DIMACS Technical Report 2005-33

Estimating Entropy and Entropy Norm on Data
Streams

by

Amit Chakrabarti! Khanh Do Ba? S. Muthukrishnan?

'Supported by an NSF CAREER award and Dartmouth College startup funds.

2Work partly done while visiting DIMACS in the REU program, supported by NSF ITR 0220280, DMS
0354600, and a Dean of Faculty Fellowship from Dartmouth College.

3Supported by NSF ITR 0220280 and DMS 0354600.

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs—
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.

ABSTRACT

We consider the problem of computing information theoretic functions such as entropy on
a data stream, using sublinear space.

Our first result deals with a measure we call the “entropy norm” of an input stream: it is
closely related to entropy but is structurally similar to the well-studied notion of frequency
moments. We give a polylogarithmic space one-pass algorithm for estimating this norm under
certain conditions on the input stream. We also prove a lower bound that rules out such an
algorithm if these conditions do not hold.

Our second result is a sublinear space one-pass algorithm for estimating the empirical en-
tropy of an input stream. For a stream of m items and a given real parameter o, our algorithm
uses space O (m>*) and provides an approximation of 1/« in the worst case and (1 + ¢) in
“most” cases. All our algorithms are quite simple.

1 Introduction

Algorithms for computational problems on data streams have been the focus of plenty of recent
research in several communities, such as theory, databases and networks [1, 5, 2, 7]. In this
model of computation, the input is a stream of “items” that is too long to be stored completely
in memory, and a typical problem involves computing some statistics on this stream. The main
challenge is to design algorithms that are efficient not only in terms of running time, but also
in terms of space (i.e., memory usage): sublinear space is a must and polylogarithmic space is
often the goal.

The seminal paper of Alon, Matias and Szegedy [1] considered the problem of estimating
the frequency moments of the input stream: if a stream contains m; occurrences of item i (for
1 <i < n),its k™ frequency moment is denoted Fy and is defined by Fy := > '_ m¥. Alon
et al. showed that F; could be estimated arbitrarily well in sublinear space for all nonnegative
integers k and in polylogarithmic (in m and n) space for k € {0, 1, 2}. Their algorithmic results
were subsequently improved by Coppersmith and Kumar [3] and Indyk and Woodruff [6].

In this work, we first consider a somewhat related statistic of the input stream, inspired by
the classic information theoretic notion of entropy. We consider the entropy norm of the stream,
denoted Fy and defined by Fy := Z?:l m; lgm;. 1 'We prove (see Theorem 2.2) that Fy can
be estimated arbitrarily well in polylogarithmic space provided its value is not “too small,” a
condition that is satisfied if, e.g., the input stream is at least twice as long as the number of
distinct items in it. We also prove (see Theorem 2.4) that Fy cannot be estimated well in
polylogarithmic space if its value is “too small.”

Second, we consider the estimation of entropy itself, as opposed to the entropy norm. Any
input stream implicitly defines an empirical probability distribution on the set of items it con-
tains; the probability of item i being m; /m, where m is the length of the stream. The empirical
entropy of the stream, denoted H, is defined to be the entropy of this probability distribution:

H = le(mi/m)lg(m/mi) = lgm—Fp/m. (1)

An algorithm that computes Fy exactly clearly suffices to compute H as well. However, since
we are only able to approximate Fpy in the data stream model, we need new techniques to
estimate H. We prove (see Theorem 3.1) that H can be approximated using sublinear space.
Although the space usage is not polylogarithmic in general, our algorithm provides a tradeoff
between space and approximation factor and can be tuned to use space arbitrarily close to
polylogarithmic.

Both entropy and entropy norm are natural statistics to approximate on data streams. In
addition, they are used in profiling IP traffic on communication networks and for anomaly
detection [8]. Our algorithms are quite simple and may prove useful in real IP network traffic
analysis systems.

IThroughout this paper “Ig” denotes logarithm to the base 2.

2 Estimating the Entropy Norm

In this section we present a polylogarithmic (in m and n) space (14 ¢&)-approximation algorithm
for entropy norm that assumes the norm is sufficiently large, and prove a matching lower bound
if the norm is in fact not as large.

2.1 Upper Bound

Our algorithm is inspired by the work of Alon et al. [1]. Their first algorithm, for the fre-
quency moments Fg, has the following nice structure to it (some of the terminology is ours). A
subroutine computes a basic estimator, which is a random variable X whose mean is exactly
the quantity we seek and whose variance is small. The algorithm itself uses this subroutine to
maintain ss, indepedent basic estimators {X;; : 1 <i < 1,1 < j < 53}, where each X;; is
distributed identically to X. It then outputs a final estimator Y defined by

The following lemma, implicit in [1], gives a guarantee on the quality of this final estimator.

Lemma 2.1. Let i := E[X]. If s1 > 8 Var[X1/(¢2u?) and s, = 41g(1/5), then for any €, €
(0, 11, the above final estimator deviates from u by no more than & u with probability at least
1 — 8. The above algorithm can be implemented to use space O(Slog(1/9) Var[X1/(e*u?)),
provided the basic estimator can be computed using space at most S.

Proof. The claim about the space usage is immediate from the structure of the algorithm. Let
Y; = i 51:1 X;j. Then E[Y;] = u and Var[Y;] = Var[X]/s; < e?u?/8. Applying Cheby-
shev’s Inequality gives us

Pr{|Y) — ul > ep] < 1/8.

Now, if fewer than (s»/2) of the Y;’s deviate by as much as eu from u, then Y must be
within eu of u. So we upper bound the probability that this does not happen. Define s>
indicator random variables /;, where I; = 1iff |Y; — u| > ¢p, and let W = ijzl I;. Then
E[W] < s52/8. A standard Chernoff bound gives

5 033 2/8 3 11g(1/6)
Pr(|Y — u| > <P[W>—]< ¢ - (£ <5, O
-zl = mlw=2] < (5) = (5) -

We use the following subroutine to compute a basic estimator X for the entropy norm Fg.

Input stream: A = (ay, as, ..., ay), where each q; € {1,...,n}.

1 Choose p uniformly at random from {1, ..., m}.

2 Letr ={qg: ag =ap, p < g < m}|. Note thatr > 1.

3 LetX = m(r lgr — (r — 1) Ig(r — 1)), with the convention that
0lg0 =0.

Our algorithm for estimating the entropy norm outputs a final estimator based on this basic
estimator, as described above. This gives us the following theorem.

Theorem 2.2. If Fy > m/A, forany A > 0, the above one-pass algorithm can be implemented
so that its output deviates from Fy by no more than ¢ Fy with probability at least 1 — J, and so

that it uses space
log(1/0
] (M log m(logm + log n)A)
g2

In particular, taking A to be a constant, we have a polylogarithmic space algorithm that works
on streams whose Fy is not “too small.”

Proof. We first check that the expected value of X is indeed the desired quantity:

E[X] = —ZZ (rlgr — (r = D lgr — 1))
v=1r=
= Z(mulgmU—OIgO) =
v=1

The approximation guarantee of the algorithm now follows from Lemma 2.1. To bound the
space usage, we must bound the variance Var[X] and for this we bound E[X?]. Let f(r) :=
rlgr, with £(0) := 0, so that X can be expressed as X = m(f(r) — f(r — 1)). Then

My

E[X?] = mZZ F) = £ =)’

v=1r=

< memax (f() = f(r=1) (6= £ -)

v=1r=1
< m-sup{f'(x): x e (0,ml}-Fy 2)
= (ge+lgm)mFy (3)
< (lge-l—lgm)AFé,

where (2) follows from the Mean Value Theorem.

Thus, Var[X]/E[X 1? = o(A lgm). Moreover, the basic estimator can be implemented
using space O (logm + logn): O(logm) to count m and r, and O (logn) to store the value of
ap. Plugging these bounds into Lemma 2.1 yields the claimed upper bound on the space of our
algorithm. [

Let Fy denote the number of distinct items in the input stream (this notation deliberately
coincides with that for frequency moments). Let f(x) := xlgx as used in the proof above.
Observe that f is convex on (0, 00) whence, via Jensen’s inequality, we obtain

_hy LA ——
Fyg = FO;f(mU) > FOf(F();mD) = mlgF() “4)

3

Thus, if the input stream satisfies m > 2Fj (or the simpler, but stronger, condition m > 2n),
then we have Fy > m. As a direct corollary of Theorem 2.2 (for A = 1) we obtain a (1 + ¢)-
approximation algorithm for the entropy norm in space O ((log(1/9) /%) log m(log m +log n)).
However, we can do slightly better.

Theorem 2.3. If m > 2Fy then the above one-pass, (1 + &)-approximation algorithm can be

implemented in space
log(1/6
0 (% log m log n)

without a priori knowledge of the stream length m.

Proof. We follow the proof of Theorem 2.2 up to the bound (3) to obtain Var[X] < 21lgm)m Fy,
for m large enough. We now make the following claim

lgm
M < Zmax{lg F(), 1} (5)

Assuming the truth of this claim and using (4), we obtain

Var[X] < Qlgm)mFy < 21iF,Z, < 4max{lg Fo, 1}F3 < (41gn)F> .
lg(m/ Fo)

Plugging this into Lemma 2.1 and proceeding as before, we obtain the desired space upper
bound. Note that we no longer need to know m before starting the algorithm, because the num-
ber of basic estimators used by the algorithm is now independent of m. Although maintaining
each basic estimator seems, at first, to require prior knowledge of m, a careful implementation
can avoid this, as shown by Alon et al [1].

We turn to proving our claim (5). We will need the assumption m > 2Fj. If m < FOZ, then

lgm < 21gFy = 21g Fylg(2Fy/Fo) < 21g Folg(m/Fo)
and we are done. On the other hand, if m > F02, then Fj < m1/? so that

lgm/Fo) = lgm—(1/2)1gm = (1/2)lgm
and we are done as well.]

Remark. Theorem 2.2 generalizes to estimating quantities of the form 2 = >_"_, f(m,), for
any monotone increasing (on integer values), differentiable function f that satisfies f 0) =
0. Assuming 4 > m/A, it gives us a one-pass (1 + &)-approximation algorithm that uses
O(f'(m) A) space. For instance, this space usage is polylogarithmic in m if f (x) = x polylog(x).

2.2 Lower Bound

The following lower bound shows that the algorithm of Theorem 2.2 is optimal, upto factors
polylogarithmic in m and n.

Theorem 2.4. Suppose A and c are integers with4 < A < o(m) and 0 < ¢ < m/A. On input
streams of size at most m, a randomized algorithm able to distinguish between Fy < 2c and
Fyg > ¢+ 2m/ A must use space at least Q(A). In particular, the upper bound in Theorem 2.2
is tight in its dependence on A.

Proof. We present a reduction from the classic problem of (two-party) Set Disjointness in
communication complexity.

Suppose Alice has a subset X and Bob a subset Y of {1,2,..., A — 1}, such that X and Y
either are disjoint or intersect at exactly one point. Let us define the mapping

-2 -2
¢ xH— w+i:ieZ,O§i<m ¢

Alice creates a stream A by listing all elements in | J, .y ¢ (x) and concatenating the ¢ special
elements A + 1,..., A + c¢. Similarly, Bob creates a stream B by listing all elements in
U yey ¢ (y) and concatenating the same c¢ special elements A + 1, ..., A + c. Now, Alice can
process her stream (with the hypothetical entropy norm estimation algorithm) and send over
her memory contents to Bob, who can then finish the processing. Note that the length of the
combined stream A o B is at most 2¢c + [X U Y| - ((m — 2¢)/A) < m.

We now show that, based on the output of the algorithm, Alice and Bob can tell whether
or not X and Y intersect. Since the set disjointness problem has communication complexity
Q(A), we get the desired space lower bound.

Suppose X and Y are disjoint. Then the items in A o B are all distinct except for the ¢
special elements, which appear twice each. So Fy(A o B) = ¢ - (21g2) = 2¢. Now suppose
XNY = {z}. Then the items in Ao B are all distinct except for the (m —2c¢)/A elements in ¢ (z)
and the ¢ special elements, each of which appears twice. So Fy(AoB) = 2(c+(m—2c)/A) >
c+2m/A, since A > 4. O]

Remark. Notice that the above theorem rules out even a polylogarithmic space constant factor
approximation to Fy that can work on streams with “small” Fg. This can be seen by setting
A = m” for some constant y > 0.

3 Estimating the Empirical Entropy

We now turn to the estimation of the empirical entropy H of a data stream, defined as in
equation (1): H = >7_,(m;/m)1lg(m/m;). Although H can be computed exactly from F,
as shown in (1), a (1 + ¢)-approximation of Fg can yield a poor estimate of H when H is
small (sublinear in its maximum value, 1g m). We therefore present a different sublinear space,
one-pass algorithm that directly computes entropy.

Our data structure takes a user parameter o > 0, and consists of three components. The
first (A1) is a sketch in the manner of Section 2, with basic estimator

—1
X=m(ilgﬂ—r lg—) (©6)

m r m r—1

and a final estimator derived from this basic estimator using s; = (8/¢2)m?*1g”m and s, =
41g(1/9). The second component (A2) is an array of m>* counters (each counting from 1 to
m) used to keep exact counts of the first m>* distinct items seen in the input stream. The third
component (A3) is a Count-Min Sketch, as described by Cormode and Muthukrishnan [4],
which we use to estimate k, defined to be the number of items in the stream that are different
from the most frequent item; i.e., k = m — max{m; : 1 < i < n}. The algorithm itself works
as follows. Recall that Fy denotes the number of distinct items in the stream.

o

Maintain A1, A2, A3 as described above. When queried (or at end of input):

if Fy < m?* then return exact H from A2.
else

let k = estimate of k from A3.

if K > (1 — &)m'~“ then return final estimator, Y, of Al.
6 else return (12 lgm)/m.

7 end

B W N

wn

Theorem 3.1. The above algorithm uses
log(1/0
0 (&z/)mza 1g? m)
€
space and outputs a random variable Z that satisfies the following properties.

1. Ifk <m** — 1, then Z = H.

2. Ifk > mi=e, thenPr[lZ— H| > eH] < 0.

3. Otherwise (i.e., if m** <k <m'~%), Z is a (1/a)-approximation of H.
Proof. The space bound is clear from the specifications of A1, A2 and A3, and Lemma 2.1.
We now prove the three claimed properties of Z in sequence.
PROPERTY 1: This follows directly from the fact that Fy < k + 1.

PROPERTY 2: The Count-Min sketch guarantees that k < k and, with probability at least 1 — 4,
k>(- ¢)k. The condition in Property 2 therefore implies that k > (1 —e)ym'™*, that is,
Z =Y, with probability at least 1 — J. Here we need the following lemma.

Lemma 3.2. Given that the most frequent item in the input stream A has count m — k, the min-
imum entropy Hpip is achieved when all the remaining k items are identical, and the maximum
Hmax is achieved when they are all distinct. Therefore,

m—k m k m
Hpin = lg + —lg—, and
m m—k m "~k
m—k m k
HmaX = lg +_1gm
m m—k

Proof. Consider a minimum-entropy stream A, and suppose that, apart from its most fre-
quent item, it has at least two other items with positive count. Without loss of generality, let
my =m — k and mp, m3 > 1. Modify Ay, to A’ by letting m’, = my + m3 and m’; = 0, and
keeping all other counts the same. Then

H(A) — H(Amin) = (gm — Fg(A")/m) — (Igm — Fg(Amin)/m)
= (Fu(Amin) — Fu(A"))/m
= molgmy + m3lgms — (ma + m3)lg(ma + m3)
< 0,

since x Ig x is convex and monotone increasing (on integer values), giving us a contradiction.
The proof of the maximum-entropy distribution is similar. [

Now, consider equation (6) and note that for any r, | X| < Igm. Thus, if E[X] = H > 1,
then Var[X]/E[X 1? < E[X?] < lg2 m and our choice of s is sufficiently large to give us the
desired (1 4 &)-approximation, by Lemma 2.1. On the other hand, if H < 1, then k < m/2,
by a simple argument similar to the proof of Lemma 3.2. Using the expression for Hp;, from
Lemma 3.2, we then have

m k m—k k k _

Hminzlg—+—1g > —lg 1 —— z—zma,
m—k m k m m

which gives us Var[X]/E[X]> < E[X?]/m™2* < (Ig° m)m®*. Again, plugging this and our

choice of 51 into Lemma 2.1 gives us the desired (1 4+ ¢)-approximation.

PROPERTY 3: By assumption, m** < k < m!'=%, If k > (1- g)m!' =% then Z = Y and the
analysis proceeds as for Property 2. Otherwise, Z = (klgm)/m < (klgm)/m. This time,
again by Lemma 3.2, we have

k k
m m

Ig

3| =
=3

and

—k k k k k
Hi = " lg——+ ~lgm = lg——+ —lgm—k) < —lgm+0 (),
m m—k k m

which, for large m, implies H — o(H) < Z < H /o and gives us Property 3. [

Corollary 3.3. For o = 1/3, the third case (Property 3) never occurs, so we have a (1 + ¢)-
approximation in space 0 (m? 3).

4

Conclusions

We have presented one-pass sublinear space algorithms for approximating the entropy norms
as well as the empirical entropy. It will be of interest to study these problems on streams in
presence of inserts and deletes.

References

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

N. Alon, Y. Matias and M. Szegedy. The space complexity of approximating the frequency
moments. Proc. ACM STOC, 20-29, 1996.

B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom. Models and issues in data
stream systems. ACM PODS, 2002, 1-16.

D. Coppersmith and R. Kumar. An improved data stream algorithm for frequency mo-
ments. ACM-SIAM SODA, 151-156, 2004.

G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. J. Algorithms, 55(1): 58-75, April 2005.

C. Estan and G. Varghese. New directions in traffic measurement and accounting: Fo-
cusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3): 270-313,
2003.

P. Indyk and D. Woodruff. Optimal approximations of the frequency moments of data
streams. ACM STOC, 202-208, 2005.

S. Muthukrishnan. Data Streams: Algorithms and Applications. Manuscript, Available
online at http://www.cs.rutgers.edu/"muthu/stream-1-1.ps

K. Xu, Z. Zhang, snd S. Bhattacharya. Profiling Internet Backbone Traffic: Behavior Mod-
els and Applications. To appear in Proc. ACM SIGCOMM 2005.

