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ABSTRACT

Let G = (V,E) be an undirected graph, and let B ⊆ V ×V be a collection of vertex pairs. We
give an incremental polynomial time algorithm to enumerate all minimal edge sets X ⊆ E
such that every vertex pair (s, t) ∈ B is disconnected in (V,E rX), generalizing well-known
efficient algorithms for enumerating all minimal s-t cuts, for a given pair s, t ∈ V of vertices.
We also present an incremental polynomial time algorithm for enumerating all minimal
subsets X ⊆ E such that no (s, t) ∈ B is a bridge in (V,X ∪ B). These two enumeration
problems are special cases of the more general cut conjunction problem in matroids: given
a matroid M on ground set S = E ∪B, enumerate all minimal subsets X ⊆ E such that no
element b ∈ B is spanned by E r X. Unlike the above special cases, corresponding to the
cycle and cocycle matroids of the graph (V,E ∪B), the enumeration of cut conjunctions for
vectorial matroids turns out to be NP-hard.



1 Introduction

The cut enumeration problem for graphs calls for listing all minimal subsets of edges whose
removal disconnects two specified vertices of a given graph. This so called two-terminal cut
enumeration problem is known to be solvable in O(Nm + m + n) time and O(n + m) space
[TSOA80], where n and m are the numbers of vertices and edges in the input graph, and N
is the total number of cuts. In this paper, we study the following natural extension of the
two-terminal cut enumeration problem:

Cut Conjunctions in Graphs: Given an undirected graph G = (V,E), and a
collection B = {(s1, t1), . . . , (sk, tk)} of k vertex pairs si, ti ∈ V , enumerate all minimal
edge sets X ⊆ E such that for all i = 1, . . . , k, vertices si and ti are disconnected in
G′ = (V,E r X).

Note that for i 6= j, si and sj or si and tj or ti and tj may coincide. We call a minimal
edge set X ⊆ E for which all pairs of vertices (si, ti) ∈ B are disconnected in the subgraph
G′ = (V,ErX), a minimal B-cut, or simply a cut conjunction if B is clear from the context,
and we denote by FG,B the family of all minimal B-cuts.

Observe that each edge set X ∈ FG,B must indeed be the union (conjunction) of some
minimal si-ti cuts for i = 1, . . . , k, justifying the naming of these edge sets. Note also that
not all conjunctions of minimal si-ti cuts for i = 1, . . . , k are minimal B-cuts. Figure 1
depicts a graph with the number of minimal sk-tk cuts not polynomially bounded by |V |
and |FG,B|, showing that the enumeration of cut conjunctions cannot efficiently be reduced
to two-terminal cut enumeration.

sk tk

s1 u1 t1

s2 u2 t2

sk−1 uk−1 tk−1

v1

v2

vk−1

vk

vk+1

v2(k−1)

v(k−2)(k−1)+1

v(k−2)(k−1)+2

v(k−1)2

Figure 1: Minimal B-cuts contain exactly one edge of each pair siui and uiti, for i =
1, . . . , k − 1, thus we have |FG,B| = 2k−1. While the number of minimal sk-tk cuts is more

than 2(k−1)2 , i.e. it is not polynomially bounded by |V | = k2 + k and |FG,B|.
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In what follows, we assume without any loss of generality that in the above cut conjunc-
tion problem, no pair of vertices (si, ti) is connected by an edge of G, i.e. E ∩ B = ∅ (since
all such edges would have to belong to all cut conjunctions).

When B is the collection of all pairs of distinct vertices drawn from some vertex set
V ′ ⊆ V , minimal B-cuts are known as multiway cuts, see e.g. [Vaz01]. The enumeration of
cut conjunctions in graphs thus also includes the enumeration of multiway cuts.

It will be convenient to consider the cut conjunction problem for graphs in the context
of the more general cut enumeration problem for (vectorial) matroids. In what follows we
assume familiarity with matroid theory (see e.g. [Wel76] for a thorough introduction).

Cut Conjunctions in Matroids: Given a matroid M on ground set S and a set

B ⊆ S, enumerate all maximal sets X ⊆ A
def
= S r B that span no element of B.

When M is the cycle matroid of a graph G = (V,E ∪ B), where E ∩ B = ∅, we can let

S
def
= E ∪ B, and then by definition, an edge set Y ⊆ A = E spans b = (si, ti) ∈ B if

and only if Y contains an si-ti path. This means that a maximal edge set Y ⊆ E spans no
edge b ∈ B if and only if X = E r Y is a minimal B-cut in the graph (V,E). Thus, in this
special case the cut conjunction problem in matroids is equivalent with the cut conjunction
problem in graphs.

Let r : S → Z+ be the rank function of a matroid M on S (where Z+ denotes the
set of nonnegative integers). The dual matroid M∗ on S is defined by the rank function
r∗(X) = r(S r X)+ |X| − r(S), see e.g. [Wel76]. In particular, Y ⊆ A = S r B spans b ∈ B
in M∗ if and only if r∗(Y ∪ {b}) = r∗(Y ), which is equivalent to r(X∪B) = r(X∪(Brb))+1,
where as before, X = A r Y denotes the set complimentary to Y in A. This means that the
cut conjunction problem for the dual matroid M∗ is equivalent to the following enumeration
problem:

Dual Formulation of Cut Conjunctions in Matroids: Given a matroid M on

ground set S and a set B ⊆ S, enumerate all minimal sets X ⊆ A
def
= S r B such that

each element b ∈ B is spanned by X ∪ (B r b).

In particular, when M is the cycle matroid of a graph G = (V,E) (and consequently, M∗ is
the cocyle matroid of G), the dual formulation of the cut conjunction problem for matroids
leads to the following enumeration problem:

Bridge-Avoiding Extensions: Given an undirected graph G = (V,E), and a col-
lection of edges B ⊆ E, enumerate all minimal edge sets X ⊆ E rB such that no edge
b ∈ B is a bridge in G′ = (V,B ∪X).

Let us note that in all of the mentioned problems, the output may consist of exponentially
many sets, in terms of the input size. Thus, the efficiency of such enumeration algorithms
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customarily is measured in both the input and output sizes (see e.g., [LLK80]). In particular,
it is said that a family F can be enumerated in incremental polynomial time, if for any
subfamily F ′ ⊆ F the problem of finding e ∈ F \F ′ or proving that F ′ = F can be solved in
poly(n, |F ′|) time, where n denotes the input size of the problem. The enumeration problem
of F is called NP-hard, if deciding F ′ 6= F for subfamilies F ′ ⊆ F is NP-hard, in general.
It can be shown that if the enumeration problem for F is NP-hard, then no algorithm can
generate all elements of F in time poly(n, |F|), unless P=NP.

1.1 Our results

We show that all of the above enumeration problems for graphs can be solved efficiently, i.e.
in incremental polynomial time.

Theorem 1 All cut conjunctions for a given set of vertex pairs in a graph can be enumerated
in incremental polynomial time.

Theorem 2 All minimal bridge-avoiding extensions for a given set of edges in a graph can
be enumerated in incremental polynomial time.

In contrast, we can recall that the more general cut conjunction problem for vectorial
matroids is NP-hard:

Proposition 1 [BEG+05] Let M be a vectorial matroid defined by a collection S of n-
dimensional vectors over a field of characteristic zero or of large enough characteristic (at
least 8n), let B be a given subset of S and let F be the family of all maximal subsets of

A
def
= S r B that span no vector b ∈ B. Given a subfamily X ⊆ F , it is NP-hard to decide if

X 6= F .

In addition to indicating that the enumeration of cut conjunctions in vectorial matroids
cannot be solved in incremental (or output) polynomial time, unless P=NP, the above result
also implies that the dual formulation of the cut conjunction problem for vectorial matroids
is similarly NP-hard. This is because the dual of an explicitly given vectorial matroid over
a field F is again an explicitly given vectorial matroid over the same field (see e.g., [Sch03]).

As stated in Proposition 1, our NP-hardness result for cut conjunctions in vectorial ma-
troids is valid for vectorial matroids over sufficiently large fields. In particular, the complexity
of enumerating cut conjunctions in binary matroids remains open. We can only show that
this problem is tractable for |B| = 2:

Proposition 2 Let M be a binary matroid on ground set S and let B = {b1, b2} ⊆ S.

All maximal subsets X of A
def
= S r B which span neither b1 nor b2 can be enumerated in

incremental polynomial time.
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Finally, it is worth mentioning that for an arbitrary B, the cut conjunction problem
in binary matroids includes, as a special case, the well-known hypergraph transversal (aka
hypergraph dualization) problem [EG95, FK96]:

Enumerate all maximal independent sets (equivalently, minimal transversals) for an
explicitly given hypergraph H ⊆ 2V .

To see this inclusion, let B be the n×|H| binary matrix whose columns are the characteristic
vectors of the hyperedges of H, and let I be the n× n identity matrix. Letting M = [I, B]
and denoting by A the columns set of I, we can readily identify each maximal subset of A
which spans no columns of B with a maximal independent vertex set for H. This shows
that listing cut conjunctions for a binary matroid is at least as hard as listing all maximal
independent sets for a hypergraph. The theoretically fastest currently available algorithm
for hypergraph dualization runs in quasi-polynomial time poly(n)+N o(log N), where N is the
sum of |H| and the number of generated maximal independent sets [FK96].

1.2 The X − e + Y method

We prove Theorems 1, 2 by using a generic approach discussed below. Let E be a finite set
and let π : 2E → {0, 1} be a monotone Boolean function defined on the subsets of E, i.e.,
for which π(X) ≤ π(Y ) whenever X ⊆ Y . Suppose that an efficient algorithm is available
for evaluating π(X) in poly(|E|) time for any X ⊆ E, and that our goal is to enumerate all
(inclusionwise) minimal subsets X ⊆ S for which π(X) = 1. In particular, the enumeration
of cut conjunctions and bridge avoiding subsets can all be embedded into this general scheme
by letting

πCC(X) = 1 ⇐⇒
vertex si is disconnected from ti
in (V,E r X) for all i = 1, . . . , k,

and
πBA(X) = 1 ⇐⇒ no b ∈ B is a bridge in (V,B ∪X).

Returning to the general scheme, given a monotone Boolean function π, let

F
def
= {X | X ⊆ E is a minimal set satisfying π(X) = 1},

and let G = (F , E) be the directed “supergraph” with the vertex set F in which two vertices
X,X ′ ∈ F are connected by an arc (X,X ′) ∈ E if and only if X ′ can be obtained from X
by the following process:

(p1) Delete an element e from X (since X is an minimal set satisfying π(X) = 1, this
implies π(X r e) = 0).

(p2) Add a minimal set Y ⊆ E r X to restore the underlying property π((X r e)∪Y ) = 1.



– 5 –

(p3) Assuming a fixed linear order on the elements of E, delete the lexicographically first
minimal set Z ⊆ X r e to restore the minimality of X ′ = (X r (Z ∪ e)) ∪ Y with
respect to π(X ′) = 1.

Note that in step (p3) we use an arbitrary fixed linear order on E, and that the lexicographic
minimization performed in that step can be done in time polynomial in |E| because we assume
that evaluating π(·) takes poly(|E|) time. Note also that in step (p3) we can always find a
subset Z ⊆ X r e for which X ′ = (X r (Z ∪ e))∪ Y belongs to F , due to the minimality of
Y chosen in step (p2).

Since the out-neighborhood of vertex X in G is obtained by deleting all possible elements
e ∈ X in step (p1), and by considering all possible minimal sets Y in step (p2), it can be
shown that the resulting supergraph G = (F , E) is always strongly connected.

Proposition 3 For any monotone Boolean function π : 2E → {0, 1}, and any linear order-
ing of E, the supergraph G = (F , E) is strongly connected.

Proof: Let X,X ′ ∈ F be two vertices of G. We show by induction on |XrX ′| that G contains
a directed path from X to X ′. If X rX ′ = ∅ then X ⊆ X ′, but since X ′ is minimal, X = X ′

must follow. Suppose that |X r X ′| > 0 and let us show that there is an out-neighbor X ′′ of
X such that |X ′′

r X ′| is smaller than |X r X ′|. For this, let us choose an arbitrary element
e ∈ X r X ′. Since (X r e)∪X ′ contains X ′ and π(X ′) = 1, we have π((X r e)∪X ′) = 1 by
the monotonicity of π, and hence there is a minimal nonempty set Y ⊆ X ′

r X such that
π((Xre)∪Y ) = 1. Now we can lexicographically delete some elements Z of Xre and obtain
an out neighbor X ′′ = (X r(Z∪e))∪Y ∈ F for which |X ′′

rX ′| ≤ |X r(X ′∪e)| < |X rX ′|.
Such a set Z exists because we have π((X re)∪ (Y ry)) = 0 for all y ∈ Y by the minimality
of Y , and thus any minimal set X̃ ∈ F contained in (X r e) ∪ Y must contain Y . �

Remark 1 The number of minimal sets Y in (p2) may be exponential. For a given set
X ∈ F and element e ∈ X, any two distinct minimal sets, Y and Y ′, corresponding to X
and e, produce different neighbors of X in G. For a given X, two elements of X, e and e′

can produce the same neighbor in G. Hence, every neighbor of X in G can be generated at
most |X| times.

Since the supergraph G = (F , E) is always strongly connected, we can generate F by
first computing an initial vertex Xo ∈ F and then performing a traversal (say, breadth-first
search) of G. Given our assumption that π(·) can be evaluated in poly(|E|) time, computing
an initial vertex of G can be done in polynomial time. Steps (p1) and (p3) can also be
performed in poly(|E|) time. Hence we can conclude that the enumeration problem for F
reduces to the enumeration of sets Y in step (p2). In particular, due to the above remark
we get the following statement:

Proposition 4 All elements of F can be enumerated in incremental polynomial time when-
ever the enumeration problem (p2) can be done in incremental polynomial time. �
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As an illustration for the X − e + Y method, consider the following path conjunction
problem [BEG+04]:

Given an undirected graph G = (V,E) and a collection B = {(s1, t1), . . . , (sk, tk)} of
k vertex pairs si, ti ∈ V , enumerate all minimal edge sets X ⊆ E such that for all
i = 1, . . . , k, vertices si and ti are connected in (V,X).

Let π(X) = 1 if and only if every si is connected to ti in (V,X). Then the minimal edge
sets X for which π(X) = 1 are exactly the minimal path conjunctions to be listed in the
above problem. Furthermore, it is easy to see that any such minimal path conjunction is a
collection of trees T1, . . . , Tl such that each vertex pair (si, ti) belongs to a common tree Tj.
Removing an edge e from X splits one of the trees into two sub-trees T ′

j , T
′′
j such that there

is at least one pair (si, ti) with one vertex belonging to T ′
j and the other to T ′′

j .

Let G′ be the graph obtained from G by contracting each tree of T1, . . . , T
′
j , T

′′
j , . . . , Tl

into a vertex, and let u and v denote the vertices corresponding to T ′
j and T ′′

j . A minimal
edge set Y restores the property that all si and ti are connected in (V, (X r e) ∪ Y ) if and
only if Y is a simple path from u to v in G′. Hence the X − e + Y method reduces the path
conjunction enumeration problem to the enumeration of all u-v paths in G′, which can be
done via backtracking [RT75] incrementally efficiently. Thus by Proposition 4 enumerating
all minimal path conjunctions can be done in incremental polynomial time [BEG+04].

Our proofs of Theorems 1, 2 follow this approach using the two monotone Boolean func-
tions πCC , πBA defined at the beginning of this section.

The remainder of the paper is organized as follows. We prove Theorems 1, 2 in Sec-
tion 2, 3, respectively. Then in Section 4 we show the NP-hardness of enumerating cut
conjunctions in vectorial matroids, as stated in Proposition 1. Finally, in Section 5 we also
prove Proposition 2.

2 Proof of Theorem 1

In this section we apply the X − e + Y method to the Boolean function πCC in order to
enumerate all cut conjunctions in graphs. First, in Subsection 2.1 we state a characterization
of cut conjunctions in graphs. In Subsection 2.2 we reduce the problem of enumerating all
minimal sets Y in (p2) to the enumeration of all cut conjunctions in a graph of a simpler
structure. In Subsection 2.3 we show that the latter problem can be solved efficiently by
using a variant of the supergraph approach.

In this section we use the following notation. Let G = (V,E) be a graph, let U be a
subset of its vertices, let F be a subset of its edges, and let G′ = (V ′, E ′) and G′′ = (V ′′, E ′′)
denote subgraphs of G (i.e., V ′, V ′′ ⊆ V and E ′, E ′′ ⊆ E). We denote by G[U ] a subgraph
of G induced on the vertex set U .



– 7 –

Then G − U
def
= G[V r U ] is a graph obtained from G by deleting all the vertices of U

and their incident edges, G−F
def
= (V,E rF ) is obtained by deleting all the edges of F from

E and G − G′ def
= G − V ′. We also define G + U

def
= (V ∪ U,E), G + F

def
= (V,E ∪ F ), and

G′ + G′′ def
= (V ′ ∪ V ′′, E ′ ∪ E ′′).

2.1 Characterization of Minimal Cut Conjunctions in Graphs

Let G be an undirected connected graph with vertex set V and edge set E. It will be
convenient to define a cut to be a set of edges E(G1, . . . , Gl) =

⋃
i6=j{uv ∈ E : u ∈ Gi, v ∈ Gj}

where G1, . . . , Gl are induced subgraphs of G such that their vertex sets partition V , and Gi

is connected for each i = 1, . . . , l.
Let B = {(s1, t1), . . . , (sk, tk)} be a set of distinct source-sink pairs of G. A B-cut is a

cut E(G1, . . . , Gl) such that, for each i, si and ti do not belong to the same Gj. If the set B
is clear from the context we shall call the minimal B-cut a cut conjunction. The following
characterization of cut conjunctions follows directly from their definition.

s1

s2

t3

G1

t1

s4 G3

s3
G4

t2
t4

G2

Figure 2: Minimal B-cut E(G1, G2, G3, G4). The dashed lines are the edges of the B-cut.

Proposition 5 Let E(G1, G2, . . . , Gl) be a B-cut. Then, E(G1, G2, . . . , Gl) is a minimal
B-cut if and only if for every x, y ∈ {1, . . . , l} with x 6= y, if there is an edge of G between
Gx and Gy then there must exist a source-sink pair (si, ti) with exactly one vertex in Gx and
the other in Gy (see Figure 2).

2.2 Reduction

In this section we reduce the problem of generating all minimal sets Y in (p2) to generating
all cut conjunctions in a graph of a simpler structure.

Let F be a subset of edges of G and let (si, ti) ∈ B. Suppose that si and ti are in the
same component of G− F . Then we say that (si, ti) is F -conflicting.

Let X = E(G1, G2, . . . , Gl) be a minimal B-cut of G and let b ∈ X. The removing b from
X reconnects some two components, Gx and Gy, of G−X, where one endpoint of b is in Gx
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and the other in Gy. Thus G − (X r b) contains at least one (X r b)-conflicting pair (see
Figure 3). Hence generating all minimal sets Y ⊆ E r X which restore the property that no
si is connected to ti, is equivalent to generating all minimal B′-cuts in the graph Gx +Gy + b
where B′ is the set of (X r b)-conflicting pairs.

s7

t4

s1

t2Gx

t7

s4

t5

Gy

b

Figure 3: Graph G− (X r b) contains two (X r b)-conflicting pairs (s4, t4) and (s7, t7).

Let L = Gx and R = Gy. We can always relabel the (X rb)-conflicting pairs to guarantee
that the conflicting si’s are in L and the conflicting ti’s are in R. We denote the resulting
graph by H(X, b) (see Figure 4). Note that we have reduced our enumeration problem
to listing all cut conjunctions in H(X, b). As we discuss in the next section, the latter
problem can be efficiently solved by traversing an appropriately defined supergraph of cut
conjunctions of H(X, b).

b

L

s1

s2

t1

t2 R

Figure 4: Graph H(X, b) with all sources in L and sinks in R.

2.3 Enumerating Minimal Cut Conjunctions in H(X, b)

Let H = H(X, b) = (V,E) be the graph defined at the end of Section 2.2, that is:

• H = L + R + b,

• b = vLvR is a bridge (note that vL can be a source and vR can be a sink, but b 6= siti
for all i),

• L contains the sources s1, . . . , sk, and
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• R contains the sinks t1, . . . , tk (see Figure 4).

Let B = {(s1, t1), . . . , (sk, tk)} and let K = E(G1, . . . , Gl) be a cut conjunction of H, such
that K 6= {b}. Without loss of generality, assume that b is in G1. Note that every other Gj

is contained either in L or in R (since Gj is connected and all paths from L to R go through
b). We denote by M = G1 the component containing b and call it the root component of K.
The other components will be called leaf components of K. Denote the Gj’s contained in L
by L1, . . . , Lm and those in R by R1, . . . , Rn (see Figure 4).

vL vR
b

s1

s2

t3

M

s3

L1

s4L2

t1

t2

t4

R1

Figure 5: Minimal B-cut E(M,L1, L2, R1). Dashed lines are the edges of the B-cut.

Proposition 6 All edges of K = E(M,L1, . . . , Lm, R1, . . . , Rn) lie between the root and leaf
components. Hence M uniquely determines the leaf components of K.

Proof: Suppose that there is an edge e ∈ K between two leaf components. Since there is no
edge between Li and Rj, without loss of generality suppose that e connects Li and Lj. But
Li and Lj contain only sources. Thus, by Proposition 5 , K is not minimal, a contradiction.

�

Now we define the digraph H, the supergraph of cut conjunctions of H. The vertex set
of H is the family of all cut conjunctions of H other than {b}. For each cut conjunction
K = E(M,L1, . . . , Lm, R1, . . . , Rn) of H we define its out-neighborhood to consist of all cut
conjunctions which can be obtained from K by the following sequence of steps (see example
in Figure 11):

(q1) Choose a vertex v incident to e ∈ K such that v /∈ {vL, vR}. Depending on v we have
the following three cases.

(q2-a) Suppose v is in a leaf component of K and M + v + e does not contain a source-sink
pair (si, ti). Without loss of generality, assume that v ∈ Rj and either v is not a sink,
or v = ti and si 6∈M (see Figure 6).

Let W1, . . . ,Wp be the components of Rj − v, and let M̂ = M + v +
⋃

u∈M{uv ∈ E}.
Then

D = E(M̂, L1, . . . , Lm, R1, . . . , Rj−1,W1, . . . ,Wp, Rj+1, . . . , Rn)
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b

M
L1

L2

ve Rj

Figure 6: Cut conjunction K in (q2-a)

is a B-cut. Note that we have moved v from Rj to M . Removing v from Rj splits Rj

into components W1, . . . ,Wp (see Figure 7). We will remove non minimal edges of D
in (q3).

b

M̂
L1

L2

v

W3

W2

W1

Figure 7: B-cut D in (q2-a)

(q2-b) Suppose v is in a leaf component of K and M + v + e contains a source-sink pair
(si, ti). Without loss of generality, assume that v ∈ Rj and v = ti, si ∈M and vL 6= si

(If vL = si we do not allow to include ti to M). Let W1, . . . ,Wp be the components
of Rj − ti and let U1, . . . , Ur be the components of M − si not containing b. Denote

M̂ = (M + ti +
⋃

u∈M{uti ∈ E})− (si + U1 + . . . + Ur). Then

D = E(M̂, L1, . . . , Lm, si, U1, . . . , Ur, R1, . . . , Rj−1,W1, . . . ,Wp, Rj+1, . . . , Rn)

is a B-cut. Note that we have moved ti from Rj to M . To restore the property that no
si is connected to ti, we have removed si from M . Removing v from Rj splits Rj into
components W1, . . . ,Wp, and removing si from M splits M into components U1, . . . , Ur

and M̂ , the component containing b (see Figure 8). We will remove non minimal edges
of D in (q3).

(q2-c) Suppose v ∈M − {vL, vR}. Without loss of generality, assume that v is adjacent to
Lj (see Figure 9). Note that v 6∈ {t1, . . . , tk}.

Let U1, . . . , Ur be the components of M − v not containing b, and let M̂ = M − (v +
U1 + . . . + Ur). Then

D = E(M̂, L1, . . . , Lj−1, Lj + v +
⋃

u∈Lj

uv ∈ E,Lj+1, . . . , Lm, U1, . . . , Ur, R1, . . . , Rn)
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b

M̂

ti

L1

L2 W3

W2

W1

si

si
U1

Figure 8: B-cut D in (q2-b)

b

M

v

Lj

R1

Figure 9: Cut conjunction K in (q2-c)

is a B-cut. Note that we have moved v from M to Lj splitting M into components

U1, . . . , Ur and M̂ (see Figure 10).

b
v

M̂
Lj + v

R1

U1 U2

Figure 10: B-cut D in (q2-c)

(q3) Let D = E(G1, . . . , Gl) be the B-cut obtained in the previous step. Choose the
lexicographically first two sets Gx and Gy such that there is an edge e ∈ D con-
necting Gx and Gy and there is no (D r e)-conflicting pair. Replace Gx and Gy in
D by Gx + Gy. Repeat until no such edge exists, thus the B-cut is minimal. Let
K ′ = E(M ′, L′

1, . . . , L
′
m′ , R′

1, . . . , R
′
n′) be the resulting cut conjunction. Then K ′ is a

neighbor of K in H.

Proposition 7 The supergraph H is strongly connected.

To prove Proposition 7 we need two lemmas.
Let K1, K3 be cut conjunctions and let M1, M3 be their root components. We call the

vertices of M3 blue vertices, and all other vertices green vertices . Let K be an induced
subgraph of H, whose vertices are the cut conjunctions with root components containing all
the blue vertices. Note that K has at least one vertex, K3.
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H
xL xR

b
s1 s2s3

s4
u

t1

t2

t3

t4

v

b
s1 s2s3

s4

t1

t2

t3

t4M

L1

R1

R2K

add t1 to M, remove s1 and s4, u (p2-b)

D
b

s1 s2s3

s4

t1

t2

t3

t4

(M + t1 + t1xR + t1v) − {s1, s4, u}

L1

W1

R2

U1

s1

merge L1, s1, U1 and (M + t1 + t1xR + t1v) − {s1, s4, u}), W1

b
s1 s2s3

s4

t1

t2

t3

t4M ′L′
1

R′
1

K ′

Figure 11: Consider the graph H above and the cut conjunction K = E(M,L1, R1, R2) =
E({s1, s2, s4, u, xL, xR, t3, v}, {s3}, {t1, t4}, {t2}). Then K ′ = E(M ′, L′

1, R
′
1) =

E({s2, xL, xR, t1, t3, t4, v}, {s1, s3, s4, u}, {t2}) is a neighbor of K obtained by moving t1 to
M .
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Lemma 1 There exists a cut conjunction K2 ∈ K such that there is a path from K1 to K2

in H.

Proof: Let T be an arbitrary spanning tree of M3 containing the bridge b. For a B-cut D of
H with M as its root component, we partition the edges of T into two groups. Edges that
form a contiguous part within M will be called D-solid edges, and the remaining edges will
be called D-dashed edges. More precisely, we call an edge e of T a D-solid edge, if

• e ∈M ,

• e is reachable from b by using only edges of T that are in M .

Otherwise e is called a D-dashed edge (see Figure 12). Note that b is D-solid edge. We
denote the set of D-solid edges by SD and the set of D-dashed edges by DD. Clearly,
|SD|+ |DD| = |T |.

Let K1 = E(M1, L1, . . . , Lm, R1, . . . , Rn). We will show by induction on the number of
K1-solid edges |SK1 | that there is a path from K1 to K2.

If |SK1 | = |T |, then M1 contains the spanning tree T of blue vertices. Hence K1 ∈ K.
If |SK1 | < |T |, then there exists a K1-dashed edge vw between two blue vertices v and

w such that v is in a leaf component of K1, w ∈ M1 and w is incident to a K1-solid edge.
Without loss of generality, suppose that v ∈ Rj (see Figure 12). Such an edge exists because
K1-dashed and K1-solid edges form the spanning tree of blue vertices.

b

M1

w

L1

L2
v

Rj

Figure 12: Cut conjunction K1. Solid lines are the K1-solid edges, dashed lines are the
K1-dashed edges.

We now show that K ′
1, a neighbor of K1, obtained by moving the blue vertex v from the

leaf to the root component, has |SK′

1
| ≥ |SK1 |+ 1. Depending on v there are two cases.

Case 1: v is not a sink or v = ti and si 6∈M1. Let D be a B-cut obtained in (q2-a) and
MD be its root component. Recall that MD = M1 + v. Thus SD contains all K1-solid edges.
Since MD contains both v and w, vw is a D-solid edge, so |SD| = |SK1 |+1. In (q3) MD can
only merge with leaf components, hence |SK′

1
| ≥ |SD|. This implies that |SK′

1
| ≥ |SK1 |+ 1.

Case 2: v = ti, si ∈ M . Note that ti is a blue vertex, so si must be green, since
M3 does not contain any source-sink pair, and in particular si cannot be an endpoint of
b. Let D be a B-cut obtained in (q2-b) and MD be its root component. Recall that
MD = (M1 + ti)− (si + U1 + . . . + Ur), where U1, . . . , Ur are the components of M − si not
containing b.
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Observe that in (q2-b) we did not remove any K1-solid edge from M1. Since si is a green
vertex, all edges incident to si do not belong to T . Edges in U1, . . . , Ur and incident to these
components are also not K1-solid, because all paths from b to U1, . . . , Ur, which use edges of
T that are in M1, must go through si. Thus |SD| = |SK1 |+ 1.

In (q3) MD can only increase its size after merging with leaf components, hence |SK′

1
| ≥

|SD|. This implies that |SK′

1
| ≥ |SK1 |+ 1.

�

Lemma 2 For every K2 ∈ K there is a path from K2 to K3 in K.

Proof: Let W1, . . . ,Wq be the leaf components of K3 and T1, . . . , Tq be arbitrary spanning
trees of W1, . . . ,Wq. Recall that vertices of W1, . . . ,Wq are called green vertices.

For every leaf Wj there is at least one source-sink pair (si, ti) such that one of si and ti
belongs to Wj and the other to the root component of K3. Choose one such source or sink
for every Wj and denote this set by P = {p1, . . . , pq}.

Let D = E(M,G1, . . . , Gl) be a B-cut of H such that all vertices of P are in the leaf
components. Let e ∈ Ti for some i ∈ {1, . . . , q}. We call e a D-solid edge if there is j ∈
{1, . . . , l} such that e ∈ Gj, pi ∈ Gj and e is reachable from pi by using only edges of Ti that
are in Gj. Otherwise e is called a D-dashed edge (see Figure 13). We denote the set of D-solid
edges by SD and the set of D-dashed edges by DD. Note that |SD|+ |DD| = |T1|+ . . .+ |Tq|.

bv

M2

L1

e

w

p1

L2

L3 p2

R1

p3 R2

Figure 13: Cut conjunction K2. The solid lines are K2-solid edges, the dashed lines are
K2-dashed edges.

Let K2 = E(M2, L1, . . . , Lm, R1, . . . , Rn). Recall that M3 is the root component of K3

and its vertices are called blue vertices. Since M3 ⊆ M2, all elements of P must belong to
leaf components of K2 and thus the notion of K2-solid edges is well defined. We will show
by induction on the number of K2-solid edges |SK2 |, that there is a path in K from K2 to
K3 (note that since this path is in K, the root components of vertices on that path must
contain all the blue vertices).

If |SK2 | = |T1|+ . . . + |Tq|, all green vertices are in leaf components, so M2 contains only
blue vertices, thus M2 = M3 and by Proposition 6, we have K2 = K3.
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If |SK2 | < |T1|+ . . . + |Tq|, then there exists a K2-dashed edge e = vw between two green
vertices v and w such that w is in a leaf component, v ∈M2 and w is incident to a K2-solid
edge or w = pi. Without loss of generality, suppose that e ∈ Ti and w ∈ Lj (see Figure 13).
Such an edge exists because K2-dashed and K2-solid edges form a spanning forest of green
vertices.

We show that K ′
2, a neighbor of K2 obtained by moving v from M2 to Lj, has |SK′

2
| ≥

|SK2 |+ 1 and K ′
2 ∈ K.

Let D = E(M̂, L1, . . . , Lj + v, . . . , Lm, U1, . . . , Ur, R1, . . . , Rn) be a B-cut obtained in

(q2-c). Recall that M̂ = M2− (v + U1 + . . . + Ur), where U1, . . . , Ur are the components of
M2 − v not containing b. Note also that U1, . . . , Ur cannot contain any blue vertices, since
M2 contains M3, which is connected, thus removing a green vertex v cannot disconnect any
blue vertex from b. Hence M3 ⊆ M̂ . Since in (q3) M̂ can only increase its size, the root
component of K ′

2 contains M3.
Since Lj + v contains both v and w, e is a D-solid edge. Thus |SD| = |SK2 | + 1. In

(q3) only leaf components not containing vertices of P can merge with M̂ . Since these leaf
components do not not contain any solid edges, we obtain |SK′

2
| ≥ |SD|. This implies that

|SK′

2
| ≥ |SK2 |+ 1.

�

Proof of Proposition 7. Let K1 and K3 be arbitrary cut conjunctions and K be the
induced subgraph of H defined above. By Lemma 1 there is a path in H from K1 to some
cut conjunction K2 in K. By Lemma 2 there is a path from any cut conjunction of K to K3.
The proposition follows. �

Since H is strongly connected and finding an initial vertex of H is easy, we can enumerate
all sets Y in (p2) in incremental polynomial time.

3 Proof of Theorem 2

It will be convenient to assume in this section that the input graph G = (V,E) may contain
parallel edges, i.e. that G is a multigraph. Given a nonempty set B ⊆ E, let

F
def
= minimal {X ⊆ E r B | no b ∈ B is a bridge of (V,B ∪X)}

be the family of all minimal bridge-avoiding extensions of B. We enumerate F by using the
X − e + Y method stated in the Introduction. Proposition 8 below implies that this can be
accomplished in incremental polynomial time.

Proposition 8 Given a set X ∈ F and an edge e ∈ X, all sets Y in (p2) can be enumerated
with polynomial delay.

Proof: Let B′ = {b1, . . . , bk} be the subset of edges of B that are bridges in (V,B∪ (X re)).
First observe that for each edge bi ∈ B′ there is a cycle Ci in (V,B ∪X) containing e and bi.
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Suppose bi ∈ Ci rCj for some i, j ∈ {1, . . . , k}. Then there is a cycle C ′ ⊆ (Ci∪Cj)re such
that bi ∈ C ′. C ′ is also the cycle in (V,B ∪ (X r e)). This would contradict the definition of
B′. Hence all edges of B′ lie on a common cycle in (V,B ∪X) containing e, and accordingly,
all edges of B′ belong to a common path in (V,B ∪ (X r e)).

Let G′ = (V ′, E ′) be the multigraph obtained from (V,E r e) by contracting all edges in
(B r B′) ∪ (X r e). Then B′ is a path in G′. Furthermore, the enumeration of all sets Y in
(p2) now reduces to the enumeration of all minimal edge sets Y ′ of G′ for which no edge b
on the path B′ is a bridge in (V ′, B′∪Y ′). In other words, the general enumeration problem
for cut conjunctions in cocycle matroids reduces to the special case of the same problem for
multigraphs in which B is a path.

Now we argue that the latter problem is in turn equivalent to the enumeration of all
directed paths between a pair of vertices in some explicitly given directed multigraph. To
see this, denote by u1, . . . , uk+1 the k + 1 vertices on the path B′ = {b1, . . . , bk} in G′, and
assume without loss of generatity that bi = uiui+1 for i = 1, . . . , k. If no edge b ∈ B′ is a
bridge in (V ′, B′ ∪ Y ′), then for each i = 1, . . . , k there must exist a path P ⊆ Y ′ such that

(P ′) P and B′ are edge disjoint and

(P ′′) the vertex set of P contains exactly two vertices uα, uβ of B′ such that α ≤ i and
β ≥ i + 1.

α1 α2 β1 α3 = β2 β3 = α4 α5 β4 β5

P1

P2

P3

P4

P5

Figure 14: Subgraph (V ′, B′ ∪ Y ′).

By the minimality of Y ′ we conclude that

Y ′ = P1 ∪ . . . ∪ Ps (1)

for some paths P1, . . . , Ps satisfying conditions (P ′) and (P ′′) above, where no two distinct
paths in the above decomposition have a common vertex outside of B′. Denoting by uαi

and uβi
the intersection of the vertex set of Pi with B′, we may also assume without loss of

generality that

u1 = α1 < α2 ≤ β1 < α3 ≤ β2 < α4 ≤ . . . < αs ≤ βs−1 < βs = uk+1, (2)

where some pairs of consecutive paths Pj and Pj+1 may share a common endpoint on B′ (see
Figure 14).
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Let us now consider the directed multigraph
−→
G ′ = (V ′,

−→
E ′) obtained from the multigraph

G′ = (V ′, E ′) by replacing the undirected path B′ by the directed path
−→
B ′ = u1 ← u2 ←

. . . ← uk ← uk+1 and by adding two opposite arcs u → v and v → u for each of the
remaining edges uv ∈ E ′

rB′. From the above discussion it follows that there exists a one to
one correspondence between all minimal sets Y ′ admitting decomposition (1) which satisfies

(2) and all (inclusionwise) minimal directed paths from u1 to uk+1 in
−→
G ′ (see Figure 15).

α1 α2 β1 α3 = β2 β3 = α4 α5 β4 β5

Figure 15: Directed path in
−→
G′.

Since it is well known that all minimal directed paths between a given pair of vertices
can be enumerated via backtracking [RT75] with polynomial delay, Proposition 8 follows. �

4 Proof of Proposition 1

For the sake of completeness we present the proof of Proposition 1 from [BEG+05].

Let M be a vectorial matroid on ground set S, let B ⊆ S and A
def
= S r B be a partition

of S, and let

F
def
= maximal {X ⊆ A | no b ∈ B is spanned by X}.

In this section we show that given a subfamily X ⊆ F , it is NP-hard to decide whether
X = F . We reduce our problem from the well known 3-satisfiability.

Let φ = C1 ∧ C2 . . . ∧ Cm be a given CNF on n variables with exactly three literals per
clause. We may represent the sets A and B as matrices. We let

A = (ax̄1 , ax̄2 , . . . , ax̄n , ax1 , ax2 , . . . , axn),

where ax̄i and axi are (n + 1)-dimensional vectors defined as

(ax̄i)j =

{
1, if i = j;

0, otherwise,

(axi)j =

{
1, if i = j or i = n + 1;

0, otherwise.
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For every clause Cp = li1 ∨ li2 ∨ li3 , where lij ∈ {xij , x̄ij}, and α ∈ {0, . . . , n− 3}, we define

bp,α = 4nali1 + 2nali2 + nali3 + fp + αe,

where fp and e are (n + 1)-dimensional vectors defined as

fp
i =

{
0, if i ∈ {i1, i2, i3, n + 1};

1, otherwise,

and
e = (0, . . . , 0, 1)T .

Then B = (bp,α), for p = 1, . . . ,m and α = 0, . . . , n− 3 (see Example 4.1).

Example 4.1 Consider φ = C1 ∧ C2 = (x1 ∨ x̄2 ∨ x3)(x1 ∨ x̄4 ∨ x̄5).
Then

A = (ax̄1 ,ax̄2 , . . . ,ax̄5 ,ax1 ,ax2 , . . . ,ax5) =




1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 1 1 1 1




b1,α =




4 · 5
2 · 5

5
1
1

4 · 5 + 5 + α




b2,α =




5
1
1

4 · 5
2 · 5

5 + α




B = {b1,0, b1,1, b1,2, b2,0, b2,1, b2,2}.

Claim 1 For each i ∈ {1, . . . , n}, A r {ax̄i ,axi} is a maximal subset of A spanning no
b ∈ B.

Proof: Observe that all vectors of A r {ax̄i , axi} have ith entry zero and every b ∈ B has
all entries nonzero. Both A r {ax̄i} and A r {axi} span all b ∈ B, since rank(A r {ax̄i}) =
rank(Ar {axi}) = n+1. Thus Ar {ax̄i , axi} is maximal subset of A spanning no b ∈ B. �

Let X = {A r {ax̄1 , ax1}, . . . , A r {ax̄n , axn}} ⊆ F . We shall call elements of F r X
nontrivial. LetH be a family of subsets of A of the form (al1 , al2 , . . . , aln), where li ∈ {xi, x̄i},
i.e. subsets of A that contain exactly one of each pair ax̄i , axi , for i ∈ {1, . . . , n}.
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Claim 2 Every nontrivial element X of F belongs to H.

Proof: X is a maximal subset of A spanning no b ∈ B and is not a subset of an element
of X , thus X must contain at least one of each pair ax̄i , axi . Suppose that for some j, X
contains both ax̄j , axj . Then rank(X) = n + 1, thus X spans all b ∈ B, a contradiction.
Hence X contains exactly one of ax̄i , axi , for i ∈ {1, . . . , n}. �

Now let X = (al1 , al2 , . . . , aln) ∈ H and x = (x1, . . . , xn) be an assignment of φ. We
define a bijection between elements of H and assignments of φ as follows: xi = 0 if and only
if axi ∈ X, xi = 1 if and only if ax̄i ∈ X.

Claim 3 X is nontrivial element of F if and only if x is a satisfying assignment of φ.

Proof: Let X be nontrivial element of F . By Claim 2, X ∈ H, so there exists an assignment
x corresponding to X. Suppose that x is not a satisfying assignment, then x does not satisfy
a clause Cp = li1 ∨ li2 ∨ li3 . Thus li1 , li2 , li3 are assigned 0. Then {ali1 , ali2 , ali3} ∈ X. Let
α =

∑
j 6∈{i1,i2,i3}

(1− xj) be the number of 0’s in entries of x different than i1, i2, i3.

Then
∑

i6∈{i1,i2,i3}
ali = f+ αe, hence bp,α = 4nali1 + 2nali2 + nali3 +

∑
i6∈{i1,i2,i3}

ali . Thus

bp,α is spanned by X, a contradiction (see Example 4.2).
Now let x be a satisfying assignment. We will show that X spans no b ∈ B. Choose

bp,α = (b1, . . . , bn+1) ∈ B corresponding to the clause Cp = li1 ∨ li2 ∨ li3 . Observe that

X =

(
In

r

)
, where In is n × n identity matrix and r = (rl1 , . . . , rln) is a n-dimensional

vector. Then the system Iny = (b1, . . . , bn) has a unique solution

yi = bi =






4n, if i = i1;

2n, if i = i2;

n, if i = i3;

1, otherwise.

However the linear combination, with coefficients yi, of entries of the last row of A cannot
be equal to bn+1, the last entry of bp,α, for any α ∈ {0, . . . , n−3} (see Example 4.3), because

• the linear combination is
∑

i=1...n yirli = 4nri1+2nri2+nri3+β, where β =
∑

i6∈{i1,i2,i3}
(1−

xi) is the number of zero entries of x different than i1, i2, i3,

• bn+1 = 4n(ali1 )n+1 + 2n(ali2 )n+1 + n(ali3 )n+1 + α,

• there is at least one index j of {i1, i2, i3} such that it satisfies (alj)n+1 6= rj (since x is
a satisfying assignment, it must satisfy every clause).

Hence X is nontrivial element of F . �
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Example 4.2 Let φ, A, B be as defined in Example 4.1. A nonsatisfying assignment x =
(0, 1, 0, 0, 1) of φ corresponds to

X = (ax1 ,ax̄2 ,ax3 ,ax4 ,ax̄5) =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1 0 1 1 0




x does not satisfy the first clause x1 ∨ x̄2 ∨ x3, number of 0’s not in the first, second or third entry

of x is 1, thus X spans b1,1:

4 · 5




1
0
0
0
0

1




+ 2 · 5




0
1
0
0
0

0




+ 5




0
0
1
0
0

1




+




0
0
0
1
0

1




+




0
0
0
0
1

0




=




4 · 5
2 · 5

5
1
1

4 · 5 + 5 + 1




Example 4.3 A satisfying assignment x = (1, 0, 0, 0, 1) of φ corresponds to

X = (ax̄1 ,ax2 ,ax3 ,ax4 ,ax̄5) =

(
I5

r

)
=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 1 1 1 0




Choose

b1,α =




b1

b2

b3

b4

b5

b6




=




4 · 5
2 · 5

5
1
1

4 · 5 + 5 + α




corresponding to the first clause x1 ∨ x̄2 ∨ x3. Then the system I5y = (b1, . . . , b5) has a unique

solution

y =




4 · 5
2 · 5

5
1
1




However
∑

i=1,...,5 yirli = 2 · 5 + 5 + 1 6= 4 · 5 + 5 + α = b
1,α
6 , for any α ∈ {0, 1, 2}. Thus X does not

span b1,0, b1,1, b1,2. Similarly X does not span b2,0, b2,1, b2,2.
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5 Proof of Proposition 2

Let us consider a binary matroid M on ground set S = A ∪ B, where B = {b1, b2}. As
we mentioned in the Introduction, it is enough to consider the dual formulation of the cut
conjunction problem:

Generate all minimal subsets X ⊆ A
def
= SrB such that X∪{b2} spans b1 and X∪{b1}

spans b2 in the dual matroid M∗.

To see that this enumeration problem is tractable, we show first that for a subset X of A,
b1 is a linear combination of vectors of X ∪ {b2} and b2 is a linear combination of vectors of
X ∪ {b1} if and only if b1 + b2 is a linear combination of vectors of X.

If
∑

a∈Y a = b1 + b2, where Y ⊆ X, then
∑

a∈Y a + b1 = b2 and
∑

a∈Y a + b2 = b1.
For the converse direction of the above claim, let us consider a subset X of A such that

b1 is a linear combination of X ∪{b2} and b2 is a linear combination of X ∪{b1}. Depending
on whether these linear combination include b2 and b1, respectively, we have two cases:

Case 1: b2, b1 do not appear in either of the linear combinations, i.e.
∑

a∈X1
a = b1,∑

a∈X2
a = b2, where X1, X2 ⊆ X. Then

∑
a∈(X1∪X2)r(X1∩X2) a = b1 + b2.

Case 2: Without loss of generality suppose b2 appears in the first linear combination,
i.e.

∑
a∈Y a + b2 = b1, where Y ⊆ X. Then

∑
a∈Y a = b1 + b2.

Hence X is a minimal subset of A such that X ∪ {b2} spans b1 and X ∪ {b1} spans b2 in
M∗ if and only if X is a minimal subset of A spanning b1 + b2 in the matroid on ground set
A∪{b1 + b2}. Thus our problem reduces to the enumeration of all circuits containing b1 + b2

in the matroid on ground set A ∪ {b1 + b2}, which can be done in incremental polynomial
time [BEG+05]. �

Let us remark that similar simplification cannot work for |B| > 2. For instance, for
B = {b1, b2, b3}, the facts that bi is a linear combination of vectors of X ∪ {B r bi}, for
i = 1, 2, 3, do not imply that b1 + b2 + b3 is a linear combination of vectors of X. Consider
e.g., the vectors a1, a2, a3, a4, a5 satisfying a1 + a2 = b1, a3 + a4 = b2, a5 + b1 = b3.
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