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ABSTRACT

We consider two classes of sets in Zn. A non-empty subset U of Zn is universal (the first
class) if for all x ∈ U , and for all 0 < l ≤ n/2 at least one of x± l (mod n) lies in U . For
each universal U its complement, Zn\U , is from the second class and vice versa. We define
β(n) to be the minimum cardinality of an universal set modulo n. Completely characterizing
all sets in the second class we derive a formula for β(n).

We demonstrate that universal sets arise in the context of a two-player game that was
analyzed for the first time in [3] and has interesting connections to the prime factorization
of n. Finally we model our optimization problem, find β(n), as an integer linear program.



1 Introduction

In this paper we prove equivalence between a well known problem – integer factorization
– and two new optimization problems. One of them has as a domain subsets of Zn with
special properties. The other one is a linear integer optimization problem. We also show
a connection between these problems and a two-player game for the first time analyzed in
[3].

For a standard exposition of the properties of Zn and the integer factorization problem see
[5]. For classical algorithms for integer factorization see [1] and [2]. The success of RSA
cryptographic algorithm [6] is based on the assumption that it is hard to factor an arbitrary
integer. For a more recent approach towards factoring large integers see [8]. A standard text
on Linear Integer Optimization is [7].

The input parameter to all problems considered in this paper is a positive integer n > 1.
As usual we denote by Zn the set {0, 1, 2, . . . , n − 1} with its two operations: addition and
subtraction modulo n. We will be interested in two special classes of subsets in Zn.
Definition. A nonempty subset of {0, . . . , n − 1} will be called universal modulo n if for
each element x and for each (integer) magnitude l, with 0 < l ≤ n/2, there is a direction
d ∈ {−1, +1} such that x + d× l (mod n) is also from the set.

Trivial examples of universal subsets of Zn are: Zn for every n, and Zn\{i} for ∀i ∈ Zn when
n is odd. Notice that any universal set has at least 1 + bn

2
c elements.

Problem 1. For an integer n > 1, what is the size of a smallest universal set modulo n?
How can such a set be constructed?

We define β(n) to be the minimal size of a universal set modulo n.
Definition. A proper subset of {0, . . . , n−1} will be called middle-inclusive modulo n if it is
closed under taking midpoints. That is M ⊂ Zn is middle-inclusive if for all (not necessarily
distinct) a, b ∈ M , each solution to the equation 2x = a + b (mod n) is also from M .

Notice that when a = b, the above equation 2x = a + b (mod n) has a non-trivial solution
(exactly one ) only when n is even. In this case the non-trivial solution is a + n/2. When
a, b are distinct the equation 2x = a + b (mod n) has zero, one or two solutions: if n is odd
exactly one solution; when n is even, either zero, or two solutions.

Trivial examples of middle-inclusive sets are: ∅, and {i} for ∀i, if n is odd.
Lemma 1.1. For any integer n > 1, S is universal set modulo n if and only if Zn\S is
middle-inclusive set modulo n.

Proof. (⇒) Let S be any universal subset of Zn. Let S = Zn\S. Obviously | S |< n.
Suppose a, b ∈ S, x /∈ S and 2x = a + b mod n. Take the smaller of x − a (mod n) and
−x + a (mod n), say x− a (mod n) ≤ n/2. From the definition of universal set (it follows
that) at least one of x− (x− a) (mod n) = a or x + (x− a) = 2x− a (mod n) = b is in S,
which is a contradiction. Therefore S is a middle-inclusive subset of Zn.

(⇐) Now let S be any middle-inclusive subset of Zn. Let S = Zn\S. Obviously | S |≥ 1.
Let x and l be such that x ∈ S, 0 < l ≤ n/2, and both x ± l (mod n) ∈ S. Then
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2x = (x+ l)+ (x− l) (mod n). From the definition of middle-inclusive subset it follows that
x should be in S, which is a contradiction. Therefore S is universal.

Corollary 1. For any n > 1, β(n), the minimal size of an universal set modulo n, equals n
minus the maximal size of a middle-inclusive set modulo n, i.e. β(n) = n−max |M |, where
M runs over all middle-inclusive sets modulo n.

2 Formula for β(n)

Theorem 2.1. For all n ∈ Z+

β(n) =


n if n = 2k for some k.

p−1
p
· n where p is the smallest odd prime factor of n.

We will prove the above theorem by completely characterizing for any n ∈ Z+ all middle-
inclusive subsets of Zn with at least one element.
Definition. Let d and r be integers, with d | n, d > 0, and 0 ≤ r < d. We will denote
by Cn(r, d) the subset of Zn that is the arithmetic progression starting at r and having a
common difference d. That is Cn(r, d) =

{
r + i · d | 0 ≤ i < n

d

}
.

It is convenient to have the following description. Suppose we have a round table with
n positions labeled as 0, 1, . . . , n − 1 in a clockwise manner. If i, j ∈ Zn are two such
positions, then we denote with d+(i, j) the number of positions that have to be passed if
we travel around the table clockwise from position i to position j. Obviously if i < j then
d+(i, j) = j − i, and d+(j, i) = n− j + i.

The following lemma characterizes all middle-inclusive subsets of Zn.
Lemma 2.2. Let n > 1. If d > 1 is an odd divisor of n, then Cn(r, d) is a middle-inclusive
subset of Zn for any r. Conversely if M is a non-empty middle-inclusive subset of Zn, then
there are integers r and d with: d odd, d > 1, d | n, and 0 ≤ r < d such that M = Cn(r, d).

Proof. (⇒) Let d be odd, d > 1, and d | n. Let also r satisfy 0 ≤ r < d. Let S = Cn(r, d).
Since d > 1 we have that | S |< n.

Let a and b be (not necessarily distinct) from S and let x be any solution to the equation
2x = a + b (mod n). Then a = r + i × d, b = r + j × d, and 2x = 2r + (i + j)d (mod n).
Therefore x is either r + i+j

2
× d (mod n) or r + n+i+j

2
× d (mod n). In either case x ∈ S

and it follows that S is middle-inclusive.

(⇐) Let M be any non-empty middle-inclusive subset of Zn. We consider two cases: | M |= 1
and | M |≥ 2.

Case 1: | M |= 1. Let M = {r}. Then n must be odd, otherwise M would have at least two
elements: r and r + n/2. So the conditions of the lemma hold.
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Case 2: | M |≥ 2. Let the elements of M be sorted in increasing order: M = {0 ≤ i1 <
i2 < i3 < . . . < il ≤ n− 1}. By definition | M |< n, so l < n. Take any three “consecutive”
elements of M , for example: ij−1, ij, ij+1. Here the index arithmetic is done modulo l, which
for example means that il−1, il, i1 are three consecutive elements of M .

If d+(ij−1, ij) is even then ij−1 +
d+(ij−1,ij)

2
(mod n) ∈ Zn, but it is not in M . This is a

contradiction because M is middle-inclusive. It follows that d+(ij−1, ij) must be odd for all
j.

But then d+(ij−1, ij+1) = d+(ij−1, ij)+d+(ij, ij+1) must be even. If d+(ij−1, ij) 6= d+(ij, ij+1),
then the middle point from ij−1 to ij+1 is from Zn and is different from ij. It should be then
in M but it is not, a contradiction. Therefore d+(ij−1, ij) = d+(ij, ij+1) for all j. It follows
that d+(ij−1, ij) = d+(ik−1, ik) all j, k. Let d be the common value (which is odd as noted
above) for d+(ij−1, ij).

It follows that M = {i1, i2, . . . , il} = {i1, i1 + d, i1 + 2 · d, . . . , i1 + (n
d
− 1) · d}.

Proof of Theorem 2.1

Case 1: n = 2k for some k > 0. Suppose there exists a non-empty middle-inclusive subset M
of Zn. From the characterization lemma there exists an odd d, with d > 1 and d | n, which is
a contradiction. Therefore the only possible middle-inlcusive subset of Zn is the empty one.
It follows then that the only possible universal subset is S = Zn. Thus β(n = 2k) = n.

Case 2: n = d1 · 2f , where d1 | n is odd and d1 ≥ 3.

Since from the characterization lemma all non-empty middle-inclusive subsets M are of
the form Cn(r, d), where d | n is odd and d > 1 we want to find the largest such subset.
Obviously Cn(r, p) where p is the smallest odd prime factor of n has the biggest cardinality.
Notice that | Cn(r, p) |= n

p
irrespective of r, 0 ≤ r < p. Therefore β(n) = n − |Cn(r, p)| or

β(n) = n− n
p

= p−1
p
· n, when n 6= 2k.

Observation

Obviously, if we agree that finding the smallest odd prime factor of an integer and integer
factorization are equivalent problems, then we want to compute β(n). This is because
knowing p, the smallest prime odd factor of n, we can find β(n) = p−1

p
·n and vice versa.

3 Connection with the Nagger-Mover game

Here we establish a connection between the universal subsets of Zn and the following two-
player game that was first analyzed in [3] (where it was called The Nagger-Mover game).
The game is played at a circular table with n seats consecutively labelled 0 to n−1. The two
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players are called the Nagger and the Mover. If the current position is i, a round consists of
the Nagger calling a magnitude ` with 0 < ` ≤ n/2, after which the Mover calls a direction
(+ or −). The position is then updated to i + ` mod n or i− ` mod n according to whether
the Mover called + or −. Nagger’s aim in the game is to maximize the cardinality of the set
of all positions occupied in the course of the game (while Mover’s is to minimize it). In [3],
a simple formula was given (in terms of the prime factorization of n) for the size of such a
set (the function f ∗(n) was used for the size) if both players play optimally. Here we give a
simpler proof than the one given in [3], for the formula for the function f ∗(n) (we will prove
f ∗(n) = β(n)).

We claim that β(n) is precisely the eventual size of the occupied set if both players play
optimally. To see this, first let U be any universal set that contains the current position.
Consider the following strategy for the Mover. At each turn when presented with a pair
(x, `) consisting of the current position x and the magnitude ` selected by the Nagger, the
Mover chooses a direction so that the next position is also from U . This is always possible,
because U is universal and at least one of x ± ` (mod n) is in U . Since any universal set
may be translated to contain the initial position, the Mover has a strategy to ensure that no
more than β(n) positions are occupied, irrespective of Nagger’s strategy.

Conversely, consider the following strategy for the Nagger. At each turn he is presented only
with the current position x. The strategy for the Nagger is to choose (if possible) such an `
that both x±` (mod n) have not been visited yet. If such an ` does not exist then he chooses
` sequentially to be 1, 2, . . . , bn

2
c, 1, 2, . . . , bn

2
c, . . .. We consider the set S of positions that

arise infinitely often in the sequence of plays. Since there are finitely many positions, the
set S is non-empty. We claim that S is universal. To see this, note that for any x ∈ S, the
Nagger will choose any of the magnitudes 0 < ` ≤ n/2 infinitely many times. Consequently
the Mover will be presented with the pair (x, `) where x ∈ S and ` is a magnitude from 1 to
bn

2
c infinitely many times. Therefore at least one of x± ` (mod n) will be visited infinitely

many times and as such it belongs to S. We see then that S must be universal. So the set
of positions visited infinitely often has cardinality at least β(n).

4 Linear Integer Optimization problem

Now we will show equivalence between a linear integer optimization problem and our problem
1:

find min | S |, where S is any universal subset of Zn.

Let S ⊆ Zn be any optimal solution for the above optimization problem. Let xi, for i =
0, 1, . . . , n− 1 be n binary variables such that:

xi =


1 if i ∈ S

0 if i /∈ S
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Then | S |= x0 + x1 + . . . + xn−1 and the optimization goal, min | S |, in (problem 1)
becomes:

min x0 + x1 + . . . + xn−1

Now we have to model that S is universal, i.e. for all x ∈ S, and for all integer l, with
0 < l ≤ n/2, at least one of x± l (mod n) lies in S. It is equivalent to:

if xi = 1 then for each j = 1...bn
2
c at least one of the two variables xi+j and xi−j

must be 1.

Here the addition and the subtraction operations in the indices are by modulo n arith-
metic.

One way to model this constraint is by xi(xi+j + xi−j) ≥ xi. If xi = 0 this inequality is
trivially satisfied: there is no constraint on xi+j and xi−j coming from index i. And if xi = 1
then this constraint ( and bn

2
c−1 more) becomes xi+j +xi−j ≥ 1 ⇒ at least one of xi+j, xi−j

is 1.

Since this is a nonlinear constraint we would like to replace it by a linear one if possible (see
[4]). Because xi, xi+j and xi−j are boolean variables it can be achieved in several ways. The
simplest possible maybe is xi+j + xi−j ≥ xi.

Here is the equivalent to Problem 1 linear integer optimization problem with an input pa-
rameter n ∈ Z+.
Problem 2.

min x0 + x1 + x2 + ... + xn−1 subject to:

x0+1 + xn−1 ≥ x0

x0+2 + xn−2 ≥ x0

...
x0+bn

2
c + xn−bn

2
c ≥ x0

 group of constraints for x0

x1+1 + x1−1 ≥ x1

x1+2 + xn−1 ≥ x1

...
x1+bn

2
c + xn−bn

2
c+1 ≥ x1

 group of constraints for x1

...

xn−1+1 + xn−1−1 ≥ xn−1

xn−1+2 + xn−1−2 ≥ xn−1

...
xn−1+bn

2
c + xn−1−bn

2
c ≥ xn−1

 group of constraints for xn−1

x0 + x1 + x2 + ... + xn−1 ≥ 1

The last inequality is equivalent to the non-emptiness condition in the definition for universal
subsets of Zn: | S |≥ 1. There is a trivial observation: the number of variables that are
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1 in any feasible solution must be at least 1 + bn
2
c. So the last constraint can be replaced

with:

x0 + x1 + x2 + ... + xn−1 ≥ 1 + bn
2
c

This follows directly from the last constraint: at least one variable xi = 1 for some i and
from the group of inequalities for that xi.

For example for n = 3 the linear integer optimization problem becomes:

min x0 + x1 + x2 subject to:

x1 + x2 ≥ x0

}
group of constraints for x0

x2 + x0 ≥ x1

}
group of constraints for x1

x0 + x1 ≥ x2

}
group of constraints for x2

x0 + x1 + x2 ≥ 1

There are n boolean variables and n groups of constraints. Each group has bn
2
c inequal-

ities. One can easily see that the problem is completely symmetric for all the variables:
x0, x1, . . . , xn−1.

We have proved the following:
Theorem 4.1. The above 0,1 minimization problem has an optimal value for the function∑n−1

i=0 xi as follows:

a) if n = 2k then the optimal value is min = 2k = n

b) if n = 2α1pα2pα3
3 · · · pαl

l , where p is the smallest prime factor of n bigger than 2, then
the optimal value is min = p−1

p
· n

c) (corollary of b) if n is a prime then min = n− 1

Solving efficiently the above optimization problem leads to a factorization algorithm: if p is
the smallest factor (of n) 6= 2 and min is the minimal value for the goal function then

p =
n

n−min

Corollary 2. Primality testing: taking only the constraints from the above optimization
problem, and adding one more constraint:

x0 + x1 + x2 + ... + xn−1 ≤ n− 2

we can ask: is there a feasible solution for this set of constraints? Obviously this is equivalent
to answering if n is prime.

5 Open Problems

One of the reasons we can not solve efficiently Problem 2 is that the number of variables and
the number of constraints is exponential in the number of bits needed to store n. Therefore
we state the following open problems.
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Q1: For any n ∈ Z+ what is the linear integer optimization problem with minimal complexity
such that the minimal value of its optimization function gives the smallest prime factor of
n?

Q2: Is there a polynomial algorithm(of log2 n running time) to solve the above {0, 1} linear
optimization problem for certain types of n , or can we prove a lower bound of non-polynomial
type?
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