tered on z � 0. Since we are so close to the interface, we
can assume that locally it looks almost flat, so that the
solution near the interface has a weak dependence on ~xx.
Therefore, the profile interpolating between the values of
the densities in the bulk on the two sides of the interface
should be well approximated by the 1D solitonic profile
�i�z�, the lowest order term in Eq. (4).

To obtain a solution of Eqs. (1) we have to put these
expressions in the equations (after space-time rescaling)
and match the two expansions. This can be done in a
consistent way and it is possible to compute the terms
in the series (the long computation will be reported else-
where), but the question of the convergence of the series
is open (we expect they are asymptotic). The result is that
in the limit � ! 0 the velocity field u�x; t� is divergence
free and solves the incompressible Navier-Stokes (INS)
equation

@tu� �u � r�u� rp � $�u (5)

with the kinematic viscosity $ obtained from the
Boltzmann equation as in [16]. Moreover, u is continuous
across the interface 
t whose normal velocity is given by

v
t
�x� � u�x; t� �N�x; t�; (6)

while the pressure is discontinuous at the surface and
satisfies Laplace’s law

�p� � p�� � &K: (7)

Here (p�) p� is the pressure on the side of 
t (not)
containing the normal N; K is the mean curvature of 
t
and & is the surface tension given in terms of solitonic
profiles as

& �
1

2

Z
�q0 � q�

X
i�j�1;2

d�i�q�
dq

~VV �q� q0��j�q
0�dqdq0:

(8)
The equation for u is a complicated initial boundary

value problem with free boundary 
t. The solutions of
INS in the two domains separated by 
t are coupled by
the jump condition for the pressure. Since the solution is
235701-2
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FIG. 1. Interface amplitude A�t� (dotted line) and velocity
amplitude u�t� (dashed line) for T1=Tc � 0:51, nk � 1 and
corresponding fits (see text) (solid lines).
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FIG. 2. Interface amplitudes A�t� for T1=Tc � 0:51 (top) and
T2=Tc � 0:33 (bottom), nk � 1; 2; 3 (top to bottom) (dotted
lines) and corresponding fits (see text) (solid lines).
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not explicit, we compare our numerical results with the
linearized version of this problem, studied in [13].

To obtain numerical solutions of the VB equations, we
use the method introduced in [9] to simulate the VB
dynamics at the particle level, based on coupling the
direct simulation Monte Carlo algorithm for the short-
range interaction with the grid-weighting method for
the long-range repulsion. The results were obtained
using about 5� 106 particles, in a cube (L� L� L)
with periodic boundary conditions. The unit of length is
the mean-free path � � �21=2� ���d2��1, and the unit of
time is the mean-free time between collisions � � �=c,
c � �2kBT�1=2. For the repulsive interspecies potential we
use, as in [9], V�q� � (���3=2� exp��q2� (note that the
mean-field critical temperature is given by kBTc �
���(=2), with a range of interaction ‘ � 0:4�. All
quenches were performed at total particle density ���,
with ���d3 � 0:01. We focus on the behavior of a simple
initial flow perturbation, uz�0� � u0 cos�ky�, with k �
2�nk=L, nk � 1; 2; 3; . . . , outside and inside the coexis-
tence region; for all simulations we set u0 � 0:1c. For a
homogeneous system this shear wave perturbation leads
to a time dependent flow uz�t� � u�t� cos�ky�, where
u�t� � u�0� exp��$k2t�, $ � += ���, and + is the viscosity.

We first study the behavior of the above initial pertur-
bation in the homogeneous region of the phase diagram at
T=Tc � 1:5. The initial velocity profile decays exponen-
tially with very high accuracy and we extract a kinematic
viscosity $ which agrees with the Boltzmann gas viscos-
ity [16]. We then turn to the study of the system in the
presence of interfaces, at two temperatures, T1=Tc � 0:51
and T2=Tc � 0:33. For each of these temperatures the
initial configuration contains two interfaces (due to peri-
odic boundary conditions), situated in the fxyg plane a
distance L=2 apart, that separate domains of the two
equilibrium phases for the particular temperature. The
static structure of these interfaces has been described in
[9]. The thickness of the interface is of order ‘.

For an initial flow perturbation that is parallel with
the interfaces, u�0� � ux�0�x̂x � u0 cos�ky�x̂x, where x̂x is
the unit vector in the x direction, the behavior of the
velocity profile is virtually identical with the one in the
homogeneous region. The situation is, however, very
different if the initial perturbation is perpendicular to
the interfaces, i.e., u�0� � uz�0�ẑz� u0 cos�ky�ẑz. While
uz�t� is still very well represented by u�t�cos�ky�, u�t�
no longer decays exponentially. To fully characterize
this situation, we also look at the position of the interface.
The order parameter ’� ��1 ��2�=� is calculated at
time t as a function of z and y. We find that ’�z;y; t� is
very well fitted by the profile ’0 tanhf
z� z0�y; t��=.g [9]
and identify z0�y; t� with the position of the interface.
Furthermore, z0�y; t� is well represented by z0�y; t� �
A�t�cos�0y�. The velocity amplitude u�t� and the inter-
face amplitude A�t� for the temperature T1 and nk � 1
are shown in Fig. 1, along with fits with the functional
235701-3
forms expected for an overdamped harmonic oscillator:
A�t� � u0 exp��1t� sinh�!t�=!, u�t� � u0 exp��1t� �

�1 sinh�!t�=!� cosh�!t��.

We find that these forms can reasonably reproduce
the results up to the highest nk simulated, nk � 9. In
Fig. 2 we show the amplitudes of the interface oscillations
A�t� up to nk � 3, along with the corresponding best
fits, for temperature T1 (top) and T2 (bottom). We
note that the nk � 1 behavior at T2 is qualitatively
different from the other cases, showing damped
oscillations. The functional forms that describe
this result are A�t� � u0 exp��1t� sin�!t�=!, u�t� �
u0 exp��1t�
�1 sin�!t�=!� cos�!t��.

These simulation results can be compared with those
obtained from the linear perturbation analysis of a thin,
initially flat interface with surface tension & separating
fluids of matching density ��� and viscosity + � $ ���. This
type of analysis has been carried out in [13] in the full
235701-3
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FIG. 3. Coefficients 1 and ! (inset): from simulations (open
symbols) at T1 with ‘ � 0:4� (circles) and ‘ � 0:2� (triangles);
oscillator equation (see text) (filled symbols).
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space. The idea is to look for flow solutions ux;y;z�t� /
e4t cos�kxx� kyy� following a small velocity perturba-
tion of wave number k. This yields a uz decaying expo-
nentially as a function of the distance from the interface.
We carried out a similar analysis matching the periodic
boundary and initial conditions in which uz is indepen-
dent of z away from the interfaces. Under these conditions
and taking into account the discontinuity of the normal
stresses due to surface tension, we can write, following
[13] [see, e.g., Chapter X, Eq. (28)]

�@tuz � +�uz � �s
&�@2
x � @2

y�5zs�5�z� zs�; (9)

where zs is the position of the interface s, 5zs is the dis-
placement from the initial position and d5zs=dt � uzs is
the velocity of the interface. However, we regard the
above equation integrated over the torus, along z, as the
more fundamental one if uz is z independent. This yields

�@tuz � +�uz � L�1�s&�@2
x � @2

y�5zs: (10)

Using uz � uzs and assuming uz�t� / e4t cos�ky�, which
is consistent with the initial conditions, we get 42��
4k2+� L�12&k2 � 0. This equation is characteristic of
a damped oscillator. Introducing the length scale Ls �
$2�=& and time scale Ts � $3�2=&2, this becomes

42
� �4�k2� � L�1

� 2k2� � 0; (11)

where 4� �4Ts, k� �kLs, and L� �L=Ls. Using k�
2�nk=L we find that the above equation predicts damped
oscillations for nk<n0

k��2L��
1=2=� and overdamped be-

havior (no oscillations) otherwise. For our binary fluid
model the surface tension can be related to the interface
profile [see Eq. (8)] and easily estimated [17], and, there-
fore, we can calculate n0

k. We find that for T1=Tc�0:55,
n0
k�0:83, so that for all nk the oscillations should be

overdamped, in agreement with the simulation results.
For T2=Tc�0:33, n0

k�1:39, so the nk�1 case should
exhibit damped oscillations, while the others should be
overdamped; this is again in agreement with the simula-
235701-4
tions. We also calculate the coefficients 1 and ! that
describe the behavior of the velocity profile and compare
with the simulation results; see Fig. 3.We find good agree-
ment for small k (nk) and increasing deviations as k
increases; the relative behavior of 1 and ! also appears
to be qualitatively different from the simulations for
large k. This is as expected, since for larger k, i.e., smaller
wavelengths, we are far from the hydrodynamic regime.
Our hydrodynamic picture is valid if k��2�nk�, ‘=�,
and u=c are of order �� �

L , which is in our simulations
0:028. Better agreement is found in simulations with
‘=��0:2 (and ��0:056), see Fig. 3, which indicates
that the accuracy of the equations we derive increases
when the interface becomes sharper.
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