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Abstract 
 

A new class of signal analysis problems is considered, which appear in finance when it is re-
quired to detect the hidden dynamics of an investment instrument or a portfolio in respect to cer-
tain market or economic factors. Such problems can be naturally formulated as a complex of 
models concerned with estimating a nonstationary linear regression under additional constraints 
and requirements which have been not considered in the classical methodology of signal analysis. 
These models are also applicable to many other engineering and scientific problems. 

We review existing financial multi-factor models from the standpoint of their performance in 
detecting hidden investment portfolio dynamics. Using practical examples, we present and ana-
lyze the shortcomings of these models in detecting both gradual and rapid changes in investment 
portfolio structure. We then lay the groundwork for a new approach, which we call Dynamic 
Style Analysis (DSA), representing a true time-series multi-factor portfolio analysis model. At the 
core of the methodology, we present a new dynamic regression model, which we call Con-
strained Flexible Least Squares (CFLS). One of the most important features of the DSA model is 
that it is fully adaptive, i.e., all model parameters are determined from data. The major concepts 
of the new methodology are gradually introduced and applied to analyses of both model portfo-
lios and well-known public US mutual funds. By comparing publicly available holdings data with 
results obtained with DSA, we demonstrate both the superiority of the new model and its remark-
able accuracy in detecting portfolio dynamics. We also address issues such as the computational 
complexity of DSA and its practical applications in the areas of risk management, performance 
measurement and investment research. One of the major applications of the new methodology 
lies in hedge fund due diligence and risk monitoring, where the importance of uncovering and 
controlling hidden factor dynamics is especially valuable given the limited transparency of hedge 
funds.  
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1 Introduction  

There exists a wide class of signal analysis problems in which it is required, for the given 
signal ( , 1,..., )tY y t N= =  on the axis of a discrete argument (usually time), to estimate the values 
of a sufficiently smoothly changing parameter ( ,tB = β 1,..., )t N= that takes values from some set 

tβ ∈B and forms the hidden process usually considered as being random.  
Given rapid increases in computer power and the emergence of new computational tech-

niques, the process of computerization is being applied to new practical problems for which exist-
ing methods are not totally adequate. In the current work, we consider a new class of signal 
analysis problems in which the hidden process to be estimated can be described as a dynamically 
changing allocation of some resource over a finite set of positions  
 (1) ( ) ( )

1
( ,..., ), 1,nn i

t t t ti=
= β β β =∑ββββ ( ) 0i

tβ ≥ . (1) 
The stated non-negativity of the hidden process prevents using linear algorithms such as the 
Kalman-Bucy filter and interpolator [1,2,3,4].  

A typical example of such a problem is that of determining major market factors affecting per-
formance of an investment portfolio, which plays an important role in modern investment analysis. We 
consider here a dynamic generalization of this problem, the original static formulation of which belongs 
to William Sharpe, 1990 Nobel Prize winner in Economics [12].  

Multi-factor models play an important practical role in Finance. They are used extensively in 
both the portfolio construction process and in analysis of existing portfolios. When creating or 
adjusting their portfolios, money managers have to determine which asset(s)1 (stocks, bonds, cur-
rencies, etc.) and in what quantities they have to buy or sell to achieve the desired characteristics 
of their portfolio. For example, a typical task would be to hedge (neutralize) certain factor sensi-
tivities of the portfolio, while leveraging (magnifying) sensitivity to other factors. Frequently, a 
multi-factor model is used in the process and the trade list of assets is determined by a multi-
factor optimization.  

For investors analyzing financial products such as mutual funds or hedge funds, the interest 
lies primarily in the sensitivity of these products to various market factors, in order to determine 
what performance to expect from the product in certain market conditions. The latter application 
is of even greater importance for risk managers of trading institutions such as banks, brokerages 
and securities trading firms, where the effort of sometimes hundreds of employees is geared to-
ward determining a single confidence interval for a daily potential loss of the bank's investment 
portfolio. Such an interval is called Value-at-Risk, and the methodology frequently involves 
multi-factor modeling.  

In addition, since factor models can tell what kind of performance was expected from a port-
folio given its factor sensitivity in the past, they are extensively used in the area of performance 
measurement. The portfolio management team's skill assessment is based on such evaluation. 
Such an approach is also used to understand the source of good or poor performance – whether it 
was related to buying a certain industry sector or certain assets within the sector. This area of Fi-
nance is called performance attribution (where performance is attributed to various factors).  

–––––––––––––––––––––––––––– 
1 An individual asset such as a stock or a bond is frequently called a security. By portfolio we usually 

mean an investment in one or more individual securities. The term financial instrument usually has a 
broader meaning than that of a security. When we talk about financial instruments, we refer to invest-
ments ranging from individual securities to portfolios, and to complex contracts on such securities called 
derivatives.
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It is also important to note that most such real-life models of financial instruments (or portfo-
lios of such instruments) are dynamic in nature. This relates to the fact that either the relation-
ships between factors change over time due to economic or political forces, or the structure of 
instruments and portfolios change. For example, if managers are engaging in active trading, a 
portfolio's factor exposures can be changed dramatically within days.  

The focus of the current paper is estimation of time-varying parameters of a certain class of 
practical multi-factor financial models. These models are based on performance data and are of-
ten called performance-based or returns-based models, where the observed time series character-
istic of the instrument (the signal) is its price1. It is common practice in Finance to work not with 
the price of a security (or the market value of a portfolio) but rather with its relative change over 
a certain time period (i.e., day, week, month) which is also called investment return or daily re-
turn, weekly return or monthly return, respectively2. Note that prices of instruments change very 
frequently throughout the day, and in theory the discussed material is applicable to such intra-day 
price changes as well.  

In the current paper we show limitations of existing methods of modeling dynamic financial 
instruments and propose a new approach that addresses these limitations. We show that the pro-
posed model represents a special filtering technique, which is applied to financial problems of 
this kind for the first time. We extend this filter to reflect the practicalities of the investment 
process and make it fully adaptive – based on the suggested cross-validation technique, the 
model's parameters are determined from the observed data automatically. 

2 An overview of multi-factor models in finance and existing methods of 
their estimation  

2.1 Basic multi-factor models  

2.1.1 Capital Asset Pricing Model (CAPM)  
In his landmark paper in 1964[5] Sharpe suggested a single-factor model to determine effi-

cient return of a security or any market asset. According to this model, the return of the asset in 
efficient markets is determined by the formula 6

( ) ( ) ( ) ( )( )a f m fr r r r= +β − , (2) 

–––––––––––––––––––––––––––– 
1 For an investment portfolio consisting of a number of such instruments, its price is often called the mar-

ket value.
2 Although prices are recorded many times during the day, daily price most of the time refers to closing 

market price for the day, i.e., the last price at which security was traded. For weekly and monthly prices 
the closing daily prices are taken on the last day of the week and month, respectively. For example, in 
order to compute weekly return, the week's Friday's closing price of the instrument is divided by the 
price of the instrument as recorded on the previous Friday market closing, and then one is subtracted 
from the ratio. 
Because it is commonly accepted that individual securities prices follow a geometric Markov process, 
very often, the differences of price logarithms, rather than returns, are considered. Paul Samuelson, a 
Nobel Prize laureate in Economics, was the first to suggest that securities prices have to be modeled by a 
log-normal process. Refer to Hull [6] for a discussion of log-normal nature of securities returns. The 
methodology described in the current paper is directly applicable to such logarithmic transformations of 
prices. 
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where ( )ar , ( )fr and ( )mr represent periodic returns on the asset, a risk-free asset and the market 
portfolio, respectively. This approach laid the foundation of the Capital Asset Price Model, which 
is attributed to Sharpe, Lintner and Mossin, who independently developed the concept. Single 
index models of asset returns were suggested even earlier in the 1950’s. Harry Markowitz sug-
gested a similar single index model several years earlier [7]. The focus of the Sharpe-Lintner-
Mossin CAPM theory was much broader, and included the concept of market equilibrium and 
efficient prices of assets.  

The market portfolio here is an abstract that is defined as a portfolio containing all traded se-
curities with their weights in the portfolio proportional to their respective capitalizations1. A
broad index such as the S&P 500 Index or the Russell 3000 Index is usually being used as a 
proxy for the equity market portfolio2. The risk-free asset in CAPM is another abstract, which has 
guaranteed non-negative return and can be thought of as a bank deposit in a 100% insured bank. 
A typical proxy for the risk-free asset is the 90-day US Treasury Bill that is regularly auctioned 
by the U.S. Government. For individual stocks, the regression coefficient β is an important indi-
cator of the stock risk which measures its sensitivity to the market movements. In other words, it 
provides important information about what behavior to expect from the stock when the market 
falls or rises. Stocks with 1β > , such as, for example, airline companies, are more sensitive to 
market moves. Utility companies are less sensitive to market moves, and their betas are usually 
less than one.  

The CAPM model was also applied to portfolio evaluation, since a portfolio can be thought 
of as a linear combination of individual assets in (2). In the portfolio evaluation framework, the 
single asset CAPM model can be rewritten as follows:  

 ( ) ( ) ( ) ( )( )p f m fr r r r− ≅ α +β − , (3) 
where ( )pr represents the return of a portfolio. In application of CAPM to investment portfolios, 
the regression intercept term in (2), also called Jensen's alpha, is used as a measure of the value 
added by actively selecting individual securities for the individual portfolio vs. a passive invest-
ment in a combination of the market portfolio ( )m and the risk-free asset ( )f . The regression 
coefficient β measures the sensitivity of the portfolio to market moves and is usually described 
as a measure of a portfolio's risk. To estimate single index betas in (3), an Ordinary Least 
Squares (OLS) is usually applied to daily or monthly return observations. Such beta estimates 
have very significant practical value because they convey the level of the asset risk to investors.  

The dynamic nature of beta was recognized, and several methods for adjusting betas were 
suggested, including the most popular ones by Vasicek [8] and Blume [9]. The work by Wells [4] 
contains an extensive comparison of methods of estimation of time-varying betas and also com-
pares various single-factor filtering techniques commonly used in econometrics applied to esti-
mation of individual stock betas.  

Later, multi-factor CAPM models appeared that recognized the fact that both individual se-
curities and portfolios are multi-factor in nature. One of the first works that measured the effect 
of industry factors on securities prices was done by King [10]. The multi-factor CAPM can be 
represented by the equation  

–––––––––––––––––––––––––––– 
1 Capitalization of a company is defined as the stock price multiplied by the total number of shares on the 

market. 
2 These two indices represent the largest 500 and 3,000 US stocks, respectively, based on their capitaliza-

tion. A special committee includes smaller stocks in the S&P 500 Index to achieve better representation 
of all major economic sectors. Prices of these indices (also called index values) are quoted daily in fi-
nancial media. 
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( ) ( ) (1) (1) ( ) (2) (2) ( ) ( ) ( ) ( )( ) ( ) ... ( )p f f f n n fr r r r r r r r− ≅ α +β − +β − + +β − , (4) 

where ( )pr is the portfolio investment return, )(i are returns on the market portfolio as well as 
changes in other factors (e.g., industry sectors,) and )( f is return on a risk-free instrument.  

2.1.2 Arbitrage Pricing Theory (APT)  
One of the multi-factor models most widely used in research and in practice is the APT 

model described in [11]:  
 ( ) (1) (1) (2) (2) ( ) ( )...p n nr I I I≅ α +β +β + +β , (5) 
where the factors )(iI are typically chosen to be the major external economic factors that influ-
ence asset returns, such as industrial production, inflation, interest rates, business cycle, etc. Such 
models attempt to define what securities prices to expect given certain economic conditions. The 
same model can also be applied to an investment portfolio and help investors to determine factor 
sensitivity of the entire portfolio rather than individual security.  

Coefficients )()1( ,..., nββ in the CAPM (4) and APT (5) models are called factor exposures.
Along with the constant α , the factor exposures make the vector of model parameters 

),...,,( )()1( nββα , which is typically estimated by applying a linear regression technique to the time 
series of security/portfolio returns ( )p

tr and economic and market factors )(i
tr or )(i

tI over a cer-
tain estimation window Nt ,...,1= of time intervals, typically months or quarters:  

 
(1) ( )

(1) ( ) ( ) (1) (1) ( ) ( ) 2

, ,..., 1

ˆ ˆˆ( , ,..., ) arg min ( ... )
n

N
n p n n

t t t
t

r I I
α β β =

α β β = −α −β − −β∑ . (6) 

Although both APT and CAPM may seem similar in the multi-factor approach to explaining asset 
returns, in the CAPM the factors represent in most cases investible assets such as, for example, 
market indices, while in the APT approach the factors can be both the market and external factors 
– anything that influences asset prices.  

2.1.3 Returns-Based Style Analysis (RBSA)  
One of the most effective and practical multi-factor models for analyses of investment port-

folios, called the Returns-Based Style Analysis (RBSA), was suggested by Sharpe in [12] and 
[13]. In the RBSA model, the periodic return ( )pr of a portfolio consisting of n kinds of assets is 
approximately represented by a linear combination of single factors (1) ( )( ,..., )nr r whose role is 
played by periodic returns of generic market indices for the respective classes of assets. To en-
hance the quality of parameter estimation, a set of linear constraints is added to the basic equa-
tion:  

 
( ) (1) (1) (2) (2) ( ) ( )

( ) ( )
1

... ,

1, 0, 1,..., .

p n n

n i i
i

r r r r

i n
=

 ≅ α +β +β + +β


β = β ≥ =∑
(7) 

In such a model, ( )ir , ni ,...,1= , represent periodic returns (for example, daily, weekly or 
monthly) of generic market indices such as bonds, equities, economic sectors, country indices, 
currencies, etc. For example, as described in [13], twelve such generic asset indices are used to 
represent possible areas of investment. The periodic portfolio return ( )p

tr for a period is approxi-
mated by the return of a portfolio consisting of n assets which is theoretically equal to the linear 
combination of periodic returns of generic market indices for the respective classes of assets 

(1) ( )( ,..., )nr r with coefficients (1) ( )( ,..., )nβ β having the meaning of the fractions invested in each 
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asset class at the beginning of the period. The fact that the sum of all coefficients in the RBSA 
model is equal to one is equivalent to having a fully invested portfolio1.

The non-negativity constraint in the RBSA reflects a very important practical requirement. 
As it was noted in Markov [14], the RBSA model can be thought of as a practical extension of 
the single-factor CAPM model developed for individual securities. To demonstrate this fact, let's 
rewrite the CAPM model (3) as follows:  

 
( ) ( ) ( ) ( )(1 )p f m pr r r r ′≅ α + −β +β = α + , (8) 

where  
 ( ) ( ) ( )(1 )p f mr r r′ = −β +β . (9) 

The return on the given portfolio ( )pr is compared with the performance of a portfolio ( )p′ – a
benchmark, consisting of the market portfolio and a risk-free asset. Although such a framework 
for evaluating performance of active investment managers has been used in practice and aca-
demic research for 40 years, its limitations are immediately apparent: (a) it allows for unlimited 
borrowing2 while the majority of institutional money managers and most mutual funds are al-
lowed to hold long (non-negative) positions only, and (b) it doesn't take into consideration valu-
able prior information about the portfolio manager's investment options by effectively limiting its 
benchmark portfolio P' to hold a single market portfolio only. Given these considerations, any 
use of both alpha and beta in practice is clearly of limited value.  

As the first step in his departure from the classic CAPM, Sharpe constrained the portfolio 
beta to include values between zero and one, thus making the model more practical and address-
ing the unlimited borrowing of assets issue cited above. Next, to address the problem with the 
model being less risky as the result of the first step ( 1β ≤ ), he allowed for inclusion into the 
model many assets representing various levels of risk. Although multi-factor models had been 
applied to portfolio analysis before, and CAPM with restricted borrowing models had been stud-
ied as well, Sharpe's approach combined both in an elegant and intuitive way by using prior in-
formation about the portfolio in parameter estimation.  

To estimate the parameters of equation (7), Sharpe used the Constrained Least Squares 
Technique, i.e., the parameters are found by solving the constrained quadratic optimization prob-
lem in a window of Nt ,...,1= time periods in contrast to the unconstrained one (6):  

 
(1) ( )

(1) ( ) ( ) (1) (1) ( ) ( ) 2

, ,..., 1

( ) ( )

1

ˆ ˆˆ( , ,..., ) arg min ( ... ) ,

subject to 1, 0, 1,..., .

n

N
n p n n

t t t
t

n
i i

i

r r r

i n

α β β =

=


α β β = −α −β − −β


 β = β ≥ =


∑

∑
(10) 

Model parameters ),...,,( )()1( nββα estimated using unconstrained (6) and constrained least 
squares techniques (10) represent average factor exposures in the estimation window – time in-

–––––––––––––––––––––––––––– 
1 The periodic return of a portfolio is equal to the linear combinations of periodic returns of the portfolio's 

assets for the same period with weights taken at the beginning of the period ( ) ( ) ( )
1

np i i
i

r r
=

= β∑ under 
the assumption that the portfolio hasn't been traded during the period (i.e., shares invested in each asset 
remain unchanged). This simple fact is demonstrated in Appendix 1. Such linear constraint is often 
called the budget constraint, reflecting the fact that the entire budget is spent on the investment in the 
model's assets.  

2 Unlimited borrowing here means negative weight of the risk-free asset 1−β in the CAPM model corre-
sponding to values of 1β > .
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terval Nt ,...,1= . However, the factor exposures typically change in time. For example, an active 
trading of a portfolio of securities can lead to significant changes in its exposures to market indi-
ces within the interval. Detecting such dynamic changes, even though they happened in the past, 
represents a very important task.  

2.2 The moving window technique  

The multi-factor RBSA model (7), as well as the CAPM (4) and APT (5), are, in their es-
sence, linear regression models with constant regression coefficients ),...,,( )()1( nββα .

In order to estimate dynamic changes in factor exposures, a moving window technique is 
typically applied. For example, in RBSA model (7), the exposures at any moment of time t are 
determined on the basis of solving (10) using a window of K portfolio returns [ ]tKt ,...,)1( −−
and the returns on asset class indices over the same time period, as described, for example, in 
[13]:  

 
(1) ( )

1
(1) ( ) ( ) (1) (1) ( ) ( ) 2

, ,..., 0

( ) ( )

1

ˆ ˆˆ( , ,..., ) arg min ( ... ) ,

subject to 1, 0, 1,..., ,

n

K
n p n n

t t t t t t

n
i i

i

r r r

i n

−

−τ −τ −τ
α β β τ=

=


α β β = −α −β − −β


 β = β ≥ =


∑

∑
(11) 

By moving the estimation window forward period-by-period, dynamic changes in factor expo-
sures can be approximately estimated.  

The moving window technique described above has its limitations and deficiencies. The 
problem setup assumes that exposures are constant within the window, yet it is used to estimate 
their changes. Reliable estimates of model parameters can be obtained only if the window is suf-
ficiently large, which makes it impossible to detect changes that occurred within a day or a 
month, and therefore, such a technique can be applied only in cases where parameters do not 
show marked changes within the estimation window: const),...,,( )()1( ≅ββα n

sss ,
tsKt ≤≤−− )1( . In addition, such an approach fails to identify very quick, abrupt changes in 

investment portfolio exposures that can occur due to trading. 
To illustrate the effectiveness of the moving-window method in analyzing active portfolios, a 

simple two-asset model was constructed made up of US stocks and bonds represented by the S&P 
500 Index and the Lehman Aggregate Bond Index, respectively. An initial 50/50 percentage mix 
was changed over time in a sine wave pattern as shown in Figure 1, and composite weighted re-
turns were calculated in each monthly data point based on monthly returns of the two indices. 
The annual turnover of this two-asset portfolio was set at 50%, which means that in every year 
50% of the portfolio was traded and the change from a 100% stock portfolio to a 100% bond 
portfolio occurred in a two-year term. Such turnover is considered reasonable for an average port-
folio.  
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Figure 1. Two-asset model portfolio.  

The composite return of the two-asset portfolio above  
 ( ) (1) (1) (2) (2)p

t t tr r r= β +β (12) 
was then used as input to the RBSA model (11). Both indices that had been used to construct the 
model portfolio were used as the only assets in the model. The chart in Figure 2 shows the results 
of estimation using the trailing 24-month moving window method1.
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Figure 2. 24-month trailing window regression.  

2.3 Exponential weighting  

The moving window technique described above has its limitations and deficiencies. The 
problem setup assumes that exposures are constant within the window, yet it is used to estimate 
their changes. Reliable estimates of model parameters can be obtained only if the window is suf-
ficiently large which makes it impossible to sense changes that occurred within a day or a month, 
and, therefore, such a technique can be applied only in cases where parameters do not show 
marked changes within it: const),...,,( )()1( ≅ββα n

sss , tsKt ≤≤−− )1( . In addition, such an ap-
proach fails to identify very quick, abrupt changes in investment portfolio exposures that can oc-
cur due to trading.  

An attempt to alleviate the problem with the moving window technique when applying it to 
the model (11) was made by Sharpe in [15]. He suggested assigning weights to the historical re-
turns used in constrained regression, so that the more recent returns had a larger effect on the ef-
fective asset mix. According to this method, the weights would gradually decrease within the es-
–––––––––––––––––––––––––––– 
1 Practitioners in such analyses typically use 36 or 24 monthly return observations, representing three or 

two years of performance history respectively.  
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timation window from the point of estimate (being the rightmost or the most recent data point) to 
the end of the window. The weight would decrease with "exponential decay", i.e., each weight 
would be equal to the preceding weight times a certain number 10 <δ< , usually called a decay 
factor. Though this method somewhat decreases the delay in detecting changes in exposure, the 
improvement is small and it is largely neutralized by an increase in the noise – random errors in 
evaluating the effective asset mix. Also, the same contradiction remained: when performing esti-
mation, the method assumed that the effective mix was constant within the window.  

2.4 Locally Weighted Regression (LWR) approach  

A better approach to deal with the problem of static coefficients in solving problem (11) was 
described in [16]. According to this methodology, the regression window that is used to estimate 
the effective asset mix was formed in each point of estimate based on the k -nearest neighbor 
rule. The method recognizes the fact that, for the purpose of estimating exposures at any such 
point in the past, observations on both sides of the point of estimate are equally important (if 
there's no other prior information). Therefore, the regression window would always include k ob-
servations that are closest in time to the point of estimate. Each data point within the window is 
assigned a weight decreasing exponentially from the estimation point to both edges of the win-
dow. For the most part, such a window would be centered around the estimation point. In the last 
available point all k nearest returns are the returns that immediately precede the point of esti-
mate.  

This is the only point where the effective asset mix estimated by this method coincides with 
the effective asset mix determined using Sharpe’s method, assuming, of course, that weights are 
assigned in a similar manner. In all other points the result is different because, according to the 
proposed method, the k returns include both returns that precede and returns that follow the 
point of estimate. The maximum accuracy of the proposed method is achieved in the points 
where approximately half of the k returns precede and the rest follow the point of estimate. In this 
case the window is “centered” around the point of estimate. The combination of the k -nearest 
neighbor algorithm with weights substantially improves the ability of the model to suppress noise 
and alleviate the lag in sensing changes in exposures.  

The method described above represents a class of local estimation methods and is called Lo-
cally Weighed Regression. For overview of such methods, see [17] and [18]. In our case, the "lo-
cality" of the model is time, and an exponent is used as the weight-function. In a more general 
case, different weight functions such as Gaussian can be used, depending on the nature of the re-
lationship of observations in adjacent points.  

The results of the analysis of the two-asset model portfolio (12) from the previous Section 
are shown in Figure 3. Note that the lag in exposure detection disappeared, and the results are 
much closer to the underlying weights than the ones produced by Sharpe’s method. The decay 
factor 0.86 we applied is the typical exponential decay that is used for analyzing (for example) 
mutual funds. A higher decay would lead to a better result in this specific two-asset case.  
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Figure 3. 4-month Locally Weighted Regression; decay factor = 0.86.  

2.5 Limitations in hedge fund analyses  

As was mentioned earlier, adding non-negativity constraints in the RBSA model (7) ad-
dresses practical prior information, reflecting the fact that most of the investment managers don’t 
take negative positions1 in assets, is crucial and two-fold: they represent valuable prior informa-
tion about parameter distribution which, in turn, also ensures stability of the dynamic effective 
mix when applied in the moving window approach. In the analysis of long-short strategies and 
most hedge funds, where money managers engage in significant leverage and often take short po-
sitions across all assets, the non-negativity bounds have to be either removed or relaxed. Typi-
cally, when the constraints are removed and the method is reduced to series of rolling ordinary 
regressions, the effective mix shows unexplainable swings in exposures from large negative posi-
tion in one period to large positive position in the next period.  

The limitations of the existing RBSA model described in this Section are often blamed on 
noise in the data. It should be clear by now that it's not the noise in the data that is responsible for 
poor estimation results, but the model itself. The moving window regression technique is just a 
trick, while a true time series estimation model is required for the portfolio exposure estimation. 
It is also desirable for such a model to incorporate some prior information about the portfolio 
structure, other than constraints on parameters. This will make such a model applicable to analy-
sis of portfolios with short positions, such as hedge funds.  

3 The general dynamic approach to investment portfolio analysis  

3.1 The dynamic multi-factor model  

For monitoring a portfolio for quick changes in investment allocation or investment style, 
deviations from investment mandate, etc., a time-varying multi-factor model, in particular, the 
dynamic RBSA model, is needed to represent the time series of portfolio returns. This can be 
achieved, for instance, by considering ( )p

tr in (7), as dynamically changing linear combination of 

–––––––––––––––––––––––––––– 
1 Negative positions are also called "short" positions. To engage in a short position in an asset, an investor 

borrows the asset from a broker and sells it in the market. Because the investor has to buy back the asset 
and return it to the broker, the amount of investment in the asset has a negative sign attached to it: if the 
asset increases in value, the investor loses. If, on contrary, the asset decreases in value, the investor's re-
turn will be positive in this investment.  
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a finite number n of time series of basic factors (1) ( )( , ..., )n T
t t tr r=r with unknown real-valued 

factor exposures Tn
ttt ),...,( )()1( ββ=ββββ and an unknown intercept term tα . However, in the RBSA 

model, both factor exposures and intercepts are subject to appropriate constraints ( , ) Zt t tα ∈ββββ , in 

the simplest case, the linear ones 1
1

)( =β∑ =
n
i

i
t , 0)( ≥β i

t :

( ) ( ) ( )

1

,

( , ) Z ,

n
p i i T

t t t t t t t t t
i

t t t

r r e e
=

 = α + β + = α + +

 α ∈

∑ rββββ

ββββ
(13) 

where te is the residual model inaccuracy treated as white noise1.
It is enough to consider the simplified regression model without the intercept term  

 

1
( ) ( ) ( )

1

,

Z ,

n
p i i T

t t t t t t t
i

t t

r r e e
+

=

 = β + = +

 ∈

∑ rββββ

ββββ
(14) 

in which tα is incorporated into the regression coefficient vector and, respectively, the vector of 
single factors is extended by an additional element equal to unity:  

 
(1) ( ) (1) ( ) ( 1)

(1) ( ) (1) ( ) ( 1)

( ,..., , ) ( ,..., , ) ,

( ,..., ,1) ( ,..., , ) .

n T n n T
t t t t t t t

n T n n T
t t t t t tr r r r r

+

+

 = β β α = β β β


= =r
ββββ

(15) 

The key to the new approach in estimating parameters of a time-varying multi-factor model 
lies in understanding its multi-criteria nature. On the one hand, the goal is to create a portfolio of 
generic factors that closely tracks the analyzed portfolio returns, what can be expressed as the in-
tent to maximize or minimize some numerical measure of consistency ( , ) max( )cons R B BΦ →  or, 
respectively, inconsistency ( , ) min( )incons R B BΦ →  of the factor exposures ),( TtB t ∈= ββββ , where 

T is the observation interval, with the observed portfolio returns ( )( , )p
tR r t T= ∈ .

On the other hand, there always exists some a priori information on the expected dynamics 
of the factor exposures ),( TtB t ∈= ββββ , which can be expressed as a numerical measure quantita-
tively assessing the likelihood )(BlikeΨ or unlikelihood )(BunlikeΨ of any supposed path B , so 
that the decision should be made by the condition )max()( BBlike →Ψ or, )min()( BBunlike →Ψ ,
respectively. The constraints of a much more general kind than Zt t∈ββββ can be incorporated into 
the likelihood or unlikelihood measure as  

 
( ) very small value

or ( ) very large value
like

unlike

B
B

Ψ = 
Ψ = 

for inadmissible realizations.  

Thus, this approach can be formulated as the multi-criteria optimization problem – maximiz-
ing (minimizing) the consistency (inconsistency) of the factor exposures dynamics with the ob-
servations and, at the same time, maximizing (minimizing) the a priori likelihood (unlikelihood) 
of it:  

–––––––––––––––––––––––––––– 
1 If periodic returns of assets or asset classes (1) ( )( , ..., )n T

t t tr r=r for the succession of time periods 
1,2,3,...t = are taken as the basic factors, the factor exposures ( )i

tβ have the sense of dynamic allocation 
of the portfolio cost over these assets or asset classes, computed at the beginning of each period t .
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( , )
max( )

( )
cons

like

R B
B

B
Φ 

→Ψ 
or   

( , )
min( )

( )
incons

unlike

R B
B

B
Φ 

→Ψ 
. (16) 

The main departure from the traditional approach is that the solution of this model containing 
)1( +nN unknowns has to be obtained at once. In contrast to the moving window approach, no 

assumptions are made here on the constancy or locality of the solution.  
However, the multi-criteria optimization is a problematic question in the optimization theory 

[19]. Actually, the notion of the Pareto optimal set is the only mathematically sound idea in solv-
ing that challenge, but it only excludes unacceptable versions without specifying the best deci-
sion. All other methods boil down to forming a linear combination of the given criteria and solv-
ing the resulting single-criterion problem. The question is how to choose the weights at each of 
the criteria when assembling the combined one.  

In the next Section, we propose a probabilistic view on the problem of investment portfolio 
analysis that gives a sound concept for balancing both parts of the combined criterion (16), and, 
what is especially important, that concept is formulated in the commonly adopted mathematical 
language of the probability theory and statistical decision-making.  

3.2 The problem of investment portfolio analysis as that of estimating the hidden 
component of a two-component random process  

We shall consider the unknown path of factor exposures ),( TtB t ∈β= as a realization of an 
unobservable random process. The information on the difference between “likely” and “hardly 
likely” paths, that is available before the time series of portfolio returns ( )( , )p

tR r t T= ∈ is ob-
served, will be expressed in the mathematical form of an a priori probability density )(BΨ ,

B∈B , where B is the set of all successions ( , )tB t T= ∈ββββ . To specify the a priori constraints 
it is enough to take the density )(BΨ which is positive only inside the admissible area 

BZ ⊆∈B and equals zero out of it:  

 
0, ,

( )
0, ,

B
B

B
> ∈

Ψ = ∉

Z
Z

( ) ( ) 1
B B

B dB B dB
∈ ∈

Ψ = Ψ =∫ ∫
Z B

. (17) 

Analogously, the model of forming the values of portfolio returns ( )( , )p
tR r t T= ∈ for the given 

succession of factor exposures ),( TtB t ∈β= is assumed to be known in the form of a condi-
tional probability density ( | )R BΦ over the set Y∈Y of all numerical successions 

( )( , )p
tR r t T= ∈ :

( | ) 0R BΦ ≥ , R∈R , ( | ) 1
R

R B dR
∈

Φ =∫
R

for all B∈B . (18) 

We shall call the densities [ ]( ), ( | )B R BΨ Φ  considered jointly the probabilistic portfolio 
model, as they express the available knowledge on the variety and likelihood of possible changes 
in the portfolio composition and its influence on the portfolio return.  

So far, the distinction between the portfolio model (17) and (18) and the general multi-
criteria approach (16) is no more than a terminological one, because the densities )(BΨ and 

( | )R BΦ are, by their nature, the likelihood measures )(BlikeΨ and ( , )cons R BΦ . If considered 
separately, they lead to the left version of the condition (16).  

The main idea of this work is to fuse the two single criteria into a combined one on the 
mathematically strict statistical basis of treating ),( TtB t ∈= ββββ and ( )( , )p

tR r t T= ∈ jointly as a 
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two-component random process ( , )B R completely defined by probability densities (17) and (18). 
Only the component Y is assumed to be observed, and it is required to find the best estimation 
operator ˆ( ) :B R →R B which provides the minimum error risk, i.e. minimum average distinc-
tion between the actual hidden value B and its estimate ˆ( )B R measured by the given loss func-
tion ˆ( , )B Bη .

For each estimation operator ˆ( )B R , the probabilistic model (17) and (18) completely deter-
mines the random variable ˆ[ , ( )]B B Rη . In the theory of statistical decision making, the mathe-
matical expectation of the loss function is called the average error risk [35]. Let E be the set of 
all operators { } { }ˆ ˆ( ) [ ( ), ]B B R R= ⋅ = ∈E R , then the error risk can be defined as a function on 

this set:  
 { }ˆ ˆ ˆ[ ( )] [ , ( )] [ , ( )] ( ) ( | )

R B

r B E B B B B R B R B dBdR
∈ ∈

⋅ = λ ⋅ = η Ψ Φ∫ ∫
R B

, E∈⋅)(B̂ . (19) 

It appears natural to choose the so-called Bayesian decision; namely, the estimation operator that 
affords the minimum risk:  
 )](ˆ[minarg)(ˆ

)(ˆ
⋅=⋅

∈⋅

∗ BrB
B E

. (20) 

Once this operator is found, it specifies the estimate of the hidden factor exposures dynamics for 
any observed succession of portfolio returns ˆ ( )B R∗ , R∈R . It remains only to solve the optimi-
zation problem (19-20) for the given model (17-18) and loss function ˆ( , )B Bη .

The product ( ) ( | )B R BΨ Φ in (19) is the joint probability density over the set of all realiza-
tions of the two-component random process ( , )B R . This density can be represented in two 
equivalent forms  
 ( , ) ( ) ( | ) ( ) ( | )Q B R B R B F R P B R= Ψ Φ = , (21) 
where ( )F R and ( | )P B R are, respectively, the marginal probability density over the set R of 
all realizations of the observable portfolio returns ( )( , )p

tR r t T= ∈ and the a posteriori probabil-
ity density over the set B of all versions of the hidden factor exposures paths ),( TtB t ∈= ββββ :

( ) ( ) ( | )
B

F R B R B dB
∈

= Ψ Φ∫
B

, ( ) ( | )( | )
( )

B R BP B R
F R

Ψ Φ= . (22) 

Substitution of the second version of the joint density (21) into (19) gives the equivalent 
form of the average risk:  

 ˆ ˆ[ ( )] ( ) [ , ( )] ( | )
R B

r B F R B B R P B R dB dR
∈ ∈

 
⋅ = η 

 
∫ ∫
R B

.

To solve the problem (20) means to assign the best value ˆ ( )B R∗ to each R∈R . It is clear that if 
R is fixed, ( )F R is also fixed, and the minimum error risk will be provided by minimizing the 
inner integral  
 

ˆ

ˆ ˆ( ) arg min ( , ) ( | )
B B

B R B B P B R dB∗

∈ ∈

= η∫
B B

. (23) 

This is the general form of the optimal estimation operator (20) for an arbitrary loss function 
ˆ( , )B Bη . Further specifications are possible only for particular kinds of loss functions and portfo-

lio models [ ]( ), ( | )B R BΨ Φ .
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3.3 The structure of the estimation operator for the singular loss function  

The structure of the simplest loss function is based on the notion of the Dirac delta-function 
ˆ( , )B Bδ :

ˆ

ˆ ˆ( , ) 1 ( , ),
ˆ ˆˆ ˆ ˆ ˆ( , ) 0 if , ( , ) 1 for any set such that

B B B B

B B B B B B dB B

η = −δ

δ = ≠ δ = ⊆ ∈∫
B

B B B . (24) 

We shall call this loss function the singular loss function. It corresponds to the “naive” desire to 
guess the hidden path ( , )tB t T= ∈ββββ absolutely exactly.  

We have for the singular loss function  
 ˆ ˆ ˆ( , ) ( | ) ( | ) ( , ) ( | ) 1 ( | )B B P B R dB P B R dB B B P B R dB P B Rη = − δ = −∫ ∫ ∫

B B B

,

hence, it follows from (23) that the estimation operator is the optimal one if it maximizes the 
a posteriori probability density:  
 ˆ ( ) arg max ( | )

B
B R P B R∗

∈
=

B
.

In accordance with the Bayes' formula (21), it follows that ( | )P B R = ( ) ( | ) ( )B R B F RΨ Φ ,
where the denominator does not depend on the sought variable B . Thus, the estimation operator 
can be put as  
 ˆ ( ) arg max ( ) ( | )

B
B R B B R∗

∈
= Ψ Φ

B
.

In the logarithmic form, the same criterion will have the equivalent form  

 
ˆ ( ) arg max ( ),

( ) log ( ) log ( | ),
B

B R J B

J B B B R

∗

∈

 =

 = Ψ + Φ

B or     
ˆ ( ) arg min ( ),

( ) log ( ) log ( | ).
B

B R J B

J B B B R

∗

∈

 =

 = − Ψ − Φ

B (25) 

We have come to a particular version of two parts in the combined criterion (16) and a statis-
tically sound way of balancing them. Despite the fact that the general form of the optimal estima-
tion operator (23) completely rests on the posterior probabilistic properties of the factor expo-
sures ( , )tB t T= ∈ββββ , there is no need to compute the posterior joint probability density ( | )P B R ;
it is enough to sum the logarithms of the a priori density )(BΨ and the conditional density 

( | )B RΦ .
The singular loss function evaluates the non-coincidence of the actual path ( , )tB t T= ∈ββββ

and its estimate ˆˆ ( , )tB t T= ∈ββββ over the entire time interval T , so it draws no distinction between 
errors at different time moments.  

Thus, the main computational difficulty of the portfolio analysis problem falls onto solving 
the optimization problem (25) with the sum of the model densities )(BΨ and ( | )B RΦ . This 
problem hardly lends itself to an easy computational solution, except special cases when the 
probabilistic model of the portfolio is assumed to possess some special properties. One of 
mathematics’ most studied classes of hidden processes (which offer a compromise between the 
simplicity of estimation procedures and the ability to represent real-world phenomena) is the 
class of Makov random processes [20]. The structure of the hidden Markov model of the portfo-
lio is presented in the next Section.  
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4 Hidden Markov models of the portfolio  

4.1 The first-order model  

An exhaustive representation of the probability density )( XP over all realizations of any 
random process ),...,1,( NtxX t == can be given by the product of conditional probability densi-
ties  

 1 1 1 1
2

( ) ( , 1,..., ) ( ) ( | ,..., )
N

t t t t
t

P X P x t N p x p x x x −
=

= = = ∏ . (26) 

The random process is said to possess the Markov property if its value at only one immediately 
precedent time moment occurs as an argument in each of the instantaneous conditional densities:  
 1 1 1( | ,..., ) ( | )t t t t t tp x x x p x x− −= . (27) 
The conditional probability densities 1( | )t t tp x x − are called the transition densities.  

The definition (27) is generic for the notion of a Markov random process. It places on the 
current value of the process the requirement to depend only on one immediately precedent value; 
therefore, random processes of such a kind are often called Markov processes of the first order.  

We define the first-order hidden Markov model of the portfolio as complex of the following 
two assumptions.  

Assumption 1. The unobservable random succession of factor exposures 
),...,1,0,( NtB t == ββββ that includes the initial value 0ββββ is considered a priori as a Markov ran-

dom process with known transition densities 1( | )t t t−ψ β ββ ββ ββ β :

0 0 0( ) ( ) ( | )B BΨ = ψ Ψβ ββ ββ ββ β , 0 1
1

( | ) ( | )
N

t t t
t

B −
=

Ψ = ψ∏β β ββ β ββ β ββ β β . (28) 

Assumption 2. The observable portfolio returns form a succession of conditionally inde-
pendent random variables ( )( , )p

tR r t T= ∈ each of which depends on only one current vector of 
factor exposures ( )( | )p

t t trϕ ββββ :

( )

1

( | ) ( | )
N

p
t t t

t
R B r

=

Φ = ϕ∏ ββββ . (29) 

Below, in Section  5, we shall show that the assumptions 1 and 2 immediately effect the sim-
plicity of the estimation operator for the singular loss function.  

4.2 Higher-order models  

Along with the notion of the Markov process of the first order (27), a more general definition 
is often used, especially in applied statistics, in accordance with which a random process is called 
a Markov process of the m th order if each current value of it depends on m immediately prece-
dent values:  
 1 1 1( | ,..., ) ( | ,..., )t t t t t t t mp x x x p x x x− − −= . (30) 

By analogy with the first-order hidden Markov model of the portfolio defined by assump-
tions 1 and 2, we shall use the notion of the m th-order hidden Markov model as that satisfying 
the following assumption:  

Assumption 1a. The unobservable random succession of factor exposures 
( , 1,...,0,1,..., )tB t m N= = − +ββββ , that includes n initial values 0 1( ,..., )m− +β ββ ββ ββ β  immediately prece-



19

dent to the observation interval 1,...,t N= , is considered a priori as a Markov random process of 
the m th order with known transition densities 1( | ,..., )t t t t m− −ψ β β ββ β ββ β ββ β β , so that 

0 0 1 1
1

( ) ( ,..., ) ( | ,..., )
N

m t t t t m
t

B − + − −
=

Ψ = ψ ψ∏β β β β ββ β β β ββ β β β ββ β β β β . (31) 

As to the assumption 2, there is no need to generalize it from the viewpoint of practical prob-
lems concerned with portfolio analysis.  

Assumptions 1a and 2 set off a much wider class of portfolio models than assumptions 1 
and 2. Of course, the optimal decision rules of portfolio estimation considered below in Section  5 
for the singular loss function will be somewhat more complicated in the case of higher-order hid-
den Markov models in comparison with the first-order model.  

4.3 Linear and nonlinear normal hidden Markov models  

4.3.1 First-order models  

4.3.1.1 The linear model of general kind  
The assumptions formulated in the previous Section state only the principal structure of the 

hidden Markov model of the portfolio (28)-(29), but the conditional densities 1( | )t t t−ψ β ββ ββ ββ β and 
( )( | )p

t t trϕ ββββ remain free. For it to be possible to put down the respective optimal estimation op-
erator in a computable form, these densities have to be defined concretely.  

The simplest form of a conditional distribution commonly adopted in mathematical statistics 
is the so-called linear normal model [21]. In this model, only the mathematical expectation of the 
random variable, which is assumed to be normally distributed, depends on the value of the argu-
ment, whereas the variance or, in the multidimensional case, the covariance matrix of it remains 
constant by the argument:  
 1 1M( | )t t t t t t t− −= + = +Vβ β β ε β εβ β β ε β εβ β β ε β εβ β β ε β ε , (32) 
where tεεεε is the vector white noise with covariance matrices tQ , and tV is a square matrix that 
determines the dynamics of the hidden process. The first-order portfolio model of such a kind 
will have the structure  

 

1
1 1 11 2 2

( ) ( ) 2
1 2 1 2

1 1( | ) exp ( ) ( ) ,
| | (2 ) 2

1 1( | ) exp ( ) ,
(2 ) 2

T
t t t t t t t t t tn

t

p p T
t t t t t tr r

−
− − −

  ψ = − − −  π  


 ϕ = − −  λ π λ 

V Q V
Q

r

β β β β β ββ β β β β ββ β β β β ββ β β β β β

β ββ ββ ββ β
 (33) 

where, in accordance with (15), tr and tββββ are successions of ( 1)n + -dimensional vectors of 
known factors and unknown factor exposures, ( )p

tr is succession of known portfolio returns. As 
predefined parameters of this model serve the square matrices tV [ ]( 1) ( 1)n n+ × + that determine 
the assumed, generally speaking, nonstationary linear dynamics of factor exposures, which is sta-
tionary if constt = =V V , the covariance matrices tQ [ ]( 1) ( 1)n n+ × + controlling the a priori 
variability of factor exposures, which, in the particular case, may be assumed to be constant 

constt = =Q Q , and the assumed variance λ of white noise te in (14).  
The choice of matrix parameters tV and tQ expresses the a priori view on the hidden dy-

namics of factor exposures, whereas the assumed value of the observation noise variance 2σ con-
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trols the balance between the a priori and observation-based information which will be fused in 
the estimate of the factor exposures ˆˆ ( , )tB t T= ∈ββββ : the less λ , the more reliance is placed on the 

immediate observation, i.e., the time series ( )( , ); 1,...,p
t tr t N = r , and vice-versa – greater values 

of λ shift the center of reliance to the a priori assumptions.  
In particular, the absence of a priori information on the interdependence between, on the one 

hand, the single hidden factor exposures (1) ( )( ,..., )n
t tβ β and, on the other hand, the intercept term 

( 1)n
t t

+α = β in (15) will be expressed as block-diagonal form of dynamic matrix 

tV [ ]( 1) ( 1)n n+ × + :

t
t T w

 
=  
 

W 0
V

0
. (34) 

It is hardly reasonable to take any other value of the scalar parameter w than 1w = , so, only ma-
trix tW )( nn× is to be chosen here. Most likely, it will be enough to take a diagonal dynamics 
matrix as (1) ( )Diag( ,..., )n

t t tw w=W , then  

 

(1)

( )

0 0

0 0
0 0 1

t

t n
t

w

w

 
 
 =  
  
 

V

�
� � � �
�
�

. (35) 

4.3.1.2 The general nonlinear model  
A more general kind of a normal conditional distribution is the nonlinear normal model, in 

which, just as in the linear normal model, only the mathematical expectation of the normally dis-
tributed variable depends on the argument, but this dependence is expressed by an arbitrary func-
tion. This kind of model is appropriate for the a priori Markov succession of hidden factor expo-
sures 1( | )t t t−ψ β ββ ββ ββ β , but is hardly necessary for the observation model ( )( | )p

t t trϕ ββββ :

[ ] [ ]1
1 1 11 2 2

( ) ( ) 2
1 2 1 2

1 1( | ) exp ( ) ( ) ,
| | (2 ) 2

1 1( | ) exp ( ) ,
(2 ) 2

T
t t t t t t t t t tn

t

p p T
t t t t t tr r

−
− − −

  ψ = − − −  π  


 ϕ = − −  λ π λ 

f Q f
Q

r

β β β β β ββ β β β β ββ β β β β ββ β β β β β

β ββ ββ ββ β
 (36) 

where 1 1
1( ) : n n

t t
+ +

− →f ββββ R R are appropriate vector functions. It is clear that the linear model (33) 
is a particular case of (36) with 1 1( )t t t t− −=f Vβ ββ ββ ββ β .

Like the diagonal version of the matrix of linear dynamics (35), the simplest version of func-
tion 1( )t t−f ββββ in the nonlinear model is a collection of individual functions for each factor expo-
sure (1) ( )( ,..., )n

t tβ β , whereas it is hardly reasonable to take a more complex model of the intercept 
term ( 1)n

t t
+α = β than the trivial equality ( 1) ( 1)

1
n n

t t
+ +

−β = β :

( )(1) (1) ( ) ( ) ( 1)
1 1 1 1( ) ( ), ... , ( ),

Tn n n
t t t t t t tf f +

− − − −= β β βf ββββ . (37) 

4.3.1.3 Fundamental nonlinearity of the dynamic RBSA model and its linear approximation  

In Sharpe’s original RBSA model (7), periodic return ( )p
tr is approximated by a return on a 

portfolio consisting of n kinds of market assets. The latter return is represented by a linear com-
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bination of periodic returns of the assets (1) ( )( ,..., )nr r under the assumption that such a portfolio 
remains unchanged within the estimation window. This fact is explained in Appendix 1.  

In the dynamic RBSA model (13), in contrast to Sharpe’s static model (7), the approximation 
portfolio's allocations are assumed dynamic, where the changes in allocations ( ) ( )

1
i i

t t−β −β can be 
explained by the following two factors:  

(a) changes in asset market values (or market prices); and  
(b) buying and selling of assets in the approximation portfolio.  
Although the approximation portfolio may have little in common with the portfolio or the in-

strument that it's designed to approximate1, we can still think of the approximation portfolio as an 
active portfolio, in which assets' quantities are bought and sold to get close approximation of the 
given return series. Let's denote prices and amounts (quantities) of each asset as ( )i

tx and ( )i
tm .

Even if the asset quantities ( )i
tm are changing very little (almost no trading or active changes in 

allocations of assets)  
 ( ) ( )

1
i i

t tm m −≅ , (38) 
the approximating portfolio’s asset fractional weights 

 
( ) ( )

( )

( ) ( )
1

i i
i t t

t n k k
t tk

m x
m x

=

β =
∑

will not be constant ( ) ( )
1

i i
t t−β ≠ β and will "drift" in time even if ( ) ( )

1
i i

t tm m −= , because the prices of 
assets are not constant ( ) ( )

1
k k

t tx x −≠ .

It is shown in Appendix 2 that ( )( ) ( ) ( ) ( ) ( )
1 1 1 11

(1 ) 1 ni i k k i
t t t t tk

r r− − − −=
β = + + β β∑ if ( ) ( )

1
i i

t tm m −= . Such a 

portfolio that doesn't involve any trading and the quantities of assets that are being held constant 
is called a "buy-and-hold" portfolio. Any portfolio that is not of the "buy-and-hold" kind will re-

sult in fluctuations in the differences ( )( ) ( ) ( ) ( ) ( )
1 1 1 11

(1 ) 1 ni i k k i
t t t t tk

r r− − − −=
 β − + + β β  ∑ , which we will as-

sume as random noise with zero mathematical expectation. Such approximation can be written as 
the first-order hidden Markov model of asset fractions dynamics:  

 
( )

( ) ( ) ( )1
1( ) ( )

1 11

1
1

i
i i it

t t tn k k
t tk

r
r

−
−

− −=

+
β = β + ε

+ β∑
. (39) 

Thus, nonlinear models of hidden dynamics like (36) are the only acceptable class of models for 
factor exposures (1) ( )( ,..., )n

t tβ β having the meaning of a portfolio’s cost distribution over the as-
sumed asset classes. 

If, in its turn, the noise is considered as a succession of normally distributed random vari-
ables, independent by t as well as by i , and if the a priori dynamics of intercept tα in 

(1) ( ) (1) ( ) ( 1)( ,..., , ) ( ,..., , )n T n n T
t t t t t t t

+= β β α = β β βββββ in accordance with (13)-(14) is accepted as  
 ( 1) ( 1) ( 1)

1
n n n

t t t
+ + +

−β = β + ε ,
we obtain the nonlinear portfolio model (36) with  

–––––––––––––––––––––––––––– 
1 The number of assets or factors is usually relatively small -- much smaller than the number of actual se-

curities in the portfolio, which can number thousands. 
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(1) (1)(1)
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1 ( ) ( )
1 11

( 1)
1

1( ) , 1,... ,
1

( ) 1,
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n
t t

rw i n
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−
−

− −=
+

−

+= =
+ β

=
∑

ββββ

ββββ

(40) 

and with an appropriate diagonal covariance matrix (1) ( 1)Diag( ,..., )n
t t tq q +=Q .

With matrix denotations  

 






= −
− 10

0)(
)( 1

1
t

t
ββββ

ββββ
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V ,
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1

1
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( ) 0
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0 ( )

t t
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t t
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−

−

−

 
 =  
 
 

W
�

� � �
�

ββββ
ββββ

ββββ
,

the dynamic RBSA model will obtain the form: 

 
[ ] [ ]1

1 1 1 1 11 2 2

( ) ( ) 2
1 2 1 2

1 1( | ) exp ( ) ( ) ,
| | (2 ) 2

1 1( | ) exp ( ) .
(2 ) 2

T
t t t t t t t t t t t tn

t

p p T
t t t t t tr r

−
− − − − −

     ψ = − − −     π  


 ϕ = − −  λ π λ 

V Q V
Q

r

β β β β β β β ββ β β β β β β ββ β β β β β β ββ β β β β β β β

β ββ ββ ββ β
 (41) 

This is a nonlinear normal Markov model of the first order. The nonlinearity of this model con-
sists in that matrices 1( )t t−V ββββ depend on the variables whose dynamics they express.  

From the computational point of view, linear models are always preferable because they lead 
to much simpler estimation operators than nonlinear ones. The nonlinearity of the dynamic 
RBSA model originates from the model of asset fractions dynamics (39). If, as first approxima-
tion, we replace ( ) ( )

1 11

n k k
t tk

r− −=
β∑ by ( )

1
p

tr − , the linear combination ( ) ( )
1 11

n k k
t tk

r− −=
β∑ will differ from the 

current portfolio return ( )
1
p

tr − (13) by the intercept term 1t−α and the noise term 1te − . If we choose 
to ignore this inaccuracy, we can approximate the asset fractions dynamics by the equation  

 
( )

( ) ( ) ( )1
1( )

1

1
1

i
i i it

t t tp
t

r
r
−

−
−

+
β ≅ β + ε

+
.

As a result, the coefficients in (40) ( ) ( ) ( )
1 1(1 ) (1 )i i p

t t tw r r− −= + +  will no longer depend on the vari-
ables 1t−ββββ , and the model as a whole will become linear (33) with  

 
0

0 1
t

t
 

=  
 

W
V ,

(1) ( )
1 1

( ) ( )
1 1

1 1
Diag , ... ,

1 1

n
t t

t p p
t t

r r
r r
− −

− −

 + +
=  + + 

W . (42) 

If such an approximation of the nonlinear model is not sufficient, the problem can be solved 
in a series of iterations of linear models, where the asset weights obtained as a solution on the 
previous step are used in the denominator of (39) on the next step.  

4.3.2 Higher-order models  
In accordance with assumptions 1a and 2 (Section  4.2), the linear equation of the hidden 

Markov process of order m , in contrast to (32), will have the form  
 1 ,1 1 ,M( | ,..., ) ...t t t t m t t t t m t m t− − − −= + = + + +V Vβ β β β ε β β εβ β β β ε β β εβ β β β ε β β εβ β β β ε β β ε , (43) 
in which the higher-order dynamics of the hidden process is determined by m square matrices 

,t jV , whereas tεεεε remains to be the normal vector white noise with covariance matrices tQ , just 
as in (32). Hence, we can put down the linear normal Markov model of the m th order as  
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( ) ( )1
1 , ,1 2 2 1 1

( ) ( ) 2
1 2 1 2

1 1( | ,..., ) exp ,
| | (2 ) 2

1 1( | ) exp ( ) .
(2 ) 2

Tm m
t t t t m t t j t j t t t j t jn j j

t

p p T
t t t t t tr r

−
− − − −= =

  ψ = − − −  π  

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∑ ∑V Q V
Q

r

β β β β β β ββ β β β β β ββ β β β β β ββ β β β β β β

β ββ ββ ββ β
 (44) 

Analogously, the nonlinear normal model of the m th order will be expressed by the notation  

[ ] [ ]1
1 1 11 2 2
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1 2 1 2
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−
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β β β β β β β β ββ β β β β β β β ββ β β β β β β β ββ β β β β β β β β

β ββ ββ ββ β
 (45) 

These two formulations explicitly show the complication of a higher-order model in comparison 
with the first-order one (33) and (36).  

4.4 Constrained normal hidden Markov models  

4.4.1 The basic principle of forming constrained hidden Markov models  

In accordance with (17), to impose some a priori constraint B∈ ⊂Z B upon the hidden 
random process originally defined by a probability density over the whole range B

)(BΨ , B∈B , ( ) 1
B

B dB
∈

Ψ =∫
B

,

we have to truncate this density by setting to zero its values outside the admissible area:  

 
(1 ) ( ), ,

( ) ( ) .
0, ,

c B B
B c B dB

B
Ψ ∈

Ψ = = Ψ ≠
∫Z
Z

Z

Z
(46) 

It is often enough to use the partial definition of the probabilistic model  

 
( ), ,

( )
0, ,

B B
B

B
∝Ψ ∈

Ψ = ≠
Z

Z
Z

(46a) 

where ∝ is the sign of proportionality, and thereby spare computing the normalization coeffi-
cient 1 c , which may turn out to be problematic, especially when the admissible area is a set of 
measure null and the integral in (46) equals zero.  

In contrast to the full definition of a constrained model (46)-(46a), Markov models define the 
hidden random process in an indirect way through a series of conditional distributions of its in-
stantaneous values (28). Introduction of the a priori constraint B∈ ⊂Z B into an already de-
fined full Markov model will be especially simple if the set Z of admissible realizations of the 
random process ( , 0,1,..., )tB t N= =ββββ is completely determined by the sets Zt of admissible in-
stantaneous values:  
 ( , 0,1,..., )tB t N= = ∈ββββ Z if  Zt t∈ββββ , 0,1,...,t N= .
In this case, it is enough to truncate the transition densities:  

 1
1

( | ), Z ,
( | )

0, Z .
t t t t t

t t t
t t

−
−

∝ ψ ∈
ψ = ∉

β β ββ β ββ β ββ β β
β ββ ββ ββ β

ββββ
(47) 

In this work, we shall use just this way of introducing constraints into hidden Markov models.  
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4.4.2 Equality and inequality constraints on factor exposures: Truncated normal hidden 
Markov models  

The most natural interpretation of factor exposures (1) ( )( ,..., )n
t tβ β in the combined vector 

(1) ( ) (1) ( ) ( 1)( ,..., , ) ( ,..., , )n T n n T
t t t t t t t

+= β β α = β β βββββ (15) is the distribution of the portfolio’s cost over the 
assets classes. If the portfolio is fully invested, the budget constraint must hold true at all time 
moments:  

 ( )

1
1

n
i

t
i=
β =∑ , t T∈ . (48) 

Other types of constraints typical for portfolio analysis are non-negativity bounds that represent 
the assumption that the portfolio manager is not involved in any significant short selling or hedg-
ing:  
 ( ) 0i

tβ ≥ , 1,...,i n= . (49) 
The constraints (48) and (49) imposed upon the unknown values of factor exposures express the 
major portion of a priori information about the sought path ( , )tB t T= ∈ββββ and are an integral 
part of the portfolio model.  

There is no specificity in the budget constraint (48), which is a particular case of a system of 
1k n< + linear equality constraints  

 t t t+ =F c 0ββββ , [ ]( 1)t k n× +F , k
t ∈c R . (50) 

Here Rank( )t k=F , i.e. tF are full-rank matrices, because otherwise the number of constraints 
could be decreased. The budget constraint (48) results from (50) with 1k = and  
 �(1,...,1,0)t

n

= =F F [ ]1 ( 1)n× + , 1t c= = − ∈c R .

Analogously, in the general case, a system of an arbitrary number l of linear inequality con-
straints may be imposed upon the vector of hidden variables (1) ( ) ( 1)( ,..., , )n n T

t t t t
+= β β βββββ :

t t t+ ≥G h 0ββββ , tG [ ]( 1)l n× + , l
t ∈h R . (51) 

The non-negativity constraints (49) are a particular case of (51) with l n= and  

 �Diag(1,...,1),t
n

 
= =   

 
G G 0 [ ]( 1)n n× + , n∈0 R , n

t = = ∈h h 0 R .

In the general case, constraints (50) and (51) cut off a succession of subsets 1Z n
t

+⊂R which 
have measure null if equality constraints are present. Application of the general principle (47) to 
(33) gives the truncated first-order linear normal model:  
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V Q V F c 0 G h 0

r

β β β β β ββ β β β β ββ β β β β ββ β β β β β
β ββ ββ ββ β

β ββ ββ ββ β

 (52) 

Respectively, the truncated nonlinear normal model results from (36):  
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 (53) 

5 Minimization of the error risk for the singular loss function:  
The optimization-based principle of estimating dynamic multi-factor 
models  

5.1 The general criterion of decision making  

For the Markov model of the portfolio (28)-(29), the optimal estimation operator (25) is de-
fined as the solution of the optimization problem which can be put down in two equivalent ver-
sions – either in the maximization or in the minimization form. In the statistical decision-making 
theory, the latter version is usually preferred:  

[ ] [ ]( )
1 0 0

1 1

ˆ ( ) arg min ( | ),

( | ) ( , 0,1,..., ) log ( | ) log ( | ) log ( ) .

B
N N

p
Y t t t t t t t

t t

B R J B R

J B R J t N r

∗

−
= =

 =



  = = = − ϕ + − ψ + − ψ 
∑ ∑β β β β ββ β β β ββ β β β ββ β β β β

 (54) 

The first item of the criterion ( | )J B R is responsible for matching of the factor exposures and 
portfolio return at each time moment individually, whereas the second and the third items express 
the a priori information on the unknown succession of factor exposures.  

The specificity of the Markov model displays itself in that the objective function is pair-wise 
separable, i.e., is the sum of partial functions, each of which depends on not more than two im-
mediately consecutive vectors of factor exposures. Optimization problems of such a kind invite 
for dynamic programming as the most appropriate computational principle of solving them 
[22,23]. The computational complexity of the dynamic programming procedure is proportional to 
the number of immediately adjacent variables, namely, 1N + in (54), and is provided by decom-
position of the original objective function of the full number of variables into a succession of in-
tervening function each of only one variable, that are to be minimized sequentially. However, in 
its classical form, the dynamic programming procedure is immediately applicable only if the goal 
variables take values from a finite set, which is not the case in the problems of portfolio analysis, 
in which the factor exposures (1) ( ) (1) ( ) ( 1)( ,..., , ) ( ,..., , )n T n n T

t t t t t t t
+= β β α = β β βββββ are continuous vari-

ables in principle.  
In any case, the numerical solution of the optimization problem (54) is impossible until the 

conditional probability densities 0 0( )ψ ββββ , 1( | )t t t−ψ β ββ ββ ββ β and ( )( | )p
t t trϕ ββββ are defined explicitly. In 

particular, the normality assumption on the hidden factor exposures within the bounds of the 
Markov model of the portfolio leads to the class of quadratic pair-wise separable objective func-
tions, for which, as it is shown in [24], there exists a parametric version of the dynamic pro-
gramming procedure that reconciles the exceptionally low computational complexity of the clas-
sical dynamic programming procedure with the continuous nature of factor exposures.  
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5.2 Normality assumption: Flexible least squares and generalized flexible least 
squares  

Under the normality and linearity assumption on the hidden Markov model of factor expo-
sures (33) and the additional assumption on the normality of the initial value 0ββββ

1
0 0 0 0 0 0 01 2 2

0

1 1( ) exp ( ) ( )
| | (2 ) 2

T
n

∗ − ∗ ψ = − − − π  
Q

Q
β β β β ββ β β β ββ β β β ββ β β β β ,

where 0
∗ββββ and 0Q are, respectively, the a priori mathematical expectation and a priori covariance 

matrix of 0ββββ , the summands in the general criterion (54) will become quadratic functions. If we 
double the natural logarithm of the right part of (33), omit summands that don’t depend on 

(1) ( ) ( 1)( ,..., , )n n T
t t t t

+= β β βββββ , and multiply the result by λ , we shall come to the following objective 
function:  
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1 1
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t t

t N J t N

J t N r ∗ ∗
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= =

 = = =

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∑ ∑r V U V U

β ββ ββ ββ β

β β β β β β β β β ββ β β β β β β β β ββ β β β β β β β β ββ β β β β β β β β β
 (55) 

where 1
t t

−=U Q are the inverse covariance matrices in the normal hidden Markov model (33). 
Here the term 0 0 0 0 0( ) ( )T∗ ∗− −Uβ β β ββ β β ββ β β ββ β β β expresses the eventual a priori knowledge on the initial 
value of the series of regression coefficients (1) ( ) ( 1)

0 0 0 0( ,..., , )n n T+= β β βββββ at the time moment 0t =
immediately preceding the start of observation. If no a priori assumption on this vector is avail-
able, we have to put 0 =U 0 , or, in the original probabilistic formulation of the model, to assume 
the a priori variances of independent elements ( )

0
iβ to be infinite 0 Diag( ,..., )= ∞ ∞Q , which is 

equivalent to the absence of this term:  
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 (56) 

In the opposite extreme case, when the initial vector of regression coefficients is completely 
known 0 0

∗=β ββ ββ ββ β , all the a priori variances equal zero, and, from the formal viewpoint, 

0 Diag( ,..., )= ∞ ∞U . But it is much more convenient to remove the third term from the criterion, 
consider 0 0

∗=β ββ ββ ββ β as a fixed parameter, cancel it from the set of variables, and minimize the crite-
rion with respect to the remaining regression coefficients ( , 1,..., ) mintJ t N= →ββββ .

The criterion of decision making (56) is known under the name of the Flexible Least Squares 
(FLS) method proposed by Kalaba and Tesfatsion [25,26,27] as a means of parameter estimation 
in dynamic linear regression models. The structure of this criterion explicitly displays the essence 
of the FLS approach to dynamic regression estimation as a multi-objective optimization problem. 
The first term is the squared Euclidean norm of the linear regression residuals 2

[1,..., ]|| ||Ne ,
( )p T

t t t te r= − r ββββ , responsible for the model fit (14), the second term is a specific squared Euclidean 
norm of the deviation of regression coefficients from the assumed dynamics 

2
[2,..., ] 1

|| || N T
N t t tt=

=∑ Uε ε εε ε εε ε εε ε ε , 1t t t t−= −Vε β βε β βε β βε β β (32), which is determined by the choice of the positive 

semidefinite matrices tU , whereas the positive weighting coefficient λ is to be chosen to balance 
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the relative weights between these two particular objective functions. If λ→∞ , the solution of 
(56) becomes very smooth, and approaches the ordinary least squares solution, while selecting λ
close to zero makes the parameters very volatile. Typically, the problem (56) is solved and pre-
sented for different values of parameter λ .

The unconstrained quadratic optimization problem (56) leads to a system of linear equations 
with respect to ( 1)( 1)n N+ + unknown regression coefficients 0 1( , ,..., )NB = β β ββ β ββ β ββ β β . In contrast to 
quadratic optimization problems of general kind, all the summands of the pair-wise separable ob-
jective function are functions of not more than two vector variables 1−tββββ and tββββ . The specificity 
of the linear equation system resulting from a pair-wise separable quadratic objective function is 
that its matrix is block-wise three-diagonal and, so, can be easily solved by the double-sweep 
method that has the linear computational complexity with respect to the number 1N + of vector 
variables, i.e. the length of the time series being analyzed. The size of the square blocks 
[ ]( 1) ( 1)n n+ × + to be inverted when solving this linear equation system is determined by the di-

mensionality of vector arguments 1n
t

+∈ββββ R . Since the number of operations required for invert-
ing a square matrix is proportional to the cube of its size, the computational complexity of the 
double-sweep method with respect to the number of elements in each vector tββββ will be cu-
bic 3( 1)n + .

If a more general nonlinear normal Markov model (36) is accepted, the FLS criterion will no 
longer be quadratic because of the nonlinear function 1( )t t−f ββββ occurring in the dynamics term:  

 [ ] [ ]( ) 2
1 1

1 1
( , 0,1,..., ) ( ) ( ) ( ) min.

N N
Tp T

t t t t t t t t t t t
t t

J t N r − −
= =

= = − + λ − − →∑ ∑r f U fβ β β β β ββ β β β β ββ β β β β ββ β β β β β  (57) 

In accordance with the above reasoning, we have omitted here the term responsible for the a pri-
ori knowledge on the initial value 0ββββ . To obtain the linear FLS criterion (56), it is enough to take 
the linear model of the hidden dynamics 1 1( )t t t t− −=f Vβ ββ ββ ββ β .

In the case of the normal linear Markov model of m th order (44), the FLS criterion (55) will 
obtain a more complicated form. First of all, it will contain, as variables, the vectors of regression 
coefficients at m time moments preceding the start of observation 1 0( ,..., )m− +β ββ ββ ββ β instead of only 
one vector 0ββββ . Secondly, the a priori information on these values needs a much more compli-
cated probabilistic description than in the first-order case. We assume that this information is un-
available and omit here this description:  

 ( ) ( )( ) 2
, ,1 1

1 1
( , 0,1,..., ) ( ) min.

N N Tm mp T
t t t t t t j t j t t t j t jj j

t t
J t N r − −= =

= =
= = − + λ − − →∑ ∑ ∑ ∑r V U Vβ β β β β ββ β β β β ββ β β β β ββ β β β β β  (58) 

In the opposite case, when the initial values 1 0( ,..., )m− +β ββ ββ ββ β are completely known, the criterion is 
to be minimized only by the regression coefficients within the observation interval 

( , 1,..., ) mintJ t N= →ββββ under the assumptions 1 1 0 0,...,m m
∗ ∗

− + − += =β β β ββ β β ββ β β ββ β β β .
The computational complexity of this problem with respect to the length of the time series to 

be analyzed remains linear (namely, proportional to 1N + ,) but it is cubic with respect to the or-
der m of the Markov model (becomes proportional to [ ]3( 1)n m+ instead of 3( 1)n + in the first-
order case.)  

A particular case of the criterion (58) was suggested by Lütkepohl and Herwartz under the 
name of Generalized Flexible Least Squares (GFLS) method [28]:  
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( ) ( )( ) 2
1 1, 1 1,1 1

1 1

2 2 2 2
1

( , 1,..., ) ( )

 ( ) ( ) min.

N N Tm mp T
t t t t t j t j t j t jj j

t t m
N

T
t t s t t s

t s

J t N r − −= =
= = +

− −
= +

= = − +λ − − +

λ − − →

∑ ∑ ∑ ∑

∑

r V U V

V U V

β β β β β ββ β β β β ββ β β β β ββ β β β β β

β β β ββ β β ββ β β ββ β β β
 (59) 

In this specific version of the multi-objective criterion, two different norms of the regression pa-
rameter variation are fused – namely, the norm based on a higher-order model of regression dy-
namics 2

1, [ 1,..., ] 1, 1 1,1
|| || N T

m N t tt+ =
=∑ Uε ε εε ε εε ε εε ε ε , 1, 1,1

m
t t j t jj −=

= −∑ Vε β βε β βε β βε β β , and that representing the variation at 

a single predefined value of the time lag 2
2, [ 1,..., ] 2, 2 2,1

|| || N T
s N t tt+ =

ε =∑ Uε εε εε εε ε , 2, 2t t t s−ε −V= β β= β β= β β= β β . Each of 
these norms is defined by the choice of the respective positive semidefinite matrix, respectively, 

1U and 2U , and weighting parameters 1λ and 2λ .
However, the FLS and GFLS methods discussed above are insufficient for estimating dy-

namic multi-factor models adequate for financial applications – first of all, because of the pres-
ence of constraints Zt t∈ββββ in the RBSA model (14). In the next Section, we consider modifica-
tions of these methods with respect to linear equality and inequality constraints, respectively, (50) 
and (51).  

5.3 Truncated normality assumption: The Constrained Flexible Least Squares 
(CFLS) method for Markov hidden models of the portfolio dynamics 

5.3.1 The first-order Markov CFLS  
To take into account the equality (50) and inequality constraints (51), the truncated normal 

Markov model (52) is to be used. Substitution of 1( | )t t t−ψ β ββ ββ ββ β into the general criterion (54) gives 
the same quadratic FLS criterion (56) additionally constrained by linear equalities and inequali-
ties:  

 ( ) 2
1 1

1 1

ˆ( , 0,1,..., ) arg min ( , 0,1,..., ),

( , 0,1,..., ) ( ) ( ) ( ) min,

,

t t
N N

p T T
t t t t t t t t t t t

t t

t t t t t t

t N J t N

J t N r − −
= =

 = = =

 = = − + λ − − →

 + = + ≥

∑ ∑r V U V

F c 0 G h 0

β ββ ββ ββ β

β β β β β ββ β β β β ββ β β β β ββ β β β β β

β ββ ββ ββ β

 (60) 

where 1
t t

−=U Q . We call this criterion of decision making the Constrained Flexible Least 
Squares (CFLS) method in contrast to the unconstrained Flexible Least Squares (FLS) criterion 
(56).  

The presence of linear constraints in the CFLS criterion (60) transfers the originally quad-
ratic optimization problem (56) into a much wider class of quadratic programming problems 
[29,30]. This problem cannot be solved by the computationally effective double-sweep method 
that essentially exploits the pair-wise separability of the quadratic objective function. The forced 
application of quadratic programming procedures of general kind to the quadratic programming 
problem (56) raises the computational complexity of the problem to the third power of the length 
of the time series 3( 1)N + in contrast to the linear computational complexity 1N + in the case of 
the unconstrained FLS criterion. All in all, the total computational complexity of the quadratic 
programming problem, if traditional quadratic programming procedures are applied, is propor-
tional to 3 3( 1) ( 1)N n+ + .
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5.3.2 Higher-order Markov CFLS  
The structure of the CFLS criterion (60) remains, actually, the same for Markov models of 

higher orders:  

 ( ) ( )( ) 2
, ,1 1

1 1

( , 0,1,..., ) ( ) min,

, .

N N Tm mp T
t t t t t t j t j t t t j t jj j

t t

t t t t t t

J t N r − −= =
= =

 = = − + λ − − →

 + = + ≥

∑ ∑ ∑ ∑r V U V

F c 0 G h 0

β β β β β ββ β β β β ββ β β β β ββ β β β β β

β ββ ββ ββ β
 

What is different here is only the computational complexity of the quadratic programming prob-
lem, which, in addition to the cubic complexity with respect to the length of the time series and 
the number of factors 3 3( 1) ( 1)N n+ + , is cubic also with respect to the order of the Markov 
model 3m .

6 Parameter adjustment in the FLS and CFLS model  

6.1 Parameters of the FLS and CFLS criteria of decision making  

The FLS (56) and CFLS (60) criteria of decision making, based on the linear normal hidden 
Markov model of the portfolio (33), contain, as parameters, matrices of the assumed linear dy-
namics tV [ ]( 1) ( 1)n n+ × + , inverse covariance matrices of the normal Markov model 

1
t t

−=U Q [ ]( 1) ( 1)n n+ × + and the variance of observation noise 2σ . Whereas the dynamics ma-
trices tV are, as a rule, determined by some principal assumptions on the portfolio, as is the case 
with the RBSA model (42), it is hard to find firm a priori reasons for the choice of covariance 
matrices controlling the a priori variability of factor exposures and the intensity of the observa-
tion noise responsible for the inaccuracy of the multi-factor model (13). On the force of this cir-
cumstance, positive semidefinite matrices tU and positive number 2σ are to be considered as 
free parameters of the decision rule which are to be chosen by the user.  

The structure of the objective function in (56) and (60) explicitly displays its two-criteria na-
ture: it is required, on the one hand, to find a portfolio ( , 1,..., )t t N=ββββ that tracks the analyzed 

returns as closely as possible ( ) 2
1
( ) minN p T

t t tt
r

=
− →∑ r ββββ , and, on the other hand, to minimize the 

a priori unlikelihood of the portfolio dynamics 1 11
( ) ( ) minN T

t t t t t t tt − −=
− − →∑ V U Vβ β β ββ β β ββ β β ββ β β β . The 

balance between these two mutually contradictory requirements is controlled by the parameter 
0λ > : the greater λ , the more preference is given to the latter goal at the price of partially sacri-

ficing the former one.  
It is hardly reasonable to take other kinds of matrices tU than diagonal ones 

(1) ( ) ( 1)Diag( ,..., , )n n
t t t tu u u +=U , 0)( ≥i

tu :
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. (61) 
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It is well seen from (56) and (60) that the minimum point of the objective function depends on 
the products tλU but not on the individual values of λ and tU ; therefore, only ratios between 
values of ( )i

tu in each matrix are of significance. As a rule, it is enough to retain the same matrix 

t =U U over the entire time interval ( ) ( )i i
tu u= . An exception is the need to determine structural 

breaks in factor exposures, which is considered below in Section  7.
When matrices tU are fixed, the value of λ in (60) determines a class of models in which a 

specific model 0 1
ˆ ˆ ˆ( , ,..., )Nβ β ββ β ββ β ββ β β is to be chosen by minimizing the respective objective function. 

From this point of view, the choice of λ is the choice of a class of models, such that the smooth-
ness degree of the succession of factor exposures would be most adequate to the observed time 
series ( )( ) ( )

1 1( , ),...,( , )p p
N Nr rr r .

If the value of smoothness parameter λ is taken too small, each local final estimate of the 
hidden vector of factor exposures ˆ

tββββ will be inferred from a too-small number of neighboring 
observations ( )( , )p

t tr ±τ ±τr at the left and the right of the current time moment, which will result in a 

noisy succession of estimated vectors of factor exposures 0 1
ˆ ˆ ˆ( , ,..., )Nβ β ββ β ββ β ββ β β , because local distur-

bances will be insufficiently suppressed. On the other hand, too large values of the smoothing 
parameters will suppress natural oscillations of the hidden succession of factor exposures along 
with suppressing the observation noise.  

Typically, researchers present solutions of a large number of optimizations for various values 
of parameters, where such parameters belong to a multi-dimensional grid. The results 

0 1
ˆ ˆ ˆ( , ,..., )Nβ β ββ β ββ β ββ β β are then visually evaluated for consistency. For example, in [28] the authors take 

three values 10-3, 1 and 103 for adjusting one smoothing parameter.  
The most commonly used measure of regression model fit is its coefficient of determina-

tion 2R . This coefficient was computed by Sharpe in his work [13] as the proportion of the port-
folio volatility explained by systematic exposures using the moving window technique (Section 
 2.2). In the terms of FLS (56) and CFLS (60) criteria, the coefficient of determination will be ex-
pressed as the ratio  

 
( ) 2 ( ) 2 ( ) 2

2 1 1 1
( ) 2 ( ) 2

1 1

ˆ ˆ( ) ( ) ( )
1

( ) ( )

N N Np p T p T
t t t t t t tt t t

N Np p
t tt t

r r r
R

r r
= = =

= =

− − −
= = −∑ ∑ ∑

∑ ∑
r rβ ββ ββ ββ β

. (62) 

However, by shortening the window size it is easy to drive 2R to 100% and, at the same time, 
obtain highly volatile, meaningless exposure estimates. Likewise, in the FLS and CFLS ap-
proach, the more weight that is put on the fit-estimation term, the higher is 2R , so that 2R =100% 
can be obtained easily by assigning a very small value to parameter λ , which will result in per-
fect model fit. Therefore, 2R is not an appropriate measure of the model adequacy.  

The major reason for such inadequacy of the 2R statistic is that it uses the same data set for 
both estimation and verification of the model, whereas for the purpose of evaluating the ability of 
a model to predict (forecast), the observation data sample has to be split into two sets – the esti-
mation set and a test set. However, this way is applicable only when the amount of available data 
is twice as large as is required for reliable estimation and reliable verification.  

In the next Section, we consider an alternative method of verification of the model and 
choosing its parameters that is based on a trade-off between two mutually contradictory require-
ments to the size of the data set – to be large enough as for estimation as well as for testing.  



31

6.2 The Cross Validation (CV) principle of model adequacy verification  

One of the most commonly used versions of the Cross Validation method was suggested by 
Allen [31] under the name of Prediction Sum of Squares (PRESS) statistic. According to this 
method, an observation is removed from the sample, the model is evaluated on the remaining ob-
servations, and the prediction error is calculated on the removed observation. This procedure is 
then repeated for each observation in the sample, and the sum of squared errors is computed.  

The Cross Validation principle is widely adopted in data analysis [32,33,34], including pat-
tern recognition, where it is known under the name of the “leave-one-out” procedure [35].  

As applied to verification of the accuracy of an FLS or CFLS model, the essence of the Cross 
Validation principle can be explained as the idea to assess the adequacy of the given model by 
estimating the variance of the residual noise ( )D e in (13)-(14) and comparing it with the full 

variance of the goal variable ( ) 2
1

( ) (1 ) ( )N p
tt

D r N r
=

= ∑ . But, when computing the error at a time 

moment t , it is incorrect to use the estimate tββββ̂ obtained by minimizing the criterion (56) or (60) 

with participation of the observation at this time moment ( )( , )p
t tr r , because the resulting value  

 ( ) 2

1

1 ˆˆ ( ) ( )
N

p T
t t t

t
D e r

N =
= −∑ r ββββ

will inevitably be less than the actual noise variance ( )D e . The CV principle leads to the follow-
ing procedure that provides a correct estimate of the observation noise.  

In the full time series ( )( ) ( )
1 1( , ),...,( , )p p

N Nr rr r , single elements Nt ,...,1= are skipped one by 

one ( )( ) ( ) ( ) ( )
1 1 1 1 1 1( , ),...,( , ), ( , ),..., ( , )p p p p

t t t t N Nr r r r− − + +r r r r , each time by replacing the sum 
( ) 2

1
( )N p T

t t tt
r

=
−∑ r ββββ in (56) or (60) by the truncated sum ( ) 2

1,
( )N p T

s s ss s t
r

= ≠
−∑ r ββββ , and the optimal 

vector successions ( ) ( )
1

ˆ ˆ( ,..., )t t
Nβ ββ ββ ββ β are found, where the upper index ( )t means that the observation 

( )( , )p
t tr r was omitted when computing the respective estimate. For each t , the instantaneous 

squared prediction error is calculated using the respective single estimate ( ) 2( ) ( )ˆ( )p t T
t t tr − rββββ . The 

cross-validation estimate of the noise variance is found as the average over all the local squared 
prediction errors  

 ( )2( ) ( )

1

1 ˆˆ ( ) ( )
N

p t T
CV t t t

t
D e r

N =
= −∑ rββββ . (63) 

The less ˆ ( )CVD e , the more adequate is the model with the given succession of smoothing matri-

ces 1( ,..., )NU U to the observed time series ( )( ) ( )
1 1( , ),...,( , )p p

N Nr rr r .

The cross-validation estimate of the residual noise variance ˆ ( )CVD e can be further scaled to 
make it comparable across different analyzed portfolios or instruments. We suggest the cross-
validation statistic  

 
(1,..., ) (1,..., )

2
ˆ ˆ( ) ( ) ( )1
( ) ( )

N ND r D e D ePR
D r D r
−= = − (64) 

which we call Predicted R-squared. Note that it is computed similarly to the regression R-
squared statistic (62). 
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6.3 Adjustment of the smoothness level  

Note that the cross validation statistic ˆ ( )CVD e discussed above is a function of smoothing pa-
rameter λ , such that ˆ ˆ( ) ( | )CV CVD e D e= λ . Choosing different values of λ for the objective func-
tion (56) or (60) results, in general, in different solutions, different predictions and therefore, dif-
ferent prediction errors.  

We suggest a method of determining optimal model parameters that consists in processing 
the given time series ( )1 1( , ),..., ( , )N Ny yz z several times with different tentative values of λ .
Each time, the model adequacy is assessed by the averaged squared prediction error (63) esti-
mated by the cross validation procedure. The value ∗λ that yields the minimum prediction error 
is taken as the smoothing parameter recommended for the given time series:  
 ˆ( ) arg min ( | )CVD e∗

λ
λ = λ .

It should be noted that the selection of model parameters through minimizing the prediction 
error makes this method a version of the James-Stein estimator producing the smallest prediction 
error [32].  

6.4 Application to the two-asset model portfolio  

We will now apply the methodology developed above to the model two-asset portfolio (12) 
described in Section 2 and shown in Figure 1. The analysis was performed using three different 
values of the smoothness parameter λ= 10, 1, 0.1. The results are shown in Figures 4, 5, and 6. 
Note that the last analysis with 0.1λ = provides a nearly identical replication of the model port-
folio.  

Below in Table 1 we present the levels of both R-squareds: the standard coefficient of deter-
mination and the Predicted R-squared for the sine-wave two-asset test. The value of smoothness 
equal to 0.1 provides the best solution based on the Predicted R-squared value, which corre-
sponds to what we observed from Figure 6.  

Cross validation methodology described in the current Section provides the framework for 
selecting optimal smoothness parameters. We have defined the optimal smoothing parameter λ
for a given model as the one providing the smallest prediction error or, equivalently, the highest 
Predicted 2R . Note that in the example above the most accurate result corresponded to the model 
with the highest Predicted 2R . At the same time, the number of computations performed for dif-
ferent values of λ was relatively small. The simplest way to find a global optimal parameter 
value is to perform a large number of such computations over a certain grid of values of parame-
ter λ and select the one producing the highest Predicted 2R . An alternative would be to use an 
iterative gradient method to find the optimal smoothness parameter.  

In Figure 7, we show a chart with Predicted 2R values for 100 solutions of the two-asset dy-
namic model problem in Figure 1 obtained for 100 values of the smoothness parameter λ . We 
plot parameter values along the logarithmic axis µ , so that (10 5)10 µ−λ = and 0 1≤ µ ≤ . The maxi-
mum Predicted 2R value is attained at the log-smoothness value 0.3µ = corresponding to 

0.01λ = . Note that the global maximum is not very pronounced, and there is a range of smooth-
ness values between 0.2 and 0.4 producing about the same result.  
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Figure 4. Two-asset model: λ=10.  
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Figure 5. Two-asset model: λ=1.  
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Figure 6. Two-asset model: λ=0.1.  

Table 1. Two-asset model. Predicted R-squared values.  

Smoothness R-squared Predicted 
R-squared 

10 98.89% 97.74% 
1 99.97% 99.73%

0.1 100.00% 99.95% 
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Figure 7. Two-asset model: Smoothness parameter selection.  

7 Determining structural breaks in factor exposures  

7.1 Structural changes in dynamic models  

One of the most important applications of dynamic models lies in determining points of 
abrupt changes in factor exposures. For example, for anyone analyzing investment portfolios, the 
knowledge about timing and the scale of such changes is very important because such breaks can 
be caused by massive and rapid changes in positions due to a change in strategy or in manage-
ment. It is especially important in analyses of hedge funds because the latter, not having any re-
strictions on using derivatives, can change the entire portfolio virtually overnight.  

For the reasons outlined earlier, the traditional window-based methodology is unable to de-
tect abrupt changes in investment style and/or asset allocation. When such a change in portfolio 
structure occurs within a few data points, the current estimation technique indicates a gradual 
change spanning all the estimation windows containing the points of the structural change. To 
illustrate this concept we use the same example as the one presented in [36] where the authors 
created a portfolio of two assets: Russell 1000 Growth Index and Russell 1000 Value Index, with 
their weights representing a "step" function as shown in Figure 8.  
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Figure 8. Two-asset model with a "step".  
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The weights of the model portfolio are defined as follows: first 23 months from Nov-87 
through Sep-89 the portfolio maintains a constant 70/30 percentage breakdown between Growth 
and Value indices, and starting from Oct-89 through Nov-91 maintains a 50/50 allocation to the 
indices. Similar to the example in the previous Section, a composite return series was created us-
ing the given weights and monthly index returns and then used Sharpe's RBSA with the same 
Growth and Value indices that were used in its construction to estimate original weights. Noise 
was added neither to the weights nor to the composite return series. The resulting effective mix 
for a 24-month estimation window is shown in Figure 9.  
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Figure 9. Two-asset "step" model: 24-month RBSA result.  

The result is indicative of the problems inherent in the moving window RBSA: the abrupt 
change in the strategy is depicted as gradually changing allocations with the correct 50/50 split 
happening only 2 years after the fact, when the entire estimation window is eventually located in 
the 50/50 portion of the composite return history. 

7.2 The jump map and Structural Breakpoint Ratio (SBR)  

The method of preserving structural breaks in the primarily smooth path of factor exposures, 
which is proposed in this work, is based on the fact that if the parameters ( )i

tu of the smoothness 
matrices tU (61) take essentially smaller values at a single time moment than over the surround-
ing interval  
 ( ) ( )i i

t su u� at s t< and s t> ,
the factor exposures 1t−ββββ and tββββ will be estimated almost independently of each other. In particu-
lar, they will be estimated completely independently and completely preserve, thereby, the even-
tual break, if ( ) 0i

tu = .
Let the positions of breaks { , 1,..., }jT t j k∗ ∗= =  be called the jump map. If we knew the jump 

map, we should take the succession of smoothness matrices (1) ( ) ( 1)Diag( ,..., , )n n
t t t tu u u +=U with 

much lesser values ( )i
tu at t T ∗∈ than at other points t T ∗∉ , and solve the problem (56) or (60). 

At the moments of breaks legitimated in the jump map, the relatively small diagonal elements of 

t∗
U will prevent, at least partially, the averaging of the factor exposures. But the number and po-
sitions of eventual jumps are unknown in the general case, and the jump map is subject to estima-
tion along with the factor exposures.  

Let ( )iu be the basic parameters of the smoothness matrices that guarantee the “normal” rela-
tively high degree of smoothing the factor exposures, and ( ) ( )i iu u∗ < be sufficiently lower values 
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that are meant to provide preserving eventual breaks. Further, let T ∗ be the assumed jump map, 
and  
 ( )(1) ( ) ( 1) (1) ( ) ( 1)Diag( ,..., , ) at ; Diag( ,..., , ) atn n n n

t t t t t t t tT
u u u t T u u u t T∗

+ ∗ ∗ ∗ ∗ + ∗= = ∉ = ∈U UU
be the respective succession of smoothness matrices. If we extend the jump map by an extra 
break { }tT T t∗ ∗=� ∪ at some point t T ∗∉ , the minimum of the criterion (56) or (60) 

ˆ( , 0,1,..., | )
t

t T
J t N ∗= �Uββββ computed with the extended jump map will be less that the minimum of 

the initial criterion ˆ( , 0,1,..., | )t T
J t N ∗= Uββββ . We shall call the value  

 , 0,1,...,
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t Tt N
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t Tt N

J t N

J t N

∗

∗

=

=

=
ρ = ≥

= �

ββββ

ββββ

ββββ

ββββ

U
U (65) 

the Structural Breakpoint Ratio (SBR). The greater tρ , the more likely is the hypothesis of the 
presence of a not yet legitimated break at the pair of adjacent points ( 1, )t t− .
The values tρ appear to be appropriate measures of the local “strain” in the estimated hidden 
process when the model is attempting to adjust it to the observed time series without jump at the 
current pair of points. A visual or analytical analysis of SBR values can be used to determine one 
or several possible breaks. Specifically, the most stressed pair of adjacent points ( 1, )t t∗ ∗−
should be considered as the position of a possible structural shift if the maximal SBR value ex-
ceeds a preset threshold 1>h :

1,..., ,
arg max

t
t

t N h
t∗

= ρ >
= ρ . (66) 

If the condition t hρ > is not met at any time moment, then there are no additional breakpoints in 
the succession of factor exposures.  

7.3 Multistage estimation of the jump map  

In this work, we propose a method of multistage estimation of the jump map. Let T ∗ be 
known up to a number of breaks which still remain to be found. Let us compute SBR tρ (65) se-
quentially for all the points 1,...,t N= and check the condition (66). Note that this condition may 
be met only at a point where no jump had been found at the previous stages of processing, so, 
t T ∗∉ , and the matrix tU in 

T ∗U is still a matrix with large diagonal elements 

Diag( ,..., , )t u u uβ β α=U which present the normal smoothing degree of the hidden process. This 
point is to be added to T ∗ , i.e. the “old” matrix tU is to be replaced in 

T ∗U by the matrix 

Diag( ,..., , )t u u u∗β ∗β ∗α=U with small diagonal values to mark the position where the smoothness 
is to be broken.  

The procedure starts with the initial empty jump map T ∗ which presupposes no jumps, and is 
to be repeated again and again, each time with renewed T ∗ and 

T ∗U , while the most stressed 
point satisfies the condition (66).  
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7.4 Application to the model "step" portfolio 

As an example of application of the breakpoint methodology developed in the current Sec-
tion, we present below results of the analysis for the model two-asset step portfolio shown in Fig-
ure 8. First, we perform analysis of the composite return series and determine the optimal 
smoothness, using an algorithm described in previous Section. The result of this analysis is 
shown in Figure 10.  
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Figure 10. The "step" portfolio: CFLS analysis with optimal smoothness.  

Note that we already get significant improvement as compared to the moving window RBSA 
– the timing of the shift is placed correctly in Oct-89 and the transition takes only a few months 
vs. years for RBSA (compare to Figure 9). Next, we will run a breakpoint analysis for the entire 
time interval and present results in Figure 11.  
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Figure 11. The "step" portfolio: breakpoint analysis.  

On the Y-axis of this chart we plot the percentage of the objective improvement relative to 
the original CFLS performed on the first step. The improvement in the objective is measured by 
relaxing the smoothness penalty in each month shown on the X-axis and performing the CFLS 
with the new objective.  The breakpoint function attains maximum in Oct-89 where the objective 
is decreased by 100%. Evidently, this means that by allowing unlimited turnover in this point we 
attain the perfect fit, where the corresponding "relaxed" CFLS results in the following effective 
mix (Figure 12) which is a perfect replication of the original model.  
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Figure 12. The "step" portfolio: CFLS analysis with relaxed fit.  

8 Applications 

Below we present several examples of applications of the dynamic multi-factor methodology 
developed in previous sections to real-life portfolios using public data from U.S. financial mar-
kets. The analyses presented below involve mutual funds, representing portfolios of financial in-
struments that are publicly available for investment by individuals as well as institutions such as 
public and corporate pension funds, foundations and endowments. As of February 2004, there 
were over 9,000 mutual funds with about 86 million investors and $7.6 trillion in assets1. Because 
of their huge importance for the US investment industry and pensions, mutual funds are tightly 
regulated by the U.S. government bodies such as the Security and Exchange Commission (SEC)2.
One of the aspects of this regulation is the requirement for mutual funds to disclose their hold-
ings, i.e., listings of securities held in portfolios and their respective market values to the SEC on 
a regular basis – quarterly and/or semiannually. A historical collection of such reports is then pro-
vided by the SEC to the public in the form of a searchable database called EDGAR. Mutual fund 
prices are publicly available from financial publications such as The Wall Street Journal,
Barron's, etc., and online resources such as Yahoo, Inc. at http://finance.yahoo.com .

Our analysis below is presented as follows: we are using monthly or daily mutual fund re-
turns, i.e., relative periodic price changes, as inputs for our model to recover hidden information 
about dynamics of the portfolio structure, e.g., changes in its asset and/or economic sector alloca-
tions. These returns are the only piece of information pertaining to mutual funds that is used in 
our analyses. We then compare the results of our analysis for accuracy with the actual allocation 
information obtained from the SEC and other public sources. 

 

8.1 Fidelity Magellan Fund  

8.1.1 RBSA with monthly data 1995-1996  
Fidelity Magellan Fund is the largest and the most prominent fund in the U.S. mutual fund 

industry. Most of its success is attributed to Peter Lynch, a legendary money manager and stock 
picker. In October 1995, Jeffrey Vinnik, then current manager of the largest $50B fund, sharply 

–––––––––––––––––––––––––––– 
1 Source: "Trends in Mutual Funds Investing February 2004", Investment Company Institute (ICI), Wash-

ington, DC, March 30, 2004, www.ici.org. The Investment Company Institute (ICI) is the national asso-
ciation of the U.S. investment company industry.  

2 U.S. Securities and Exchange Commission, www.sec.gov .
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cut its holdings in stocks – technology stocks in particular1. More stock sell-off continued 
through mid-1996, and the fund performance suffered as a result because the market didn't fall as 
the manager had expected, and in June 1996 Vinnik resigned. The new fund manager Robert 
Stansky quickly liquidated bond positions and by the end of 1996, Magellan Fund was back  over 
90% in stocks.  

Allocation history of the fund obtained from public sources2 is presented in Table 2 and in 
Figure 13 below:  
 

Table 2. Fidelity Magellan: Publicly Available Allocation Data.  

 Sep-94 Mar-95 Sep-95 Nov-95 Feb-96 Mar-96 Apr-96 Jul-96 Aug-96 Sep-96 Mar-97 

Cash-other 2.6% 1.3% 3.2% 6.7% 15.6% 10.7% 9.90% 1.6% 4.3% 1.2% 3.9%

Bonds 0.9% 0.4% 2.9% 11.6% 19.4% 19.0% 19.20% 15.6% 11.8% 9.8% 0.1%

Stocks 96.5% 98.3% 93.9% 81.7% 65.0% 70.3% 70.80% 82.8% 83.9% 89.0% 96.0%
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Figure 13. Fidelity Magellan: Public Data.  
 
The chart provides a convenient view of the allocation history of the fund with the quarterly 

time-line represented by the X-axis. The asset allocations of the fund for each time period are 
"stacked" over each other along the Y-axis adding up to 100% and, therefore, filling the entire 
area of the chart. 

In Table 33 we show the list of publicly available generic asset indices3, which we use for 
the analysis of the Magellan fund. For example, Russell Indices represent the top 3000 largest US 
stocks divided into three groups according to their size (sorted by market capitalization): top 200, 

–––––––––––––––––––––––––––– 
1 "Market Place: Magellan Shifted From Technology in November", The New York Times, January 12, 

1996. 
2 Source: www.fidelity.com in 1995-1997. EDGAR database at www.sec.gov.
3 Source of monthly returns: Fidelity Magellan Fund – Morningstar, Inc.; Russell Equity Indices - Frank 

Russell Company, www.russell.com; MSCI EAFE Index – Morgan Stanley Capital International, 
www.msci.com; Lehman Aggregate Bond Index – Lehman Brothers, www.lehman.com; Cash Index – 
90-day T-Bill Index (Merrill Lynch Fixed Income Research), www.ml.com.
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mid 800 and smaller 2,000 stocks. Each of these groups is then divided according to certain crite-
ria into two groups of so-called growth and value stocks and the resulting 6 portfolios are then 
"capitalization-weighted", i.e., each stock in each portfolio is getting weight proportional to its 
market size, or capitalization.  

 

Table 3. Asset Indexes.  

 Asset Index Description 

1 Large Growth U.S. Stocks Russell Top 200 Growth Index An index of growth oriented stocks among the 
200 largest U.S. stocks.  

2 Large Value U.S. Stocks Russell Top 200 Value Index An index of value oriented stocks among the 
200 largest U.S. stocks. 

3 Mid Cap Growth U.S. Stocks Russell Midcap Growth Index An index of growth oriented stocks among the 
next 800 largest U.S. stocks. 

4 Mid Cap Value U.S. Stocks Russell Midcap Value Index An index of value oriented stocks among the 
next 800 largest U.S. stocks 

5 Small Cap Growth U.S. Stocks Russell 2000 Growth Index An index of growth oriented stocks among the 
next 2000 largest U.S. stocks. 

6 Small Cap Value U.S. Stocks Russell 2000 Value Index An index of value oriented stocks among the 
next 2000 largest U.S. stocks. 

7 Foreign Stocks MSCI EAFE Index 

A broad equity market benchmark of developed 
countries outside U.S. Covers hundreds of 
issues in 20 European and Asian country mar-
kets. 

8 U.S. Bonds Lehman Aggregate Bond 
Index 

A broad US Fixed Income benchmark consist-
ing of about 7,000 issues: US Treasuries, Cor-
porate Bonds, Asset and Mortgage-backed 
securities. 

9 Cash – Liquidity Cash Index A 90-day Treasury Bill (T-Bill) Index. 

Note that these indices represent thousands of securities, while the Magellan portfolio held 
only several hundred of these. For example, the fund could have held only several bond issues 
out of 7,000 issues covered by the Lehman Aggregate Bond Index. Moreover, for the same secu-
rities their weights in the fund portfolio could have been quite different from their weights in the 
corresponding index portfolio. Therefore, when trying to replicate the performance of the fund 
with just nine generic indices above, we are looking to get a pattern close to the one in the table 
and the chart above and not necessarily the exact match.  

As the first step, we use Sharpe's trailing window RBSA model to analyze the dynamics of 
the Magellan portfolio in 1994-1997. The inputs to the model will be monthly returns of the Ma-
gellan fund and of the indices listed in Table 3 computed over 48 months from January 1994 to 
December 1997.  

In practical applications the most typical window size for such analyses is usually taken 
equal to 36 or 24 months. It is intuitively clear that to detect such a short-time change in alloca-
tion that happened over 6-8 months, a shorter window has to be used. The three charts below in 
Figures 14, 15 and 16 represent results of such analysis using 36, 24 and 12-month moving win-
dows respectively. Note constant allocations at the beginning of each analysis. They appear be-
cause the result of analysis in the first window is assigned to the rightmost (most recent) edge of 
the window and, therefore, no information is implied about the rest of the first window. By set-
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ting all values in the first estimation window to be constant, we allow readers to compare our fur-
ther analyses over the same time scale. 
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Figure 14. Magellan RBSA, 36-month window.  
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Figure 15. Magellan RBSA, 24-month window.  
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Figure 16. Magellan RBSA, 12-month window.  

Note that allocations to indices are unrealistically volatile and the bond allocation is shifted 
about one-half of the window size to the right. For example, in the analysis with the 24-month 
window in Figure 15, the bond accumulation is shown in early 1997, about 12 months after the 
fact. The 36-month window analysis in Figure 14 doesn't show any signs of the 1995-1996 port-
folio dynamics. The smaller the window size becomes, the closer is the result of the bond plus 
cash allocation to the public data, although due to high short-term correlation of equity indices, 
the results become very noisy. 

Next, we will perform analysis using the same data and the CFLS model (60) with the budget 
and non-negativity constraints for different exponentially increasing values of the smoothness 
parameter λ=1, 10, 100, and 1000. The results of such analyses are presented in Figures 17-20
below. 
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Figure 17. Magellan CFLS, λ=1. 
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Figure 18. Magellan: CFLS, λ=10.  
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Figure 19. Magellan: CFLS, λ=100.  
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Figure 20. Magellan: CFLS, λ=1000.  

Note that the quality of the analyses is notably higher for the CFLS model: the patterns are 
smoother and the timing of the bond accumulation is accurately placed at the end of 1995 with 
the peak bond plus cash position in the first quarter of 1996. 

In order to determine the optimal value of the smoothness parameter, we performed 100 
CFLS optimizations with varying values of the smoothness parameter, and for each result we 
computed the cross-validation statistic defined in Section  6.2 – the Predicted R-squared (64). The 
chart in Figure 21 shows the results of these computations, where the smoothness ratioµ provides 
a logarithmical scale for the smoothness parameter λ and is computed as 10 510 µ−λ = . The Pre-
dicted R-squared function has a very clear global maximum, which is attained in the point 

0.65µ = , what is equivalent to 31.62λ = .
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Figure 21. Magellan: CFLS, optimal smoothness analysis.  
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The results of the CFLS model corresponding to the point of the optimal smoothness are pre-
sented in Figure 22. There is a clear match of the bond plus cash position dynamics with the pub-
licly available information presented above in Table 2 and Figure 13. 
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Figure 22. Magellan: CFLS with optimal smoothness.  
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8.1.2 RBSA with daily data  
Our analysis of the Magellan fund in the previous Section was performed using monthly re-

turns. To analyze short-term changes in fund allocations spanning one or two months, higher fre-
quencies of data (daily or weekly) has to be used. Compared to monthly data, daily data provides 
over twenty times more observations within the same time interval and, therefore, allows one to 
use more asset indices. Below we are using the 13 industry sector indices listed in Table 4 rather 
than 9 size/style indices used in the previous section1.

Table 4. Magellan analysis: Daily Indices.  

 Asset Index Name 

1 S&P 500 Basic Materials Index 

2 S&P 500 Transportation Index 

3 S&P 500 Utilities Index 

4 S&P 500 Capital Goods Index 

5 S&P 500 Communication Services Index 

6 S&P 500 Consumer Cyclicals Index 

7 S&P 500 Consumer Staples Index 

8 S&P 500 Energy Index 

9 S&P 500 Financials Index 

10 S&P 500 Health Care Index 

11 S&P 500 Technology Index 

12 Int'l Stocks – MSCI EAFE Index 

13 U.S. Bonds – Lehman Aggregate Bond Index 

Below we perform analysis of the same fund using daily data in order to determine the dy-
namics of Magellan's position in Technology stocks in October – November 1995 and compare 
the results with the official public data released almost 1.5 months after the fact. On January 11, 
1996, Fidelity Investments announced2 that the fund “cut its stake in technology stocks to 24.5 
percent of its holdings at the end of November from 43.2 percent at the end of October.” We are 
going to verify this fact by using 463 daily returns for the period June 1995 – March 1997. Given 
that the number of assets is 13, the total number of variables for a single CFLS optimization is 
equal to 463×13 = 6,019. The results of the optimization are shown in Figure 23. Note that both 
magnitude and timing of the bond positions match public data.  
–––––––––––––––––––––––––––– 
1 Source of daily returns: Fidelity Magellan Fund – S&P/Micropal www.sandp.com; S&P Sector Indices – 

Vestek Systems, Inc. www.vestek.com (a Thomson Company); MSCI EAFE Index – Morgan Stanley 
Capital International, www.msci.com; Lehman Aggregate Bond Index – Lehman Brothers, 
www.lehman.com.

2 The Reuters European Business Report: Fidelity Investment's Magellan Fund. Reuters America Inc.,
January 11, 1996.  
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Figure 23. Magellan: Daily CFLS.  

 
In Figure 24 we show the dynamics of the technology position determined by CFLS analysis. 

Note that the October-November change in this sector is captured very well. 
The Figure 25 shows the analysis of optimal smoothness, which is a result of 

100×463=4,630 cross-validation CFLS optimizations. The global optimum is achieved at the 
value of 0.72µ = , i.e. 158.5λ = .

The following two Figures 26 and 27 represent the result of the dynamic analysis described 
in the section  4.3.1.3. Note that while the overall trends remain unchanged, the paths of factor 
(sector) exposures became more volatile. This is due to the fact that the nonlinear model (41) is 
not imposing a penalty on the changes of weights caused by market prices fluctuations. Such an 
approach is clearly presenting a more realistic reflection of the portfolio structure. 
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Figure 24. Magellan: Daily CFLS, technology position.  

 



48

Created with MPI Stylus™ (Source: Micropal™ - www.micropal.com)

Sm oothness

80

85

90

95

100

P
re

di
ct

ed
R

2,
%

0.000 0.090 0.150 0.210 0.270 0.330 0.390 0.450 0.510 0.570 0.630 0.690 0.750 0.810 0.870 0.930 0.990

Smoothness Ratio µ

Figure 25. Magellan: Daily CFLS, smoothness analysis. 
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Figure 26. Magellan: Daily nonlinear CFLS.  
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Figure 27. Magellan: Daily nonlinear CFLS, technology position.  



49

8.2 Dynamic Analysis of the Market Beta  

One of the most important applications of the methodology developed in this paper lies in its 
ability to provide more accurate value of the CAPM market beta for both individual securities 
and investment portfolios. Although multi-factor models are much superior to single-factor 
CAPM, the latter is still being used in risk and performance reporting and evaluation1. There exist 
a number of methods to adjust security betas for their dynamic tendency such as, for example, 
Blume [9] and Vasicek [8] although we believe that our framework including both a cross-
validation test for adjusting parameters and breakpoint detection technique presents a superior 
alternative. Below we present an application of the methodology developed in this paper to com-
pute dynamic betas for individual stocks.  

Market beta is usually computed vs. a diversified market index such as the S&P 500 Index 
and is regarded as a measure of relative risk of the stock. The higher the beta, the more sensitive 
is the stock to market fluctuations and the higher is the risk. Stocks with beta significantly lower 
than 1.0 are considered lower risk stocks, while stocks with beta significantly higher than 1.0 are 
considered as higher risk stocks. Accurate assessment of market beta is, therefore, an important 
factor influencing buying and selling decisions. 

For our analysis we use Tyco International Ltd (ticker: TYC, www.tyco.com) common 
stock. Reuters www.reuters.com provides the following description of the company:  

"Tyco International Ltd. is a diversified manufacturing and service company that organ-
izes its businesses into five segments. The Fire and Security segment designs, manufactures, 
installs, monitors and services electronic security and fire protection systems. The Electron-
ics segment designs, manufactures and distributes electrical and electronic components, and 
designs, manufactures, installs, operates and maintains undersea fiber-optic cable communi-
cations systems. The Healthcare segment designs, manufactures and distributes medical de-
vices and supplies, imaging agents, pharmaceuticals and adult incontinence and infant care 
products. The Engineered Products and Services segment designs, manufactures, distributes 
and services engineered products and provides environmental and other industrial consulting 
services. The Plastics and Adhesives segment designs, manufactures and distributes plastic 
products, adhesives and films."  

For the analysis we use monthly total returns for the period of 1992-2003 presented in 
Figure 28 (Tyco returns are in red).  

We perform a two-index analysis with the non-negativity constraint removed. The budget 
constraint makes such analysis equivalent to the single index CAPM, albeit dynamic. We demon-
strate the results of our analysis on the three charts below. In Figure 29 we show TYC beta 
changing over time where the optimal smoothness of the analysis was determined using the point 
of global optimum in Figure 30. Note that we show beta multiplied by 100, as if it is a percentage 
weight in the S&P500 and T-Bills portfolio. In more common fractional terms, the analysis 
shows that TYC beta starts with 0.7 and reaches 1.9 plateau by the end of the data period in 2003.  

The breakpoint analysis chart in Figure 31 is of the most interest. Two points of possible 
shift of the market perception of the Tyco stock stand out prominently: January 2000 and July 
2002. Interestingly, both of them correspond to the most significant events in the company his-
tory. In November 1999, the SEC launched an investigation of the company's accounting prac-
tices, and in January 2000 Tyco management announced changes in its accounting of acquisi-
tions, followed by a surge in revenues and the decision by the board to repurchase $2 billion of 
stock. Although the company's core business hasn't changed, these events created a boost in 

–––––––––––––––––––––––––––– 
1 There exist a number of financial analytical services companies providing individual stock beta forecasts 

for a fee. One of such firms is BARRA, Inc. www.barra.com.
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speculative trading, which potentially explains the first breakpoint. In July 2002, the Tyco board 
named a new chief executive to replace former CEO Dennis Kozlowski, who was indicted on 
charges of sales-tax evasion. The news came as a relief to wary investors and boosted their confi-
dence, which clearly reflected on the stock beta. 
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Figure 28. TYC and S&P 500 Monthly Returns.  
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We then release non-smoothness penalty for the two breakpoints in the final dynamic analy-

sis. The results are presented in Figure 32. We observe two changes in TYC beta in that chart: a 
significant increase at the first breakpoint and decrease at the second. Given that beta is a meas-
ure of a relative market risk, the first news increased the risk of the security, making it too high 
given the company's operations. The second event apparently pacified investors and the stock's 
beta dropped significantly, still being on a relatively higher side for the industry. 
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9 Conclusions  

The dynamic multi-factor methodology developed in this paper presents a major improve-
ment over the existing RBSA methods currently employed in Finance. It represents a true time-
series model, thus providing superior quality recognition of the hidden dynamics of investment 
portfolios, supported by numerous practical applications presented in the text. Incorporation of 
the parameter smoothness requirement represents the major innovation of the proposed method-
ology. Because such a requirement reflects the fundamental rules of the investment process, it 
ensures that the obtained results are practical. It also ensures the stability of the RBSA results 
when the non-negativity constraints are relaxed or removed, which proves to be crucial for analy-
sis of such risky investments as hedge funds.  

One of the most innovative features of the proposed methodology is that it provides a 
framework for optimal selection of model parameters. The algorithms for optimal parameter se-
lection presented in this paper are very intuitive and accurate, as has been proved in both practical 
and model examples. Most of the existing methodologies rely on the researcher and external 
practical knowledge for manual adjustment of model parameters. The suggested methodology 
simplifies such a parameter selection process and, in cases with no additional knowledge about 
the underlying process, presents the only possible method of parameter selection.  

Another important feature of the proposed methodology lies in providing a framework for 
detection of structural changes in parameters. Such changes could represent certain strategy 
changes or very rapid sell off of the portfolio, which in many cases is hidden from the investors. 
The proposed methodology allows investors to identify such cases and take immediate action, 
something that they were not able to do before.  

The proposed method is very practical and can be implemented using existing quadratic op-
timization algorithms and can be executed on a personal computer. Therefore, it can be widely 
used by investment practitioners and researchers alike.  

Some of the most important areas of applications lie in risk management, portfolio construc-
tion, and investment research. It can be used to compute market betas on individual assets. It can 
be used to detect changes in investment products such as mutual funds and hedge funds that are 
hidden from public.  Analysis of hedge funds is the most promising application of the proposed 
methodology because of the very dynamic and active nature of their investment process and the 
lack of disclosure of their holdings, which makes the proposed methodology invaluable.  
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10 Appendices  

Appendix 1. Periodic return of a portfolio  

Let ( )im , 1,...,i n= , be the constant quantities of assets (for example, number of shares of 
stock) contained in the portfolio during a holding period, for instance, day, week, month or year, 

( )ix′ and ( )ix′′ be, respectively, the opening and the closing price of a unit of the respective asset 
at this period, where the return of the i th asset is the ratio ( ) ( ) ( ) ( )( )i i i ir x x x′′ ′ ′= − . The total 

opening price (usually called the market value) of the portfolio is the sum ( ) ( )
1

n i i
i

m x
=

′∑ , and its 

closing price equals ( ) ( )
1

n i i
i

m x
=

′′∑ . Then, the return of the portfolio at this period is the ratio 
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′′ ′ ′= −∑ ∑ ∑ . Pooling of the two sums in the nominator gives  
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Here the ratios in the summands are the fractions representing the weights of each respective i th 
asset in the total market value of the portfolio, which can be rewritten in the following form using 
the budget constraint:  
 ( ) ( ) ( ) ( ) ( )

1
( ) ni i i k k

k
m x m x

=
′ ′β = ∑ , ( )

1
1n i

i=
β =∑ . (68) 

Thus, the return of the portfolio for a period is the linear combination of the returns of its assets 
for this period with their weights in the portfolio's market value taken at the beginning of the pe-
riod (or, equivalently, at the end of the previous period) as coefficients:  

 ( ) ( )

1

n
i i

i
r r

=
= β∑ . (69) 

Note that two important assumptions were made to derive the above formula: (a) the quantities of 
assets ( )im remain constant between the opening and closing of the respective period, while only 
their prices change and (b) the assets represent all portfolio assets, meaning that only the assets in 
consideration determine the market value of the portfolio at each time period.  

Appendix 2. The nonlinear dynamics of the hidden portfolio  

The a priori assumption on the smoothness of asset amounts ( ) ( )
1

i i
t tm m −≅ (38) is generic in the 

dynamic RBSA model, but it is clear that changes of market prices of assets affect their respec-
tive weights in the portfolio ( )i

tβ in (13). Assuming that the amounts of assets didn't change dur-
ing the period t i.e., their ending values for the period t and t-1 remain the same ( ) ( )

1
i i

t tm m −= , we 
have:   
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Here ( ) ( ) ( ) ( )
1 1( )i i i i

t t t tx x x z− −− = are the asset returns, therefore,  
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Note that to be consistent with the RBSA notation, where the returns for the period are multiplied 
by the weights at the beginning of the period, we consider 1t+β as reflecting asset weights at the 
end of the period t or, equivalently, the beginning of the period 1t + .
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